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Extremely large-scale simulation of a Kardar-Parisi-Zhang model using graphics cards
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The octahedron model introduced recently has been implemented onto graphics cards, which permits extremely
large-scale simulations via binary lattice gases and bit-coded algorithms. We confirm scaling behavior belonging to
the two-dimensional Kardar-Parisi-Zhang universality class and find a surface growth exponent: β = 0.2415(15)
on 217 × 217 systems, ruling out β = 1/4 suggested by field theory. The maximum speedup with respect to a
single CPU is 240. The steady state has been analyzed by finite-size scaling and a growth exponent α = 0.393(4)
is found. Correction-to-scaling-exponent are computed and the power-spectrum density of the steady state is
determined. We calculate the universal scaling functions and cumulants and show that the limit distribution can
be obtained by the sizes considered. We provide numerical fitting for the small and large tail behavior of the
steady-state scaling function of the interface width.
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I. INTRODUCTION

The research of the nonlinear stochastic differential equa-
tion and universality class introduced by Kardar, Parisi, and
Zhang (KPZ) [1] is again at the forefront of interest [2,3].
This is largely due to the progress in exact solutions for
various one-dimensional realizations and initial conditions
(see, for example, Refs. [4–8]). This equation can describe the
dynamics of simple growth processes in the thermodynamic
limit [9,10], randomly stirred fluid [11], directed polymers
in random media [12] dissipative transport [13,14], and the
magnetic flux lines in superconductors [15]. Due to the
mapping onto the asymmetric exclusion process (ASEP) [16]
in one dimension it is also a fundamental model of nonequi-
librium particle system [17]. The KPZ equation specifies the
evolution of the height function h(x,t) in the d-dimensional
space

∂th(x,t) = v + σ2∇2h(x,t) + λ[∇h(x,t)]2 + η(x,t). (1)

Here v and λ are the amplitudes of the mean and local growth
velocity, σ2 is a smoothing surface tension coefficient, and η

roughens the surface by a zero-average, Gaussian noise field
exhibiting the variance 〈η(x,t)η(x′,t ′)〉 = 2Dδd (x − x′)(t −
t ′). The letter D denotes the noise amplitude and 〈〉 denotes
the distribution average. The equation is solvable in (1 + 1)d
due to the Galilean symmetry1 [11] and an incidental
fluctuation-dissipation symmetry [12], while in higher dimen-
sions only approximations are available. The model exhibits
diverging correlation length, thus, scale invariance, that can
be understood by the steady current in the ASEP model
corresponding to the up-down anisotropy of KPZ. Therefore,
the KPZ equation has been investigated by renormalization
techniques [18–20]. As the result of the competition of
roughening and smoothing terms, models described by the
KPZ equation exhibit a roughening phase transition between a
weak-coupling regime (λ < λc) and a strong coupling phase.

1The invariance of Eq. (1) under an infinitesimal tilting of the
interface, resulting in α + z = 2.

The strong coupling fixed point is inaccessible by perturbative
renormalization group (RG) method. Therefore, the KPZ
phase space has been the subject of controversy for a long
time [21–23] and the strong coupling fixed point has been
located by nonperturbative RG very recently [24].

Discretized versions of KPZ have also been much studied
(Refs. [25–27], for a review see Ref. [9]). Recently, we have
shown [28,29] that the mapping between the KPZ surface
and the ASEP [30,31] can straightforwardly be extended to
higher dimensions. In 2+1 dimensions the mapping is just
the simple extension of the rooftop model to the octahedron
model as can be seen on Fig. 2 of Ref. [28]. The surface built
up from the octahedra can be described by the edges meeting
in the up or down middle vertexes. The up edges in the x or y

directions are represented by σx/y = +1 − s, while the down
ones are represented by σx/y − 1 in the model. This can also
be understood as a special 2d cellular automaton [32] with the
generalized Kawasaki updating rules
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(2)

with probability p for attachment and probability q for
detachment. We have confirmed that this mapping, using
the parametrization λ = 2p/(p + q) − 1, reproduces the one-
point functions of the continuum model. This kind of general-
ization of the ASEP model can be regarded as the simplest
candidate for studying KPZ in d > 1: a one-dimensional
model of self-reconstructing d-mers [33] diffusing in the
d-dimensional space. Furthermore, this lattice gas can be
studied by use of very efficient simulation methods.

We now implement dynamic, bit-coded simulations of
the conserved lattice gas models for graphics cards (GPUs),
allowing very large system sizes, L × L. The surface heights
are reconstructed from the slopes

hi,j =
i∑

l=1

σx(l,1) +
j∑

k=1

σy(i,k) (3)
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and the squared interface width

W 2(L,t) = 1

L2

L∑
i,j

h2
i,j (t) −

⎡
⎣ 1

L

L∑
i,j

hi,j (t)

⎤
⎦

2

. (4)

was calculated at certain sampling times (t). In the absence
of any characteristic length, growth processes are expected to
follow power-law behavior and the surface can be described
by the Family-Vicsek [34] scaling law:

W (L,t) � Lαf (t/Lz), (5)

with the universal scaling function f (u)

f (u) ∼
{

uβ if u � 1
const if u 	 1

, (6)

where α is the roughness exponent of the stationary regime,
when the correlation length has exceeded the system size L

and β is the growth exponent, describing the intermediate time
behavior. The dynamical exponent z is just the ratio

z = α/β. (7)

II. BIT-CODED GPU SIMULATIONS

The height of each surface site is thoroughly determined
by two slopes, along the x and y axes, respectively, whose
absolute values are restricted to unity. Thus, at each site two
bits of information are required, hence a chunk of 4 × 4 sites
is encoded in one 32-bit word.

Two slightly different layers of parallelization are used that
reflect the two-layered computing architecture provided by
GPUs [35]: not communicating blocks at the device level
and communicating threads at the block level. Both layers
use domain decomposition with dead borders, i.e., conflicts
at the subsystem borders are avoided simply by not updating
them (see Fig. 1). A random translation is applied to the origin

FIG. 1. Sketch of the dead border domain decomposition scheme
employed. Lattice sites are indicated by dots, where the gray dots
represent inactive sites. Since only two slopes relating any sites to its
nearest neighbors are stored off site only two edges are inactive.

of the decomposition periodically to preserve statistics. To
avoid having to deal with non-32-bit aligned memory these
translations are restricted to multiples of four sites.

The complete system is stored in global device memory, and
each block cell is copied into the block-local shared memory
for precessing. Thus, moving the origin of the device level
decomposition results in cutting out the proper piece of the
system taking the periodic boundary conditions into account.
Moving the origin at each Monte Carlo step (MCS), i.e., by
one overall update of the system, proved to be sufficient and
the results are undistorted.

The size of a thread cell is set to be 8 × 8 sites, the smallest
possible choice, to maximize the number of threads per block.
Due to this small subsystem size a new origin for the block
level decomposition is picked at each update attempt, thus,
64 times per MCS. Additionally, the borders are not dead but
delayed, i.e., when a thread picks the border of its cell to
change it waits for the threads updating bulk sites to finish
their updates. Corner sites are further delayed.

If a thread hits a site belonging to a block border it does
nothing, slightly reducing the actual number of update attempts
per MCS. This is a minor effect: The ratio of block border to
overall system size is approximately 1/128 and affects the
prefactors of the scaling but not the exponents.

For random number generation each thread uses a 32-bit,
linear congruential random number generator (LCRNG) with
different seed [36]. Similar generators were previously suc-
cessfully applied in GPU simulations of the Ising model
[37]. Depending on the system size the generators have to
be periodically reseeded, which potentially introduces the
same correlations as using multiple generators in parallel.
However, since no deviations from the earlier CPU results have
been observed, we assume this to not disturb the statistics.
Correlations resulting from parallel usage could only have
local effects on the updates of a block cell. Moving the origin of
the block level decomposition should effectively destroy such
correlations. By the same argument reseeding the generators,
using a Mersenne Twister generator [38] running on the CPU,

FIG. 2. (Color online) Time in seconds for one MCS on a C2070
(black bullets, left axis). Speedup over a nonparallel implementation
on a Core i5 750@3GHz (red squares, right axis). The jump
in speedup between log2 L = 12 and 13 results from the system
exceeding the CPUs L3 cache at this point. The maximum speedup
factor achieved was roughly 240.
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has no negative effect at all. Part of the results were double
checked, employing a skip-ahead 64-bit LCRNG [39] with no
need for reseeding.

The simulations were performed on a C2070 GPU with
6-GB graphics memory, which allowed for a maximum system
size: 217 × 217 (4 GB of memory required). Figure 2 shows
benchmark results for the simulation.

The benchmarks consider only bare simulation times
and exclude the time needed to transfer data between host
and device. For large sizes, where the system exceeds the
CPUs L3 cache, the performance drops significantly. This
could be avoided in a CPU implementation using domain
decomposition designed to optimize memory access of the
CPU cache.

III. SURFACE GROWTH SCALING

We have run 10–1000 independent simulations for sizes:
L = 28,29,210,211,212,213,216,217 by starting from half-filled
(striped) lattice gases. This causes an intrinsic width of the
initial zigzag surface state, with W 2(L,0) = 1/4, a leading-
order constant correction to scaling, that we subtract at
the beginning of the scaling analysis. The time between
measurements increases exponentially

ti+1 = (ti + 10)em, with m > 0, t0 = 0, (8)

where the program calculates and writes out the width of
the surface. We used m = 0.01 to study the growth in larger
systems and m = 0.001 or m = 0.0001 to collect more data
points in the steady state. By the scaling analysis we disre-
garded the initial time region: t < tmic � 50, when basically an
uncorrelated, random deposition process goes on. The growth
is expected to follow simple scaling (6) asymptotically and we
assume corrections in the form

W (t,L → ∞) = btβ(1 + b0t
φ0 + b1t

φ1 · · · ). (9)

For a finite system, when the correlation length exceeds L, the
growth crosses over to a saturation, with the expected scaling
behavior

W (t → ∞,L) = aLα(1 + a0L
ω0 + a1L

ω1 · · · ). (10)

To see the corrections clearly we determined the effective
exponent of β, as the discretized, logarithmic derivative of
Eq. (4),

βeff(t) = ln W (t,L → ∞) − ln W (t ′,L → ∞)

ln(t) − ln(t ′)
, (11)

using t/t ′ = 2. As Fig. 3 shows the βeff(t) curves converge to
the same asymptotic value for different sizes as 1/t → 0, albeit
for smaller systems the fluctuations are larger and the scaling
breaks down as ξ (t) � L. One can read off the most precise
β = 0.2415(15) estimate from the largest system (L = 217),
where the simulations were followed up to t = 70.000 MCS.
This agrees with our former estimates for this model [28,29],
but now the error margin is sufficiently small to exclude a
convergence to the field theoretical value β = 1/4 [40] via the
analytic corrections (9).

Following the subtraction of the constant leading-order
term, corresponding to φ0 = −β, b0 = 1/2, the remaining
corrections are seemingly small and the oscillations hinder
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FIG. 3. (Color online) Local slopes of the surface growth for dif-
ferent sizes (L = 212,213,216,217). Averaging was done over 20–100
independent runs.

to fit them out very precisely. We determined the next leading-
order correction exponent by fitting with the from (12)

βeff(t) = β + b1φ1t
φ1 (12)

in the time window t > tmic and before the saturation region.
From the largest system fit we obtained φ1 = 1.05 and
b1 = −0.12.

On Fig. 3 we can observe that the local slopes do not change
for late times, therefore, assuming a W ∝ t0.2415 asymptotic
scaling we determined the probability distribution around this
law for the largest size: L17 for 1300 < t < 70 000 MCS. We
calculated the distribution of y = W (t)/t0.2415 as shown on the
left inset of Fig. 5. This opens up the possibility for a future
comparison with a solution like in one dimension [41].

Next, we investigated the scaling in the steady state. This
could be achieved in smaller systems with a higher data
sampling resolution. We confirmed that the data correspond
to the steady state by visual inspection of the W 2(t,L) as
well as by analyzing the P (W 2) distribution. Similarly to the
time dependence we determined the effective exponent of the
roughness, which can be defined as the logarithmic derivative
of the width

αeff(L) = ln W (t → ∞,L) − ln W (t → ∞,L/2)

ln(L) − ln(L/2)
. (13)

Finite-size scaling was done for systems of linear sizes
between Lmin = 28 and Lmax = 213 and by considering the
corrections using the fitting form

αeff(L) = α + a1ω1L
ω1 . (14)

The local slopes of the steady-state values αeff(1/L) are shown
in Fig. 4. The fitting results in α = 0.393(4), a1 = −1.24,
and ω1 = 1.16. Using the α = 0.393(3) and β = 0.2415(15)
estimates, the dynamical scaling exponent is z = α/β =
1.627(26). With these values we get α + z = 2.02(3), which
satisfies the scaling law expected by the Galilean symmetry.
Figure 5 shows a perfect data collapse with these exponents
over several decades.
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FIG. 4. (Color online) Local slopes of the roughness exponent for
different sizes. The line shows a fit with the form (14). (Inset) Surface
width of the stationary state as the function of linear system size. The
line corresponds to a fit with the form (10).

We also investigated the power spectrum density (PSD) of
the interface

S(k,t) = 〈h(k,t)h(−k,t)〉, (15)

where the height in the Fourier space is computed as

h(k,t) = 1

Ld/2

∑
χ

[h(x,t) − 〈h〉] exp(ikχ ). (16)

We computed h(k,t) from the surface profiles with the FFT
method and determined S(k,t) by averaging over the x and
y directions. In the steady state the PSD is expected to scale
as S ∼ k−2−2α , which can be confirmed for 0.002 < k < 0.1
(see inset of Fig. 5). For larger k values we can see a growth
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FIG. 5. (Color online) Finite-size scaling of W (L,t) for L =
212,213,216,217. (Right inset) PSD of the L = 213 system in the steady
state. (Left inset) Distribution of W/t0.2415 in the growth phase of the
L = 217 system.

of the S(k) function, which is the consequence of the lattice
regularization.

IV. PROBABILITY DISTRIBUTIONS

The exact form of the spatially averaged height distribution
P (〈h〉) of the KPZ model in one dimension is a hot topic of
statistical physics [4–8] and provides a definition of the KPZ
universality class. The PL(W 2) distribution in the steady state
is also known exactly, in closed form for small and large x

asymptotically [42]. In two dimensions not much is known
about this distribution.

In Refs. [22,42] it was shown that the width distribu-
tions L(x) = 〈W 2〉PL(W 2/〈W 2〉) of discrete KPZ surfaces
exhibit universal behavior. We now determined the proba-
bility distributions PL(W 2) and calculated L(x) for L =
28,29,210,211,212,213 with the GPU code by measuring W 2

in the steady state. Averaging was done over N = 20–100
runs and 104–105 time steps. In case of the largest, 213 case
the steady-state averaging was done between 5 × 107 and
108 MCS. As Fig. 6 shows the data collapse is very good
around x = 1, but deviations occur in the large and small x

asymptotics due to the lack of sample points there. It is very
difficult to collect enough statistics for the extremal cases as
the width of PL(W 2) grows as L2α .

By studying the finite-size effects of extreme value statistics
it was discovered [43] that there is also universality in the
first-order (shape) correction to the limit distributions. It was
also shown that if the finite-size corrections of the cumulants
can be neglected, the shape corrections can be expressed via
the limit distributions. To see this let us write PL(W 2) in terms
of the cumulant generating function

PL(W 2) =
∫

dq

2π
exp

[
−iq(W 2 − κ1) +

∞∑
n=2

(iq)n

n!
κn

]
, (17)
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FIG. 6. (Color online) The universal scaling function L(x) in
the steady state for L = 28,29,210,211,212. The dotted line shows the
L = 157 results of Ref. [22].
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where κn-s are the nth cumulants of W 2 (i.e., 〈W 2〉 = κ1 = ν1),
related to the nth, noncentral moments (νn) as

κ1 = ν1, κ2 = ν2 − ν2
1 , κ3 = ν3 − 3ν1ν2 + 2ν3

1 ,

κ4 = ν4 − 4ν3ν1 − 3ν2
2 + 12ν2

1ν2 − 6ν4
1 , (18)

. . .

Due to general scaling, the cumulants have the large L behavior

κn ∝ L2nα. (19)

Let us assume that the corrections to scaling of the cumulants
are of the form

κn = L2nα
(
κ0

n + κ1
nL−ω1 + · · · ). (20)

To check this we determined the n = 1,2,3,4 cumulants from
W 2 data and performed a finite-size scaling analysis. The
corrections to scaling (19) were found to be negligible, as
shown in Fig. 7, hence, the universal limit distribution, in
principle, can very well be approximated from the finite L

results.
Finally, we tried to fit the small and large x asymptotics of

(x) with similar functional forms that is known exactly in one
dimension [42]. This assumption is based on the similarity of
the underlying model, i.e., directed migration of dimers instead
of particles. When we applied for the small x (x < 0.75) part
of the L(x) the general form

xA(B − x) exp (C/xD), (21)

we found stable nonlinear fittings with C � 2 and D � 2 in
contrast to one dimension, where D = 1. This is similar to the
small x extreme value statistics of the 1/f α noise, where one
obtains exp(−a/xβ ) with β depending on α. We fixed C = 2,
D = 2 and tried to get a general form with integer coefficients
up to the second order. We obtained

x−8(10 − x) exp(−2/x2)[1 + x−38(9 − x) exp(−9.25/x2)],

(22)
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FIG. 7. (Color online) FSS of the cumulants: κ1, κ2, κ3, κ4 (top to
bottom) for L = 512,1024,2048,4096,8192. The lines correspond to
power-law fitting with very small exponents.

0.4 0.5 0.6 0.7 0.8
x

0.0

0.5

1.0

1.5

Ψ
L

1 2 3 4
x

10
−3

10
−2

10
−1

10
0

x 
Ψ

L

FIG. 8. (Color online) Small (left) and large (right) asymptotics
of L(x). (Dotted blue line) L = 157 of Ref. [42]; (red line) L =
2048 data; (dashed line) fitting with the form (22). (Right) linear-
logarithmic fitting (dashed line) to the large x part of the same data.

in good agreement with the L = 2048 data as shown
in Fig. 8.

For the lager x part we assumed again the form of the
one-dimensional model

E exp(Fx)/x (23)

and obtained a nice agreement with E = 2.915 and F =
−2.572. The least-squares fit error was smaller that by a
stretched exponential ansatz.

V. CONCLUSIONS AND DISCUSSION

In conclusion, we have developed a bit-coded CUDA

program, which simulates very efficiently a 2 + 1 dimensional
discrete KPZ growth model (the octahedron model [28])
via binary lattice gases. Using this tool we could achieve
extraordinary large sizes up to 217 × 217 with a maximum
speedup 240 on NVIDIA Fermi cards with respect to a single
3-GHz CPU core. This allows us to resolve debates over
the scaling exponents by performing a very precise scaling
analysis of the interface width.

Our growth exponent estimate β = 0.2415(15) is somewhat
larger than the results of Refs. [44] [β = 0.221(2)], [45] [β =
0.229(5)], and [46] [β = 0.240(1)]. It matches our former
estimates for this model 0.245(5) [29] but excludes definitely
the β = 0.25 field theoretical result. We also estimated the
leading-order correction to scaling exponent: φ1 = 1.05.

The independent roughness exponent result α = 0.393(3)
is in the middle of the range obtained by various numerical ex-
ponent estimates, i.e., between α = 0.36 [44,47] α = 0.385(5)
[46] and the α = 0.4 field theoretical result, well out of error
margin. This agrees with our former α = 0.395(5) [29] and
with the simulation results of [21] [α = 0.393(3)]. In the latter
case even the correction to scaling exponent ω1 = 1.16 is the
same.

We analyzed the surface in the steady state by the power
spectrum density method and confirmed the KPZ scaling for
several decades above the lattice cutoff. We determined the
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universal scaling function and the cumulants of the surface
width for different sizes and obtained the limit distribution via
correction to scaling analysis. We gave analytical fitting for the
small and large asymptotics. As compared to one dimension
[42], where a linear x dependence in the exponential is known
exactly, we found x2 dependence for small x. For the large
x deviations the exp(Fx)/x tail fits better than a stretched
exponential functions as suggested in Ref. [48].

Our model and code proves to be a very efficient tool
to study not only the (2 + 1)-dimensional KPZ and ASEP
models but, more generally, it can be used in the research of
fundamental nonequilibrium thermodynamical quantities like
the large deviation function or entropy production [49,50]. It is
also straightforward to extend it to study more complex system
exhibiting pattern formation [51,52], the effect of quenched
disorder [53], or the time-dependent structure factor [54] or to
study higher dimensions [29].

One may also ask if the results for this discrete model
describe those of the continuum KPZ equation. In fact, this is
not an obvious question in d > 1 dimensions [55]. However,

we think that the irrelevancy of anisotropy by renormalization
group studies [56] excludes this in two dimensions and we find
(2 + 1)-dimensional KPZ universality class behavior.

On completion of this study we discovered another way
of accelerating our algorithm, which provides an additional
factor of ∼1.8 with respect to the simulations presented here.
The technical details will published elsewhere [57].
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(Grants No. 50450744 and No. P-MÖB/854) and OSIRIS FP7
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[20] M. Lässig, Nucl. Phys. B 448, 559 (1995).
[21] E. Marinari, A. Pagnani, and G. Parisi, J. Phys. A 33, 8181

(2000).
[22] E. Marinari, A. Pagnani, G. Parisi, and Z. Rácz, Phys. Rev. E
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