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From Random Walk to Single-File Diffusion
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We report an experimental study of diffusion in a quasi-one-dimensional (q1D) colloid suspension
which behaves like a Tonks gas. The mean squared displacement as a function of time is described well
with an ansatz encompassing a time regime that is both shorter and longer than the mean time between
collisions. The ansatz asserts that the inverse mean squared displacement is the sum of the inverse mean
squared displacement for short time normal diffusion (random walk) and the inverse mean squared
displacement for asymptotic single-file diffusion (SFD). The dependence of the 1D mobility in the SFD on
the concentration of the colloids agrees quantitatively with that derived for a hard rod model, which
confirms for the first time the validity of the hard rod SFD theory. We also show that a recent SFD theory
by Kollmann [Phys. Rev. Lett. 90, 180602 (2003)] leads to the hard rod SFD theory for a Tonks gas.
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The diffusion of particles in quasi-one-dimensional
(q1D) pores and channels is a basic feature of ion transport
in cell membranes, molecular motion in zeolites, and
particle flows in microfluidic devices (see references in
[1]). The unique feature that separates q1D diffusion from
diffusion in higher dimensions is the geometric confine-
ment that forces the particles into a single file with a fixed
spatial sequence. This confinement generates a self-
diffusion mechanism that has different time dependences
of the mean squared particle displacement in different time
domains.

For time intervals shorter than the time between particle
collisions, in the presence of a randomizing background
fluid (e.g., a colloid particle in a solvent), the probability
density for the particle displacement is
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where x is the displacement during time interval t � t1 �
t0, and D0 is the q1D self-diffusion coefficient. However,
the fixed spatial sequence of the particles severely restricts
the possibility for large single particle displacements and,
therefore, drastically reduces the diffusion rate at long
time. An analytic description of 1D diffusion in a system
of hard rods with stochastic background forces was first
reported by Harris [2]. Several other 1D systems have been
examined with a similar approach [3–9]; the results ob-
tained converge to the same solution. For an infinite 1D
system the long time behavior of the probability density for
displacement is
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where F is a 1D mobility defined by
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We denote the 1D mobility of the hard rods by FHR. In
Eq. (3)  is the particle length, � is the 1D number density,
l is the mean spacing between the particles, and tc �
l2=2D0 is the mean time between collisions in the system.
Equations (2) and (3) draw a remarkably simple picture of
1D diffusion at long time: the self-diffusion process, de-
termined by the width of the probability density, is propor-
tional to t1=2 (i.e., hx�t�2i � t1=2), and the proportionality
constant is determined by the short time individual particle
dynamics.

Recently Kollmann reported an analysis of the long time
behavior of 1D diffusion that is valid both for atomic and
colloid systems [10]. For colloid systems he finds the
asymptotic particle density function displayed in Eq. (2)
with the 1D mobility, denoted by Fq,

Fq �
S�q�
�

�������������
Dc�q�
�

s ��������q	4�=
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where q, S�q�, Dc�q� are the momentum transfer, static
structure factor, and the short time collective-diffusion
coefficient in q space, respectively. The small t, small q
approximation for the dynamic structure factor, S�q; t�
[11], yields the relation

S�q; t� � S�q� expf�q2Dc�q�tgjt	tc;q	4�=: (5)

Kollmann’s analysis predicts that the long time character of
1D diffusion is determined by the short time collective
dynamics of the system.

Although theoretical analyses of 1D diffusion have been
reported for the past four decades, the first experimental
studies were reported only in the past decade. Studies of
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FIG. 1 (color online). Typical probability density of particle
displacement evolving with time (for � � 0:57). The solid lines
are fits of the data to Eq. (6).
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molecular diffusion in zeolites, and of colloid particles
confined in a channel, lead to the result hx�t�2i � t1=2 at
long time [1,12,13]. Very recently, Lutz, Kollmann, and
Bechinger [14] reported the results of an experimental
study of single-file diffusion in a strongly interacting col-
loid suspension. The 1D mobility, determined from
hx�t�2i � 2Ft1=2 at long time, agrees with that determined
from Eq. (4) at short time, as predicted [10]. However, the
1D mobility they find is only qualitatively similar to FHR.

The main difficulty encountered in the study of single-
file diffusion is to obtain data at long time; this difficulty is
most pronounced for low concentration samples. To obtain
the required data, one needs a long-lived experimental
system and stable instruments, such as those cleverly de-
vised for the studies reported in Refs. [1,14].

In this Letter, we report an experimental study of q1D
diffusion in a weakly interacting colloid suspension con-
fined in a narrow straight groove. We establish an ansatz
that accurately approximates the q1D diffusion process
from the short time region to the long time region, thereby
allowing us to study the long time single-file diffusion
within a reasonable time frame (requiring a sample lifetime
of �1 h), as well as diffusion in the crossover time region.
The experimentally determined q1D mobility of the system
agrees quantitatively with FHR.

We note that Kollmann states that Fq is not equivalent to
FHR, and the experimental results in [14] support this
statement. However, we show that these two theories are
equivalent when applied to a system, such as ours, which
obeys the Tonks equation of state [15].

Our experimental system consists of silica colloid
spheres (density 2:2 g=cm3) suspended in water and con-
fined in straight and narrow grooves. The grooves are
printed on a polydimethysiloxane substrate from a master
pattern fabricated lithographically on a Si wafer (Stanford
Nanofabrication Facility). The small width of the groove
(< 2) prevents the spheres from passing one other, and
gravity keeps them from escaping the groove. The spheres
are very weakly attractive (< 0:4kBT); the short-range
attraction may derive from surface tension effects [16].
Digital video microscopy is used to directly track the
time-dependent trajectories of the spheres along the groove
(the motion transverse to the groove is very limited and,
therefore, is not considered here). Details relevant to sam-
ple preparation and data analysis have been described
elsewhere [13,16].

We have studied q1D diffusion at various colloid con-
centrations, characterized by a line packing fraction � �
� � N=L, where L is the length of the groove in the
field of view, and N is the number of spheres within L. We
used two different silica colloid suspensions. For � �
0:09, 0.17, 0.20, 0.38, 0.57, and 0.70, the samples had silica
spheres with diameter 1 � 1:58 0:04 �m in a groove
that was 3:0 0:3 �m wide and deep, and 2 mm long. For
� � 0:73 and 0.986 we used silica spheres with diameter
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2 � 3:7 0:1 �m in a groove that was 5:0 0:1 �m
wide, 4:0 0:5 �m deep, and 10 mm long. Care has
been taken to assure that there were no blockages in the
grooves. We used the large spheres for the higher concen-
tration samples because the small spheres could not be
contained inside the grooves when �> 0:7.

The self-diffusion process is usually described by the
self-part of the van Hove function, Gs�x; t�, which is the
probability density for finding a particle at a point x0 � x at
time t0 � t given that it was at x0 at t0 [Gs�x; t� �

1
N �

h
PN
i�1 ��x� xi�t0� � xi�t0 � t��i [17] ]. Figure 1 shows a

typical Gs�x; t� for our system, derived from time-
dependent trajectories. The deviation of Gs�x; t� from a
Gaussian, characterized by �2�t� � � hx�t�4i

3hx�t�2i2
� 1�, is found

to be negligible [�2�t� & 0:1]. We therefore assume
Gs�x; t� to have the Gaussian form
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Figure 1 also shows the Gaussian fits to Gs�x; t�. The mean
squared displacement determined from the fitting is sen-
sibly the same as that determined from hx�t�2i � 1

N �

h
PN
i�1�xi�t0 � t� � xi�t0��2i.
Figure 2 shows hx�t�2i as a function of t at various

concentrations, extracted from fitting Gs�x; t� to Eq. (6).
Qualitatively, hx�t�2i is proportional to t at short time,
changes smoothly to hx�t�2i � t� (� < 1) at later time,
and reaches hx�t�2i � t1=2 at long time for the higher con-
centrations. Because of the expected trend in the behavior
of hx�t�2i as a function of �, it is reasonable to postulate
that with long enough time the low concentration samples
will also exhibit hx�t�2i � t1=2. Accordingly, we use the
following ansatz to describe hx�t�2i over the entire time
range:
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FIG. 3 (color online). Quasi-1D mobility (solid circles) deter-
mined with the empirical expression [Eq. (8)] as a function of
concentration [F for the large colloids is scaled by the factor
�1=2�

������������������
D01=D02

p
]. The solid line represents FHR. Other sym-

bols represent Fq determined from Eq. (4). The inset zooms into
the data at higher �.
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FIG. 2 (color online). Mean squared displacement as a func-
tion of t at different concentrations. Note that hx�t�2i for large
spheres is scaled by the factor 2=1. The data (symbols) are
shifted downward a factor of 3 from one another for clarity. The
error bars are smaller than the symbols used. For t � 1 s the
movies were grabbed at 30 frames=s, and for t > 1 s the images
were grabbed at 4 and 5 frames=s for small and large spheres,
respectively (only a subset of the data are plotted for clarity). The
solid lines are fits of the data to Eq. (8).
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Equation (7) leads to

hx2�t�i �
2D0t

1� �D0=F�t
1=2

�
2D0t

1� �t=tx�
1=2
: (8)

By construction, Eq. (8) satisfies both the short and long
time limits, and it provides a characteristic crossover time,
tx � �F=D0�

2. If F � FHR, then tx � tHRx � 2tc=� [see
Eq. (3)], so that for hard rods tx is, essentially, the mean
time between collisions. The fits of hx�t�2i to Eq. (8) shown
in Fig. 2 indicate that Eq. (8) is a reasonable approximation
for all time, and the fitting yields three pertinent parameters
describing the q1D diffusion: the short time self-diffusion
coefficient, D0, the long time q1D mobility, F, and the
crossover time, tx.

When � � 0:4 the fitted values forD0 areD01 � 0:11
0:005 �m2=s and D02 � 0:036 0:005 �m2=s, respec-
tively, for the small and large spheres (the lower concen-
tration data for large spheres are not shown here). These
values are, within the experimental precision, the same as
those calculated for isolated colloids confined by the three
walls of the groove (note that the groove dimensions differ
in the two cases) [13] and, therefore, are used to determine
FHR in Eq. (3) and tx in Eq. (8). At higher concentrations
the fitted self-diffusion coefficient is slightly smaller
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[��70%–80%�D0], suggesting that hydrodynamic interac-
tion between colloid particles comes into play even at the
shortest time accessible in our experiment [13,18].

Figure 3 shows the fitted F as a function of �. When
0:17 � � � 0:57, F � FHR within the experimental pre-
cision. However, F � FHR=2 when � � 0:09 and F &

2FHR when � � 0:7. Using the fitted F and D0, we find
tx � 205; 150; 107; 17; 4:5; 5:2; 3:8; 0:006 s for � �
0:09; 0:17; 0:19; 0:38; 0:57; 0:70; 0:73; 0:986, correspond-
ingly, to be compared with tHRx � 955; 172; 116; 19; 4:1;
1:3; 0:7; 0:001 s, respectively [note for large spheres tx
and tHRx are scaled by a factor �1=2�

2�D02=D01�]. For
� � 0:7 we can force F � FHR by replacing the colloid
diameter in FHR with a larger effective diameter. We
speculate that at higher concentration the colloid-colloid
interaction, though weak, must be accounted for. Since the
first peak of the pair correlation function is at a separation
slightly larger than the sphere diameter [16], the effective
sphere diameter is thereby increased.

The accuracy of the fitted F andD0 depends on the range
of t relative to tHRx . If the range of t extends to both t	 tHRx
and t� tHRx , we can extract F and D0 accurately from
Eq. (8); if not the values obtained are less accurate, as
shown by the discrepancies between the fitted F and FHR

for � � 0:09, and the fitted D0 and expected D0 at higher
�.

We now show that, as is to be expected, FHR � Fq for a
q1D system that is described by Tonks equation of state
f�1� �� � �kBT (f is the linear force) [15]. The rela-
tive isothermal compressibility of a Tonks gas is
1-3



FIG. 4 (color online). The experimentally determined static
structure factor S�q� for small q as a function of concentration,
compared with that derived from the equation of state for a
Tonks gas.
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 T= T0 � �1� ��2 � �1� ��2 � S�q�jq�0; (9)

where  T � � 1
L
@f
@L for 1D, and  T0 � �kBT���1. Figure 4

shows S�q� for our system for small q (2�=q� =2) as a
function of �; the agreement with Eq. (9) clearly indicates
that our system behaves like a Tonks gas. The slight shift of
experimental values of S�q� to larger � from that of a
Tonks gas is consistent with the weak colloid-colloid at-
traction [19].

Kollmann’s theory relates Fq to the collective diffusion
coefficient, Dc�q�, and the relative isothermal compressi-
bility, S�0�. Substituting S�0� given in Eq. (9) and Dc�q� �
D0H�q�=S�q� [11] [H�q� is the hydrodynamic factor] into

Eq. (4), we obtain Fq � l
�����
D0

�

q
� FHR, if H�q� � 1, i.e., if

hydrodynamic interaction is negligible.
We have calculated Fq as follows. First, S�q; t� was

determined from the trajectories using S�q; t� � 1
N �

h�q�t���q�0�i, where �q�t� �
1���
N

p
R
dx exp��iqx��PN

k�1 ��x� xk�t��. Then S�q; t� was fitted to the short
time approximation [Eq. (5)] to extract Dc�q� at small q
(q	 4�=). Within the short time range 0:03 � t � 1 s,
S�q; t� is well described by Eq. (5) except for the case � �
0:986. Finally, Fq was calculated using Eq. (4) for all the
concentrations except � � 0:986. As shown in Fig. 3, Fq

agrees with FHR within the experimental precision. The
data in Fig. 3 also show that Fq depends on q, which we
attribute to hydrodynamic interaction in the system. In a
q1D system hydrodynamic interaction is screened on the
length scale of the channel width, so it can be treated as
generating a pair interaction [18]. Then the effect of H�q�
on Fq is not significant. A full discussion of H�q� in the
q1D system will be published separately.
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It is worth noting that hx�t�2i in Eq. (8) is the width of a
Gaussian which is the product of the short time probability
density [Eq. (1)] and the long time probability density
[Eq. (2)]. The success of the approximation given in
Eq. (8) suggests that the van Hove function displayed in
Eq. (6) is valid for all time for our system. It is further
implied that the randomizing background that determines
the short time behavior and the correlated motion that
determines the long time single-file diffusion are coexist-
ing independent processes with time-dependent weights.
For t	 tx and t� tx the system exhibits normal diffusion
and single-file diffusion, respectively. However, for t� tx,
the motion of a particle in 1D is hindered by its neighbors
and the short time displacement distribution is modified by
the long time distribution.
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