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We suggest and discuss a simple model of an ideal gas under the piston to gain an insight into the workings
of the Jarzynski identity connecting the average exponential of the work over the nonequilibrium trajectories
with the equilibrium free energy. We show that the identity is valid for our system, due to the very rapid
molecules belonging to the tail of the Maxwell distribution. For the most interesting extreme, when the system
volume is large, while the piston is moving with great speed (compared to thermal velocity) for a very short
time, the necessary number of independent experimental runs to obtain a reasonable approximation for the
free energy from averaging the nonequilibrium work grows exponentially with the system size.

1. Introduction

The celebrated Jarzynski identity is perhaps the most recently
discovered1,2 simple general formula in elementary statistical
mechanics:

(see below about sign convention). The claim of this charming
simple formula is as follows. Suppose we have an arbitrary
system and let us consider two states of this system specified
by parameters, e.g.Ainitial and Afinal; these could be volumes,
magnetic fields, or just about anything else. If the system comes
to thermodynamic equilibrium atAinitial, it has free energy
F(Ainitial) ) Finitial; if the system is equilibrated atAfinal, its free
energy isF(Afinal) ) Ffinal. The difference of these free energies
is ∆F ) Ffinal - Finitial. According to elementary thermodynam-
ics, if we drive the system from an initial to a final state by a
reversible process, such that the system remains at equilibrium
at every stage, then we have to perform work,-W, which is
equal to the free energy change:-W ) ∆F. If, on the other
hand, the process is not reversible, then the second law of
thermodynamics tells us that〈-W〉 g ∆F. We know, of course,
that the second law of thermodynamics is of a statistical nature
and, therefore, from time to time, very infrequently, fluctuations
occur in which-W < ∆F. These fluctuations might be very
rare, but with largeW (strongly negative-W) their contribution
to the average ofeW/kBT might be significant. The Jarzynski
formula (1) tells us precisely that when all fluctuations, including
those violating-W g ∆F, are taken into account, then the
average of〈eW/kBT〉 reduces toe-∆F/kBT.

It is worth repeating that-W is the work performed by an
external force on the system; in other words,W is the work
performed by the system itself. We use this sign convention
(perhaps somewhat nonstandard), because it will make for
positiveWand save us some writing in interesting cases below.

The tempting use of this result is to circumvent in computer
simulation or in real experiment the often painful stage of
equilibrating the system. Instead, it should be possible to run
the system many times without any worry of the equilibrium,

repeatedly measure the work,W, and still obtain the equilibrium
information ∆F from the formula (1). The problem is that it
requires exploration of all sorts of fluctuations along the way
and measurement of the workW for every fluctuation.

There are already quite a number of works exploring various
aspects of the Jarzynski formula. Papers3-5 address mathematical
foundations of the Jarzynski identity in the context of funda-
mental statistical mechanics. Some authors describe the Jarzyn-
ski identity in terms of “transient violations of the second law
of thermodynamics”.6 There is a history of cases when such
fluctuation effects were mentioned under the name of “tempo-
rary violations of the second law”,7,8 but many people feel that
it is incorrect terminologically to say that fluctuations violate
the second law, even if temporarily. Here, we do not make any
firm commitment to any terminology in this sense and just say
that the Jarzynski identity is based on proper exploration of a
representative set of fluctuations. Various ways to apply the
Jarzynski relation in computer simulations and in experiments
are discussed in refs 6 and 9-12 (see also the extensive literature
cited in these works).

Nevertheless, we found that one aspect is missing in the
current literature: namely, the pedagogical aspect. The Jarzynski
formula appears so simple and so general that there ought to
be a simple way to explain it and to gain an intuitive insight of
it on a very elementary level. This motivated us to look for the
simplest possible example in which the Jarzynski equation shows
some nontrivial results. Since the conceptually simplest subject
in statistical mechanics is undoubtedly the classical ideal gas,
the goal of the present paper is to work out the application of
the formula to the ideal gas. Of course, we shall find nothing
really new in terms of factual results, but we hope for a good
new insight.

2. Model and Formulation of the Seeming Paradox

Consider some amount of ideal gas in a vessel under a piston.
Everything is supposed to be in accord with elementary physics
textbooks: ideal thermoisolation, massless piston moving
without any friction, etc. Suppose initially that the piston is some
distanceL from the bottom of the vessel and that the gas
temperature isT. Let us now move the piston by some distance
∆L and stop it again, thus preparing the final state.† Part of the special issue “David Chandler Festschrift”.

〈eW/kBT〉 ) e-∆F/kBT (1)
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The following way of thinking seems quite logical from a
physicist’s point of view. To make the situation dramatic, let
us suppose that we move the piston at a very high speed, much
faster than the speed of sound in the gas or, in other words,
much faster than the averaged thermal velocity of the molecules.
Then we can roughly say that no molecules will be able to chase
the piston while it is moving, no molecules will hit it, and there
will be, therefore, no work. When the piston is stopped at the
end, molecules start arriving and they do bombard the piston,
but since the piston does not move at this stage, the work is
still zero. This logic leads to the conclusion that in this case
W ) 0, implying 〈eW/kBT〉 ) 1, while obviously∆F * 0, which
seems to contradict the Jarzynski identity (1).

To resolve this paradox, we have to remember the tail of the
Maxwell distribution: however large the speed of a piston, there
is still some probability of molecules moving fast enough to
chase the piston and hit it while it is moving. This already
suggests that the Jarzynski identity (1) has to do with the tails
of the relevant distributions. To make this statement more
precise, we shall compute the probability distribution of the work
W for our elementary model. This is obviously much more than
just computing the average involved in Jarzynski formula (1).

To make our article more pedagogical, we shall start with
proving the very identity (1) for our specific system. We shall
also relegate cumbersome calculations to the Appendix.

3. Calculations

3.1. Average Value ofeW/kBT. Since we plan to consider an
ideal gas, all molecules will contribute to bothW and ∆F
independently. Therefore, we can imagine the Jarzynski formula
(1) rewritten as

whereW1 and ∆F1 are the work and the free energy change
per molecule. We see that, for the ideal gas, the quantitiesW1

and ∆F1 satisfy the Jarzynski formula looking identical with
(1). We, therefore, restrict ourselves for simplicity to the “ideal
gas” of just one molecule, and also for simplicity we suppress
the index 1 in writingW and∆F. Thus, we keep considering
formula (1), but we think now about just one molecule in an
ideal gas.

Furthermore, to simplify writing, we assume that the tem-
perature is such thatkBT ) 1, the mass of the molecule ism )
1, and the piston is moving during the time intervalτ ) 1.

Figure 1 illustrates the system consisting of a thermally
isolated cylinder, a piston moving at speedVp, and a single
molecule initially at positionx with velocity V. The molecule
bounces off the walls elastically; thus, we are concerned only
with the one-dimensional motion indicated. The space-time
diagram depicts the trajectory of the piston and the trajectories
for a molecule initially moving toward the piston (dashed lines)
and for a molecule initially moving away from the piston
(thinner dashed lines).

Let us focus on the workW done by the single molecule
on the piston, in the time intervalτ ) 1. The quantityeW

(kBT ) 1) is to be averaged over the possible initial states
(x, V) of the molecule drawn from a Maxwell-Boltzmann
distribution. Therefore

wherewτ(x, V) is the work done by the gas molecule given the
initial coordinate (x, V) and time elapsedτ. To compute this
functionwτ(x, V), we first need to work out the collision times
between the molecule and the piston and the work done aftern
collisions.

Let us first assume a positive initial velocity, in which the
molecule can strike the piston first before hitting the left end
of the cylinder. The time taken for the first collision with the
piston ist1 ) (L - x)/(V - Vp). After the collision, the velocity
of the molecule relative to the piston gets reversed and the speed
of the molecule gets diminished toV - 2Vp (assumingV > 2Vp).
The time taken for the second collision with the piston is given
by t2 ) (3L - x)/(V - 3Vp). In general, for thenth collision

Similarly, for a molecule with a negative initial velocity

These relations can be inverted to give conditions that should
be satisfied by the speed of the molecule in order to result in
exactlyn collisions with the piston within the time intervalτ )
1. For positive initial velocities

For negative initial velocities

The work done by the piston on the molecule after one
collision is the change in momentum of the molecule times the
velocity of the piston

(〈eW1/kBT〉)N ) (e-∆F1/kBT)N (2)

〈eW〉 )
∫0

L
dx∫-∞

∞
dVe-V2/2ewτ(x,V)

∫0

L
dx∫-∞

∞
dVe-V2/2

(3)

Figure 1. System and space-time diagram: (solid line) piston
trajectory; (thick dashed line) molecule trajectory with positive initial
velocity; (thin dashed line) molecule with negative initial velocity.

tn
+ )

(2n - 1)L - x

V - (2n - 1)Vp

(4)

tn
- )

(2n - 1)L + x

V - (2n - 1)Vp

(5)

(2n - 1)(L + Vp) - x < |V| < (2n + 1)(L + Vp) - x (6)

(2n - 1)(L + Vp) + x < |V| < (2n + 1)(L + Vp) + x (7)

-w1 ) (-(V - 2Vp) - V)Vp ) -2(V - Vp)Vp (8)
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In general, the work done aftern collisions is

Note that the work done can also be calculated from the change in kinetic energy aftern collisions:

The work done by the molecule on the piston is positive for an expanding volume.
We are now facing the laborious task of calculating the integral in the numerator of formula (3). It is cumbersome, because it

must include the summation over all possible numbers of bounces of our molecule from the piston. Note that a large number of
bounces correspond to a very large initial velocity of the molecule, as it has to have time to chase the piston forn bounces, even
though it loses momentum and gets slower at every bounce. The actual calculation is described in Appendix A. Using the simplified
result (30), the sought average is

which can be recognized as the ratio of the partition functions at the final (after timeτ ) 1) and initial volumes at the initial
temperatureT ) 1/kB, Z(L + Vpτ, T)/Z(L, T). This expression is also identical with that obtained from the Jarzynski identity.

3.2. Probability Distribution of the Work W. The prescription for evaluating the distribution is

The calculations are presented in detail in Appendix B. With the expression (16) forn, the number of bounces, one can get rid of
the summation over this number and the distribution function simplifies to

Here,P0 is the probability to obtain vanishing work because the molecule is unable to chase the piston or hit it even once

and the functionf(W), which we call the overlap factor, can be formulated as (see also Figure 2)

Here, the integern (which is the number of bounces by the molecule against the piston) is obtained in Appendix B and is given by
the formula

where [...] means the integer part of .... For example, simple algebra indicates that as long asW < 4Vp(2L + Vp), we have just one
collision, n ) 1. For the values of workW in the next interval, 4Vp(2L + Vp) < W < 12Vp(2L + Vp), we haven ) 2, etc.

Thus, the probability distributionP(W) consists of aδ function peak atW ) 0 and a tail at positiveW.
3.3. Limit of Large Volume and Fast-Moving Piston.As we said in the beginning, the most interesting case is when the piston

moves fast, such that hardly any molecule can chase it and produce nonzero work. This means that the Jarzynski identity in this case
relies exclusively on the far tail of the Maxwell distribution. Let us consider the probability distributionP(W) in this limit, Vp . 1.

It is reasonable to assume simultaneously that the volume is large enough such thatL . Vp. Since in more traditional units this
condition readsL . Vpτ, this means that the piston moves fast, but for a very short time.

-wn ) -2VVpn + 2Vp
2n2 (9)

-wn ) 1/2(V - 2nVp)
2 - V2/2 ) -2nVpV + 2n2Vp

2 (10)

〈eW〉 )
∫0

L+Vpdx∫-∞

∞
dVe-V2/2

∫0

L
dx∫-∞

∞
dVe-V2/2

)
L + Vp

L
(11)

P(W) ) 1

x2πL
∫0

L
dx∫-∞

∞
dVe-V2/2δ(W - wτ(x, V)) (12)

P(W) ) δ(W)P0 + e-1/2(nVp+(W/2nνp))2

x2πnVp

f (W) (13)

P0 ) 1

x2πL
∫0

L
dx∫-(L+Vp)

(L+Vp) dVe-(V-x)2/2 (14)

f(W) ) {-(n - 1)(Vp

2L
+ 1) + W

4nVpL
when (n - 1)(Vp + 2L) < W

2nVp
e (n - 1)(Vp + 2L) + 2L

1 when (n - 1)(Vp + 2L) + 2L < W
2nVp

e (n - 1)(Vp + 2L) + 2L + 2Vp

(n + 1)(Vp

2L
+ 1) - W

4nVpL
when (n - 1)(Vp + 2L) + 2L + 2Vp < W

2nVp
e (n + 1)(Vp + 2L) } (15)

n ) [(1 + x1 + 2W
Vp(2L + Vp))/2] (16)
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In this case, the distribution is dominated by the single
bounce; that is,n ) 1. Assumingn ) 1 andVp , L, we have

which yields the probability distribution expression

valid atL . Vp . 1 andW < 4LVp. For the largerW tail of the
distributionP(W), we have to include the second line of eq 17,
and for even largerW also highern values. Luckily, there is no
need to do that, because the simple approximation (18) is good
enough to capture the Jarzynski result. Although the Jarzynski
identity involves〈eW〉, which includes integration over all values
of W, the integral converges rapidly enough to yield the correct
answer within the region of applicability of formula (18):

Here, we made approximations in both theP0 term, by extending
the integral limits to (-∞, ∞), and in the tail term, by setting
the integral lower limit to-∞. This way, we do recover the
formula (11).

Let us also calculate the probability of obtaining nonzero work
values (one or more collisions) as well as the average work
done, i.e., the zeroth (without theP0 term) and first moments
of the distribution. Using expression (18), we have

For largeVp, we neglect the termW2/(8Vp
2) in the exponents

upon integration, yielding

To the same approximation, the probability to obtain zero
work W is equal to

As one could have expected, these probabilities are governed
by the tail of the Maxwell distribution.

3.4. Comparison with Simulations. Measurements were
made in computer simulations and compared with the results
obtained in the previous sections. The conditions for the
“pulling” experiments were as follows: the “pulling” time was
set toτ ) 1, the temperature was set tokBT ) 1 (which sets
the width of the Gaussian distribution from which the initial
velocities were selected), and the number of trials or iterations
used per measured average was 100 000. The parameters that
we varied were the piston velocityVp and the initial piston length
(or “volume”) L.

Figures 3 and 4 present the distribution of probabilities
P(W)dW for two different sets of piston velocities and piston
lengths. In the first case, the piston velocity was set to
Vp ) 0.01 and in the second case was set toVp ) 1. The effect
of the overlap factor is evident in the former case of a slower
moving piston.

Figure 5 presents data for the average〈exp(W/kBT)〉. The
Jarzynski identity predicts that this average should be
(1 + Vp/L) ) 2.

Figure 6 presents data for the average work done. The
expression corresponding to a free energy change at constant
temperatureT, namely ln(1+ Vp/L) ) ln〈eW〉 ) -∆F, is plotted,
as well as the expression for the average work done, (22), for
largeVp (Vp . 1). As the velocityVp increases, the average work
done is seen to shift from one regime (in which〈W〉 = -∆F)
to another (in which〈W〉 < -∆F). If we take-〈W〉 - ∆F )
Wdis as some measure of “dissipation”, then it is also seen that
this quantity increases asVp increases, although the difference
is not much more thankBT.

In Figure 7 the expression for the probability of obtaining
nonzero work values in the high-velocity limit is compared with
the fraction of trials in which a collision occurred between
molecule and piston. Due to the rarity of collisions (and
dominance of single collisions) in the range of velocities tested
(Vp ) 1, 1.5, 2, 2.5, 3,L ) 1), the fraction of trials with collisions
is identical with the average number of collisions.

4. Discussion and Conclusion

Let us look closer at our main results obtained in section
3.3. One question to ask is this: how many times should one
perform the experiment of moving the piston in order to get a

Figure 2. Structure of the overlap factorf(W), which modulates the
exponential in the distribution function. This factor becomes a rapidly
oscillating function in the limit of small piston velocities.

f(W) = { W
4VpL

when 0 < W < 4VpL

2 - W
4VpL

when 4VpL < W < 8VpL } (17)

P(W) = δ(W)P0 + e-1/2(Vp+(W/2Vp))2

x2πVp

W
4VpL

(18)

〈eW〉 ) ∫-∞

∞
P(W)eWdW ) P0 +

1

x2πVp

∫0

∞
e-1/(8Vp

2)(W-2Vp
2)2 W

4VpL
dW

) ∫0

L dx
L

1

x2π
∫-∞

∞
dVe-(1/2)(V-x)2

+

1

x2πVp

∫-∞

∞
e-(1/8Vp

2)(W-2Vp
2)22Vp

2

4VpL
dW

) 1 +
Vp

L

PW>0 ) ∫0+

∞
P(W) dW ) e-Vp

2/2

4x2πLVp
2∫0

∞
We-(1/2)W-(1/8Vp

2)W2
dW

(19)

〈W〉 ) ∫0

∞
WP(W) dW )

e-Vp
2/2

4x2πLVp
2∫0

∞
W2e-(1/2)W-(1/ 8Vp

2)W2
dW (20)

PW>0 =
1

x2πLVp
2
e-Vp

2/2 (21)

〈W〉 =
1

x2πLVp
2
e-Vp

2/2(4) ) 4PW>0 (22)

P0 ) 1 - 1

x2πLVp
2
e-Vp

2/2 (23)
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reasonable estimate of the average〈eW〉? At the very least, to
get the nonzero answer for the free energy difference from the
Jarzynski formula (1), one has to get at least one case of nonzero
work. For this, one has to perform about 1/PW>0 experiments,

which is already a very large number atVp . 1. In fact, as our
calculations show, to recover the Jarzynski identity, we have
to continue integration into the region whereW is as large as
aboutLVp. In practical terms, this means that we have to perform
as many runs on the system as to get at least a few realizations
with the work of this order. According to the formula (18), the
corresponding probability is roughly proportional toe-2L2. In
other words, this requires aboute+2L2 runs. Restoring the more
traditional notations withkBT andτ, we estimate the necessary
number of runs (or trials) as exp[mL2/τ2kBT]. Clearly, this is a
very large number.

In practical terms, one may also want to know if the use of
the Jarzynski identity is useful. At first glance, it seems
extremely useful: one apparently does not have to equilibrate
the system and by doing purely nonequilibrium measurements,
one nevertheless recovers the equilibrium free energy. Our
example suggests that the situation might be a little more tricky.
Indeed, to do equilibrium measurements, one has to proceed
very slowly, to keep the system close to equilibrium all the time;
for this,τ has to be larger than the system relaxation time, which
grows with the system sizeL (in our dimensionless variables,
this corresponds to the limitVp , L , 1). But, on the other
hand, if one proceeds very rapidly, then one has to perform
exponentially many experiments in order to catch the exponen-
tially rare but decisively important fluctuations. This consider-
ation suggests that there might be some optimal strategy. For
the ideal gas model, such an optimal strategy is most likely the

Figure 3. Simulation results (denoted by pluses,+) together with
theoretical calculation (expression (13); denoted by crosses,×) for
the work distribution. For each trial run, the cylinder volume was
doubled (Vp ) 0.01,τ ) 1, L ) 0.01). The bin width used was∆w )
kBT/1000) 1/1000. The average number of collisions between molecule
and piston was about 20.

Figure 4. Simulation results (denoted by pluses,+) together with
theoretical calculation (denoted by crosses,×) for the work distribution.
For each trial run, the cylinder volume was doubled (Vp ) 1, τ ) 1,
L ) 1). The bin width used was∆w ) kBT/10 ) 1/10. The average
number of collisions between molecule and piston was low, about 0.08.

Figure 5. Evolution of the average of exp(w/kBT) with the number of
trials.

Figure 6. Plot of measurements of the work done (denoted by
pluses,+) together with the expression ln(1+ Vpτ/L) (i.e. “-∆F”, with
τ ) 1 andL ) 1) and the expression for the average work done for
largeVp (22).

Figure 7. Plot of the expression (21) (denoted by the line), the fraction
of trials with a collision (denoted by pluses,+) and the average number
of collisions (denoted by crosses,×). The last two coincide.
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(classical) slow “equilibrium” experiment, because the time for
such an experiment grows only linearly withL, while the time
for a “fast” experiment is exponential. For other systems, the
optimal strategy might be intermediate between one very slow
experiment and very many rapid ones. Unfortunately, it is clear
that such an optimal strategy is highly sensitive to the particulars
of the system in question. Our model, which is an ideal gas, is
a system with a flat energy landscape. For other energy
landscapes one may wonder about the trajectories visiting
various valleys. Unfortunately, the knowledge of these valleys
is exactly what one wants to learn from making measurements
of equilibrium free energies. In any case, the insight we can
gain from our primitive model is that rapid nonequilibrium
measurements are not automatically advantageous.

To conclude, we have presented a very naive, simple model
to look at the Jarzynski identity. We do recover the identity for
our model, and we are able to demonstrate that its validity relies
on the far tail of the Maxwell distribution, in the sense that the
dominant contribution is provided by the very rapidly moving
molecules. We are also able to estimate how many independent
experimental runs are necessary to obtain the equilibrium free
energy from the Jarzynski identity with a reasonable accuracy;
the necessary number of trials appears to be exponential in the
system size.
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Appendix

A. Computing the Numerator in Eq 3. Using the expression
for the work done inn collisions (10) and in view of the
inequalities (6) and (7) developed in section 3.1, we have

Employing a change of variable,V′ ) V - 2nVp

If Vp is zero or absent, the separate integrals could be coalesced
into a single integral of a Gaussian from-∞ to ∞ and the result
is trivial (identical with the denominator in the average).
Therefore, let us separate the “excess” from the trivial result

The first, third, fifth, and sixth integrals after the summation
symbol (those with upper limits “...+ Vp”) can be combined
after making the change of variables,x′ ) (2n + 1)L - x, x′ )
(2n + 1)L + x, x′ ) L - x, x′ ) L + x, yielding

Combining the second and fourth integrals after the summation
symbol (those with lower limits “...- Vp”) in a similar away,
after the change of variablesx′ ) (2n - 1)L - x, x′ )
(2n - 1)L + x, the result is

Performing yet another change of variables,V′ ) V - x′

(Notice that the series of variable substitutions effectively
exchanged the infinite limits associated withV with the finite
limits associated withx.) After performing the change of variable
for I2, V′ ) -V′′, and combining the two integrals

Exchanging the “roles” ofx′ and V′, i.e., letting V ) x′ and
x ) V′

I ) ∫0

L
dx∫-∞

∞
dVe-(1/2)V2

ewτ)1(x,V)

) ∫0

L
dx∑

n)1

∞ ∫(2n-1)(L+Vp)-x

(2n+1)(L+Vp)-x
dVe-(1/2)V2

e-(-2VVpn+2Vp
2n2) +

∫0

L
dx∑

n)1

∞ ∫(2n-1)(L+Vp)+x

(2n+1)(L+Vp)+x
dVe-(1/2)V2

e-(-2VVpn+2Vp
2n2) +

∫0

L
dx∫-(L+Vp)-x

(L+Vp)-x
dVe-(1/2)V2

e0

) ∫0

L
dx∑

n)1

∞

{∫(2n-1)(L+Vp)-x

(2n+1)(L+Vp)-x
dVe-(1/2)(V-2Vpn)2

+

∫(2n-1)(L+Vp)+x

(2n+1)(L+Vp)+x
dVe-(1/2)(V-2Vpn)2

} +

∫0

L
dx∫-(L+Vp)-x

(L+Vp)-x
dVe-(1/2)V2

I ) ∫0

L
dx∑

n)1

∞

{∫(2n-1)L-x-Vp

(2n+1)L-x+VpdV′e-(1/2)V′2 +

∫(2n-1)L+x-Vp

(2n+1)L+x+VpdV′e-(1/2)V′2} +

∫0

L
dx∫-(L+x)-Vp

L-x+Vp dVe-(1/2)V2
(24)

I ) ∫0

L
dx∫-∞

∞
dVe-(1/2)V2

+ ∫0

L

dx∑
n)1

∞

{∫(2n+1)L-x

(2n+1)L-x+VpdV + ∫(2n-1)L-x-Vp

(2n-1)L-x
dV +

∫(2n+1)L+x

(2n+1)L+x+VpdV + ∫(2n-1)L+x-Vp

(2n-1)L+x
dV}e-(1/2)V2

+

∫0

L
dx{∫L-x

L-x+VpdV + ∫L+x

L+x+VpdV}e-(1/2)V2

I1 ) ∫0

∞
dx′∫x′

x′+VpdVe-(1/2)V2
(25)

I2 ) ∫0

∞
dx′∫x′-Vp

x′
dVe-(1/2)V2

(26)

I1 ) ∫0

∞
dx′∫0

VpdV′e-(1/2)(V′+x′)2
(27)

I2 ) ∫0

∞
dx′∫-Vp

0
dV′e-(1/2)(V′+x′)2

(28)

I1 + I2 ) ∫0

∞
dx′∫0

VpdV′e-(1/2)(x′+V′)2
+

∫0

∞
dx′∫0

VpdV′′e-(1/2)(x′-V′′)2

) ∫0

VpdV′∫-∞

∞
dx′e-(1/2)(x′-V′)2

I1 + I2 ) ∫0

Vpdx∫-∞

∞
dVe-(1/2)V2

(29)
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Using this simplified result, the numerator in the average
becomes

B. Computing the Probability Distribution P(W), Eq 12.
The inequalities (6) and (7) developed in section 3.1 lead to
the following partition of the integral:

Call the first termI1 and the second termI2 (the third term is
“trivial”). Performing a change of variable to removex from
the limits, integrating overx, and taking advantage of the delta
function results in

Similarly for I2

I1 and I2 can be combined as

where the overlap factorf satisfies 0e f e 1, since the range
of the smaller interval is at most 2L. f is also zero for negative
W, or positive work values-W done by the piston.

The conditions that must be satisfied byW in order for the
overlap associated with integern to occur are

Notice that the left boundary of the interval is a function of
n(n - 1), while the right interval is a function ofn(n + 1).
Therefore, the right boundary can be transformed into the left
boundary by making the replacementn f n - 1. This implies
that the intervals (31) are contiguous and nonoverlapping and
that at most one term in the summation inP(W) survives. One
can solve for the integern by taking the integer part (or floor
function) of a solution to a quadratic equation

which results in the formula (16) in the main text.
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I ) ∫0

L
dx∫-∞

∞
dVe-(1/2)V2

+ ∫0

Vpdx∫-∞

∞
dVe-(1/2)V2

) ∫0

L+Vpdx∫-∞

∞
dVe-(1/2)V2

(30)

P(W) )
1

x2πL
∫0

L
dx∑

n)1

∞ ∫(2n-1)(L+Vp)-x

(2n+1)(L+Vp)-x
dVe-V2/2δ(W - (2VVpn -

2Vp
2n2)) +

1

x2πL
∫0

L
dx∑

n)1

∞ ∫(2n-1)(L+Vp)+x

(2n+1)(L+Vp)+x
dVe-V2/2δ(W -

(2VVpn - 2Vp
2n2)) +

1

x2πL
∫0

L
dx∫-(L+Vp)-x

(L+Vp)-x
dVe-V2/2δ(W - 0)

I1 ) ∑
n)1

∞ e-(1/2)(nVp+(W/2nVp))2

x2πnVp

1

2L
{overlap between

[nVp + (W/2nVp), nVp + (W/2nVp) + L] and

[(2n - 1)(L + Vp), (2n + 1)(L + Vp)]}

I2 ) ∑
n)1

∞ e-(1/2)(nVp+(W/2nVp))2

x2πnVp

× 1

2L
{overlap between

[nVp + (W/2nVp) - L, nVp + (W/2nVp)] and

[(2n - 1)(L + Vp), (2n + 1)(L + Vp)]}

I1 + I2 ) ∑
n)1

∞ e-(1/2)(nVp+(W/ 2nVp))2

x2πnVp

1

2L
{overlap between

[nVp + (W/2nVp) - L, nVp + (W/2nVp) + L] and

[(2n - 1)(L + Vp), (2n + 1)(L + Vp)]} )

∑
n)1

∞ e-(1/2)(nVp+(W/2nVp))2

x2πnVp

f(n, W)

2nVp(2(n - 1)L + (n - 1)Vp) < W <
2nVp(2(n + 1)L + (n + 1)Vp) (31)

W > 2nVp(2(n + 1)L + (n + 1)Vp) (32)
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