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Abstract We provide a comprehensive report on scale-invariant fluctuations of growing
interfaces in liquid-crystal turbulence, for which we recently found evidence that they be-
long to the Kardar-Parisi-Zhang (KPZ) universality class for 1 + 1 dimensions [Takeuchi
and Sano in Phys. Rev. Lett. 104:230601, 2010; Takeuchi et al. in Sci. Rep. 1:34, 2011].
Here we investigate both circular and flat interfaces and report their statistics in detail. First
we demonstrate that their fluctuations show not only the KPZ scaling exponents but be-
yond: they asymptotically share even the precise forms of the distribution function and the
spatial correlation function in common with solvable models of the KPZ class, demonstrat-
ing also an intimate relation to random matrix theory. We then determine other statistical
properties for which no exact theoretical predictions were made, in particular the tempo-
ral correlation function and the persistence probabilities. Experimental results on finite-time
effects and extreme-value statistics are also presented. Throughout the paper, emphasis is
put on how the universal statistical properties depend on the global geometry of the inter-
faces, i.e., whether the interfaces are circular or flat. We thereby corroborate the powerful
yet geometry-dependent universality of the KPZ class, which governs growing interfaces
driven out of equilibrium.

Keywords Growth phenomenon · Scaling laws · KPZ universality class ·
Electroconvection · Liquid crystal · Random matrix

1 Introduction

Discovery and understanding of universality due to scale invariance, i.e., absence of charac-
teristic length and time scales, marked a watershed in statistical physics. Classical examples
are critical phenomena at thermal equilibrium, for which universality of critical exponents
has been confirmed in a wide variety of experiments and deeply understood with theoretical
frameworks such as renormalization group theory [37, 89]. For two-dimensional systems at
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criticality, conformal field theory yields a classification of universality classes and unveils
universality in far more detailed quantities such as the distribution function and the cor-
relation function [37]. Moreover, interest in scale-invariant phenomena is not restricted to
fundamental areas of physics, as exemplified by vast applications of scaling laws of Brown-
ian motion in various fields of science.

Scale invariance is also important for systems driven out of equilibrium, as the way uni-
versality arises therefrom does not a priori require thermal equilibrium. Studies on fully
developed turbulence [31] and non-equilibrium critical phenomena [39], for example, have
indeed underpinned emergence of universality out of equilibrium. It is often manifested as
scaling laws characterized by universal exponents akin to those for equilibrium critical phe-
nomena, but more detailed statistical properties remain largely inaccessible in this context.
Here, focusing on scale-invariant growth processes [8, 35, 51, 60], we present an experimen-
tal case study on such non-equilibrium universality, which allows us to investigate detailed
statistical properties beyond the scaling exponents.

Growth phenomena can be roughly grouped into two categories: those driven by local in-
teractions, such as spreading of fires and penetration of water into porous media, and those
due to nonlocal interactions like formation of snowflakes and metallic dendrites. Here we
concentrate on the local growth processes, for which one may expect that detailed charac-
teristics of interactions are scaled out at macroscopic levels and thus certain universality
may be anticipated. It is known both from experiments and numerical models [8, 35, 51,
60] that such processes typically produce compact clusters with rough, self-affine shapes of
interfaces. To quantify this self-affinity, one often measures the local height h(x, t) of the
interfaces growing, e.g., on a flat substrate, and compute the interface width w(l, t) defined
as the standard deviation of h(x, t) over a length l:

w(l, t) ≡ 〈
Std

[
h(x, t)

]
l

〉
, Std

[
h(x, t)

]
l
≡

√〈[
h(x, t) − 〈

h(x, t)
〉
l

]2〉
l
, (1)

where the average 〈· · ·〉l is taken within a segment of length l around the given position x and
〈· · ·〉 along each interface and then over all the samples. The self-affinity of the interfaces is
then testified by the following power law called the Family-Vicsek scaling [24]:

w(l, t) ∼ tβFw

(
lt−1/z

) ∼
{

lα for l � l∗,
tβ for l � l∗,

(2)

with a scaling function Fw , two characteristic exponents α and β , the dynamic exponent
z ≡ α/β , and a crossover length scale l∗ ∼ t1/z. One may similarly use the height-difference
correlation function

Ch(l, t) ≡ 〈[
h(x + l, t) − h(x, t)

]2〉
, (3)

to measure a typical change in the height over a length l, which should also exhibit the
Family-Vicsek scaling

Ch(l, t)
1/2 ∼ tβFh

(
lt−1/z

) ∼
{

lα for l � l∗,
tβ for l � l∗.

(4)

Self-affine growth of interfaces is often characterized by these two scaling exponents α

and β .
The simplest macroscopic theory for such local growth processes is given on the basis of

the continuum equation called the Kardar-Parisi-Zhang (KPZ) equation [48]:

∂

∂t
h(x, t) = v0 + ν∇2h + λ

2
(∇h)2 + ξ(x, t) (5)
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with white Gaussian noise
〈
ξ(x, t)

〉 = 0,
〈
ξ(x, t)ξ

(
x ′, t ′

)〉 = Dδ
(
x − x ′)δ

(
t − t ′

)
.

(6)

Note that the constant driving force v0 can be absorbed by the transformation h → h + v0t

and thus is often set to be zero in the literature. For 1 + 1 dimensions, i.e., for one-
dimensional interfaces growing in two-dimensional space, the values of the scaling expo-
nents are known exactly by symmetry arguments as well as by renormalization group tech-
nique [8, 30, 35, 48] to be αKPZ = 1/2 and βKPZ = 1/3. In particular, αKPZ = 1/2 stems
from the fact that the spatial profile of the stationary KPZ interface is equivalent to the locus
of the one-dimensional Brownian motion, with space and time coordinates being h and x

[8, 35]; hence, because of the square-root growth of its displacement, w ∼ l1/2. Since these
scaling exponents characterize macroscopic dynamics, their values are expected to be uni-
versal regardless of microscopic details of growth processes. It has been indeed repeatedly
confirmed in a wide variety of numerical models and theoretical situations [8, 35, 51, 60],
constituting the KPZ universality class. Furthermore, for 1 + 1 dimensions, a series of re-
markable theoretical achievements have been made in the last decade [19, 49, 83], where,
for some solvable models, the asymptotic distribution function of the interface fluctuations
has even been calculated. Surprisingly, the derived distribution function depends on whether
the interfaces are initially flat or curved [19, 49, 71, 72, 83] but is nevertheless expected to
be universal. The (1 + 1)-dimensional KPZ class would therefore serve as a touchstone for
such unprecedented universality beyond the scaling exponents in scale-invariant systems far
from equilibrium.

In this regard, experimental investigations of growing interfaces are of major importance,
in particular to assess the scope and the robustness of the KPZ universality class. A substan-
tial number of experiments have been performed and reported that rough, self-affine inter-
faces indeed arise in various kinds of local growth processes, such as fluid flow in porous
media, paper wetting, colony of proliferating bacteria, and molecular deposition, to name
but a few [8, 35, 51, 60]. Although in most cases the measured values of the exponents
are significantly different from those of the KPZ class [8, 35, 51, 60], typically because of
quenched disorder and/or effectively long-range interactions, a few studies have reported
direct evidence of the KPZ-class exponents in real experiments: colony growth of mutant
Bacillus subtilis (bacteria) [101]1 as well as of Vero cells (eukaryote) [40, 41] and slow
combustion of paper [59, 66, 67], to the knowledge of the authors. These experiments have
clearly shown the KPZ scaling exponents, but an unavoidable difficulty in them is that for
each realization one needs to prepare a sample with due care and then observe it for long
time, one to a few days for the colony experiments. This restricts the amount of available
data, and hence detailed statistical properties of keen theoretical interest, such as the dis-
tribution function, have not been studied experimentally. The only exception is Miettinen
et al.’s encouraging result in the paper combustion experiment [64], which claimed agree-
ment with theoretical predictions on the distribution function, but their analysis does not
seem to be sufficient to draw a significant conclusion on it [91].

To overcome all these difficulties, we have focused on the electroconvection of nematic
liquid crystals [32, 45] and investigated growing clusters of topological-defect turbulence
[95, 96]. The electroconvection, driven by an ac electric field applied to a thin container
of liquid crystal, exhibits two distinct turbulent states called the dynamic scattering modes

1Note that similar experiments with wild-type bacteria have shown non-KPZ exponents [8, 100, 101].
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Fig. 1 DSM1 and DSM2. (a) Real image of a DSM2 cluster (black) growing outward amidst the metastable
DSM1 phase (gray), obtained by the method detailed in Sect. 2. The same image is used for the third snapshot
of Fig. 3(a). (b) Sketch of DSM1 and DSM2. The DSM2 state is composed of a high density of disclinations,
i.e., loops of singularity in the liquid-crystal orientation, whereas there are hardly any topological defects in
the DSM1 state. The black solid loops in the sketch stand for disclinations, yellow ovals for liquid-crystal
molecules, and blue dashed curves for lines of equal molecular orientation. Note that, because of the high
density of disclinations, DSM2 scatters incident light more strongly and hence appears darker when observed
by transmitted light. (Color figure online)

1 and 2 (DSM1 and DSM2) for large amplitudes of the applied voltage [32, 45]. These are
spatiotemporal chaos, in which the velocity and director fields of the liquid crystal as well as
the density field of electric charges strongly fluctuate in space and time with short-range cor-
relations.2 In addition, the DSM2 state is composed of a high density of topological defects
called the disclinations [46] (Fig. 1), which are constantly elongated, split, and transported
by fluctuating turbulent flow around. Upon applying a large voltage V , we first observe the
DSM1 state with practically no disclinations. It lasts until a disclination is finally created by
strong shear of the turbulence or by external perturbation, which immediately multiplies and
forms an expanding DSM2 region for large enough voltages [Fig. 1(a)]. In other words, the
DSM1 state is metastable and eventually replaced by the stable DSM2 state for such large
applied voltages. Therefore, once a DSM2 nucleus is created amidst the DSM1 state, spon-
taneously or externally, it forms a growing compact cluster bordered by a moving interface.
This has turned out to roughen in the course of time [95, 96] as one may expect for such a
local growth process.

This DSM2 growth provides an ideal experimental situation to study local growth pro-
cesses for a number of reasons: (i) Local interactions. The interface is the front of disclina-
tions, proliferated and transported by turbulent flow with short-range correlation. This con-
stitutes the local and stochastic growth of the interface. (ii) Effectively no quenched disorder.
The stochasticity of the process is due to intrinsic turbulent flow, which overwhelms cell het-
erogeneity. (iii) Easily repeatable in a highly controlled condition. The DSM2 growth can
be triggered by laser and can also be reset to the initial fully-DSM1 state by switching the
applied voltage off and on. (iv) Control of the initial cluster shape. It is simply determined
by the form of the laser beam used for the DSM2 nucleation. As reported in the preceding
letters [95, 96], these advantages indeed allowed us to perform series of experiments for
both globally circular and flat interfaces and to obtain accurate data with good statistics. We
then found evidence of the KPZ scaling laws and, in particular, of the predicted distribution
functions dependent on the global cluster shape.

2Therefore, strictly, the DSMs are unlike the fully developed turbulence in isotropic fluid, which is scale-
invariant and characterized by various scaling laws [31]. In the present paper, however, we use the term
“turbulence,” following the convention of the electroconvection community.
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Fig. 2 Sketch of the experimental setup. (a) The whole system. CCD: charge-coupled device camera, LED:
light-emitting diode, ND: neutral density, PC: computer, UV: ultraviolet. The third harmonic of the Nd:YAG
laser at 355 nm is used in the experiment. See text for details. (b) Top view of the central part of the cell. The
yellow region is filled with liquid crystal, while the gray region is a side wall made of polyester films. The
dashed rectangle indicates the observed region, which is set near the center of the cell. (Color figure online)

In the present paper, we provide a detailed report on these results and beyond, showing
also the results of comprehensive statistical analyses of the DSM2 interface fluctuations.
They include experimental tests of various theoretical predictions made for solvable mod-
els, e.g., those for the spatial correlation function and on extreme-value statistics, but equal
emphasis is put on quantities without any rigorous predictions, such as the time correlation
function and the spatial and temporal persistence probabilities. Results from numerical sim-
ulations made by one of the authors [92] are also occasionally referred to, in order to argue
universality of these unsolved quantities. All in all, the present work is intended to provide
a comprehensive report on experimentally determined statistical properties of the DSM2
growing interfaces, which are presumably shared in the (1 + 1)-dimensional KPZ class as
universal properties.

2 Experimental System

Our experimental setup, which has also been used for our preceding results [95, 96], is out-
lined in Fig. 2. At the heart of the system is a quasi-two-dimensional convection cell of size
16 mm × 16 mm × 12 µm, filled with a nematic liquid crystal sample detailed below. The
cell surfaces are treated so that the liquid crystal molecules are aligned perpendicularly to
the cell (homeotropic alignment) when no voltage is applied, in order to work with isotropic
growth in the horizontal plane. The cell temperature is kept constant at 25 °C with typical
fluctuations less than 1 mK throughout the experiment. For each realization of a growing
interface, we apply a voltage of 26 V at 250 Hz (with typical fluctuations less than 1 mV)
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Fig. 3 Growing DSM2 cluster with a circular (a, b) and flat (c, d) interface. (a, c) Raw images. Indicated
below each image is the elapsed time after the emission of laser pulses. (b, d) Snapshots of the interfaces at
t = 3,8, . . . ,28 s for the circular case (b) and t = 10,20, . . . ,60 s for the flat case (d). The gray dashed lines
indicate the mean radius (height) of all the circular (flat) interfaces recorded at t = 28 s (t = 60 s). See also
Supplementary Movies of Ref. [96]. (Color figure online)

to set the system first in the DSM1 state. We then wait for a few seconds and shoot a couple
of ultraviolet laser pulses to nucleate a DSM2 seed. It forms a growing circular interface
when the laser beam is focused on a point in the cell [Fig. 3(a, b)], whereas a flat interface
can also be generated by shooting line-shaped pulses [Fig. 3(c, d)]. The chosen voltage of
26 V is sufficiently larger than that for the onset of the DSM1-DSM2 spatiotemporal inter-
mittency regime [93, 94], which is Vc = 22.2 V in our sample, but not too large in order
that spontaneous nucleation of DSM2 may occur only very rarely. As a result, the created
clusters are compact and constantly grow in the outward direction (Fig. 3) without being
influenced by spontaneously generated DSM2 regions, if any. We record in total 955 iso-
lated circular interfaces and 1128 flat ones by observing transmitted light, by which DSM1
and DSM2 are clearly contrasted because of stronger light scattering of the DSM2 state
(Fig. 1).

More specifically, the convection cell is made of two parallel glass plates, spaced
by polyester films of thickness 12 µm which enclose the convection region [Fig. 2(b)].
The inner surfaces of the glass are covered with indium-tin oxide which serves as
transparent electrodes. On top of them we made a uniform coat of N,N -dimethyl-
N -octadecyl-3-aminopropyltrimethoxysilyl chloride using a spin coater to realize the
homeotropic alignment. After assembly, the cell was filled with nematic liquid crystal N -(4-
methoxybenzylidene)-4-butylaniline (MBBA) (purity >99.5 %, Tokyo Chemical Industry),
doped with 0.01 wt.% of tetra-n-butylammonium bromide to increase the conductivity of the
sample. This sets the cutoff frequency between the conductive and dielectric regimes of the
electroconvection [32, 45] to be 850 ± 50 Hz. In order to avoid fluctuations of material pa-
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rameters during the experiment, which affect for instance the growth speed of the interfaces,
we need to maintain a precisely constant temperature of the cell. It is achieved by enclosing
the cell in a thermocontroller made of heating wires and Peltier elements (a more detailed
description is given in Ref. [94]) as well as by nested isothermal chambers composed of
thermally insulated walls, which pump out inner heat through constant-temperature water
circulators [Fig. 2(a)]. As a result, temperature fluctuations of the cell were kept typically
less than 1 mK during the whole series of the experiments.

The nucleation of a DSM2 cluster is realized by shooting two successive Nd:YAG laser
pulses of length 4–6 ns each (MiniLase II 20 Hz, New Wave Research) [94]. A bandpass
filter is placed on the beam line to extract their third harmonic at 355 nm, neutral density
filters to reduce their energy, and then, for the flat interfaces, a cylindrical lens to expand the
beam in a transversal direction. After a few more filters, the laser pulses are finally focused
by a 4X objective lens and reach the sample with energy 6 nJ for the circular interfaces
and 0.04 nJ/µm for the flat ones. This creates a growing interface without any observable
damage to the sample. We then observe the interface by recording transmitted light with a
charge-coupled device camera, until it expands beyond the camera field. The resolution of
the captured images is 4.74 µm per pixel. Finally, we turn off the applied voltage to end
the process, and after a few seconds, switch it on again and repeat the steps described here.
Excluding a few realizations in which an uncontrolled, spontaneous nucleation of DSM2
occurred within the view field, we accumulated in this way 955 and 1128 records of circular
and flat interfaces, respectively, as stated above.

To analyze the data, we first binarize the recorded images using the difference in the
intensity between DSM1 and DSM2 and locate the positions of the interfaces. We define the
local height h(x, t) as the distance from the initial interface position, i.e., the point or the
line at which the laser pulses are shot [Fig. 3(a, c)]. The height is measured along the global
moving direction of the interfaces and therefore is a function of the lateral coordinate x and
time t . The observed interfaces have a number of tiny overhangs [Fig. 3(b, d)]; although
a recent study showed that overhangs are irrelevant for the scaling of the interfaces [79],
here, for the sake of simplicity and direct comparison to theoretical predictions, we take the
mean of all the detected heights at a given coordinate x to define a single-valued function
h(x, t) for each interface. The spatial profile h(x, t) is statistically equivalent at any point x

because of the isotropic and homogeneous growth of the interfaces, which, together with the
large numbers of the realizations, provides accurate statistics for the interface fluctuations
analyzed below.

Before presenting the results of the analysis, it is worth noting different characters of
the “system size” L, or the total lateral length, of the circular and flat interfaces in general.
While the system size of the flat interfaces is chosen a priori and fixed during the evolution,
that of the circular interfaces is the circumference which grows linearly with time and is
therefore not independent of dynamics. This matters most when one takes an average of a
stochastic variable, e.g., the interface height. For the flat interfaces, the spatial and ensemble
averages are equivalent provided that the system size L is much larger than the correlation
length l∗ ∼ t1/z. In contrast, for the circular interfaces, the two averages make a significant
difference, because the system size is inevitably finite and the influence of finite-size effects
varies in time. To avoid this complication, we take below the ensemble average denoted by
〈· · ·〉 unless otherwise stipulated, which turns out to be the right choice when one measures
characteristic quantities such as the growth exponent β .
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Fig. 4 Family-Vicsek scaling. The interface width w(l, t) (a, c) and the square root of the height-difference
correlation function Ch(l, t)1/2 (b, d) are shown for different times t for the circular (a, b) and flat (c, d)
interfaces. The four data sets correspond to t = 2 s, 4 s, 12 s, 30 s (a, b) and to t = 4 s, 10 s, 25 s, 60 s (c, d)

from bottom to top. The insets show the same data with the rescaled axes, wt−β or C
1/2
h t−β against lt−1/z ,

with the KPZ exponents β = 1/3 and z = 3/2. The dashed lines are guides for the eyes indicating the slope
for the KPZ exponent αKPZ = 1/2. (Color figure online)

3 Experimental Results

3.1 Scaling Exponents

First we test the Family-Vicsek scaling (2) and (4) and measure the roughness exponent α

and the growth exponent β . Figure 4 shows the interface width w(l, t) and the square root of
the height-difference correlation function Ch(l, t)

1/2 measured at different times t , for both
circular and flat interfaces [Fig. 4(a, b) and (c, d), respectively]. They grow algebraically
for short lengths l � l∗ and converge to time-dependent constants for large l, in agreement
with the Family-Vicsek scaling (2) and (4). Fitting w ∼ lα and C

1/2
h ∼ lα in the power-law

regime of the data at the latest time in Fig. 4, we estimate α = 0.48(5) and 0.43(6) for
the circular and flat interfaces, respectively. Here, the numbers in the parentheses indicate
ranges of error in the last digit, estimated both from uncertainty in a single fit and from
the dependence on the fitting range. The estimated values of α for the two geometries are
therefore consistent with the KPZ-class exponent αKPZ = 1/2, albeit barely for the flat case.3

3Since our experiment is aimed at accumulating detailed statistics on large-scale fluctuations, the chosen

spatial resolution is unfortunately not optimal to measure the power laws w ∼ lα and C
1/2
h ∼ lα governing
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Fig. 5 Temporal growth of the roughness. (a) Overall width W(t) (circles) and plateau value of the square

root of the height-difference correlation function, C
1/2
h,pl(t) (squares), for the circular (blue solid symbols)

and flat (red open symbols) interfaces. (b) The same data as (a) but multiplied by t−1/3 to enhance the
visibility of the asymptotic power laws. (c) The overall width W(t) of the circular interfaces measured with
various definitions. Blue circles: the appropriate definition (7), W(t) =

√
〈[h(x, t) − 〈h〉]2〉. Green squares:

the samplewise definition, W(t) = 〈
√

〈[h(x, t) − 〈h〉s]2〉s〉. Red diamonds and turquoise triangles: same as
Eq. (7) but the origin is set to be the center of mass of the cluster and the interface, respectively. The same
data are multiplied by t−1/3 in the inset. The dashed lines indicate the exponent 1/3. (Color figure online)

The validity of α = 1/2 in our experimental system will also be confirmed directly by data
collapse for the Family-Vicsek scaling (Fig. 4 insets), as well as from various quantities and
aspects presented throughout the paper.

For large enough lengths l, the roughness measures become insensitive to l and grow
with time t (Fig. 4). This temporal growth is quantified by measuring the overall width

W(t) ≡
√〈[

h(x, t) − 〈h〉]2〉
(7)

and the mean value of Ch(l, t)
1/2 in the plateau region of Fig. 4(b, d), denoted by Ch,pl(t)

1/2.
These are shown in Fig. 5(a) for both circular and flat interfaces and evidence the expected
power laws W(t) ∼ tβ and Ch,pl(t)

1/2 ∼ tβ at large t . For the circular case (blue solid sym-
bols), the power laws actually hold in the whole time span, providing remarkably accurate
estimates of β: specifically, β = 0.335(3) from W(t) and β = 0.333(3) from Ch,pl(t)

1/2, in
excellent agreement with the KPZ value βKPZ = 1/3 [see also Fig. 5(b)]. The agreement
also holds for the flat interfaces, though finite-time effects are visible in this case for the
early stage [red open symbols in Fig. 5(a, b)]. Fitting is therefore performed for large t ,
providing β = 0.319(15) for W(t) and β = 0.313(24) for Ch,pl(t)

1/2, again in agreement
with βKPZ = 1/3. These finite-time effects lower the apparent exponent values for small t

[Fig. 5(a)]. This may appear to be a crossover from the Edwards-Wilkinson regime, which is
characterized by β = 1/4 and governs the early stage of the KPZ-class interfaces in general
[1, 51], but in Sect. 3.4 we shall find it more reasonable to consider that this is rather an al-
gebraically decaying finite-time correction superimposed on the asymptotic power law t1/3.

It is worth noting here that, for the circular interfaces, the measurement of the exponent
β has a few pitfalls that have not been necessarily noticed in earlier investigations. First,
as mentioned in the previous section, the system size of the circular interfaces is not in-
dependent of dynamics and thus the ensemble average in Eq. (7) cannot be replaced by

short lengths l. We therefore consider that our estimates may admit larger uncertainties and in particular that
the apparent slight discrepancy between αKPZ = 1/2 and α = 0.43(6) for the flat interfaces is not significant.
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the spatial, or samplewise, average. Measuring and averaging the width of each interface,
i.e., 〈√〈[h(x, t) − 〈h〉s]2〉s〉 with the spatial average 〈· · ·〉s, yield β = 0.351(3) [squares in
Fig. 5(c)], which is slightly but significantly larger than β = 0.335(3) obtained from W(t)

with the ensemble average, Eq. (7). This overestimation can be easily understood, because
for earlier time the effective system size is smaller and hence the samplewise standard de-
viation is underestimated more strongly. It implies that the limit w(∞, t) does not replace
the overall width W(t) and hence, strictly, the Family-Vicsek scaling in the form (2) does
not describe the correct time dependence tβ for the circular interfaces. Another subtlety in
the definition of the width (or any other quantities) concerns the origin of the cluster, which
is used to define the local height h(x, t). Although the most natural and theoretically sound
definition of the origin is the location of the cluster seed (in our experiment, the point shot
by laser pulses), the center of mass of the cluster or of the interface has also been used occa-
sionally in the literature, mainly because of technical difficulties in locating the true origin
experimentally. This, however, affects the value of β because of random movement of the
center of mass akin to Brownian motion, as pointed out by earlier studies [28, 54, 70]. In
our system β = 0.360(2) and 0.415(13) are obtained when the center of mass of the clus-
ter and that of the interface, respectively, are used [diamonds and triangles, respectively, in
Fig. 5(c)], which are significantly larger than the unbiased estimate β = 0.335(3) obtained
with the true, fixed origin.

The agreement of the characteristic exponents α and β with the KPZ class is cross-
checked by data collapse of w(l, t) and Ch(l, t). The functional form of the Family-Vicsek
scaling (2) and (4) implies that w(l, t) and Ch(l, t)

1/2 at different times (main panels of
Fig. 4) should overlap onto a single curve when wt−β and C

1/2
h t−β are plotted against lt−1/z.

This is indeed confirmed in the insets of Fig. 4, in which we rescale the data in the main
panels using the KPZ exponents β = 1/3 and z = 3/2. For all these results, we conclude
that the scale-invariant growth of the DSM2 interfaces is governed by the KPZ universality
class, with the characteristic exponents α = 1/2 and β = 1/3 regardless of the cluster shape.

3.2 Cumulants and Amplitude Ratios

Now we investigate detailed statistical properties of the scale-invariant fluctuations in the
DSM2 interface growth, mainly in view of the recent rigorous theoretical developments [19,
49, 83]. The roughness growth with exponent β = 1/3 implies that the local time evolution
of the interface height h is composed of a deterministic linear growth term and a stochastic
t1/3 term as follows:

h  v∞t + (Γ t)1/3χ, (8)

with two constant parameters v∞ and Γ and with a random variable χ that captures the
fluctuations of the growing interfaces. Note that Eq. (8) is meant to describe local (one-
point) statistical properties of the height h, while its correlation in space and time will be
studied in subsequent sections.

To characterize the distribution, we first compute the second- to fourth-order cumulants
〈hn〉c of the local height, defined by 〈h2〉c = 〈δh2〉 = W(t)2, 〈h3〉c = 〈δh3〉 and 〈h4〉c =
〈δh4〉 − 3〈δh2〉2 with δh ≡ h − 〈h〉. They naturally grow with time as tn/3 [Fig. 6(a, b)].
These cumulants then determine the skewness 〈h3〉c/〈h2〉3/2

c and the kurtosis 〈h4〉c/〈h2〉2
c as

their amplitude ratios, which are equal to those for χ irrespective of the values of the two
parameters. The result is shown in Fig. 6(c) for both circular and flat interfaces (blue and
red symbols, respectively). First, we notice that both the skewness (solid and open circles)
and the kurtosis (pluses and crosses) converge to some non-zero values, which indicate that
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Fig. 6 Cumulants and their amplitude ratios. (a, b) Cumulants 〈hn〉c against time t for the circular (a) and
flat (b) interfaces. The dashed lines indicate the exponents n/3 for the corresponding cumulants. (c) Skewness

〈h3〉c/〈h2〉3/2
c (solid and open circles) and kurtosis 〈h4〉c/〈h2〉2

c (pluses and crosses) against time t for the
circular (blue) and flat (red) interfaces. The horizontal lines indicate the values of the skewness (black) and
the kurtosis (gray) for the GUE (dashed) and GOE (dotted) TW distributions [72]. (Color figure online)

the interface fluctuations are not Gaussian, and that they are significantly different between
the circular and flat interfaces.

Remarkably, these asymptotic values coincide with the skewness and the kurtosis of the
Tracy-Widom (TW) distributions [98, 99], which have been defined and developed in a
completely different context of random matrix theory [61]. They are the distribution for the
largest eigenvalue of large random matrices in certain kinds of the Gaussian ensemble, i.e.,
matrices whose elements are drawn from the Gaussian distribution. The measured values of
the skewness and the kurtosis for the circular interfaces [blue symbols in Fig. 6(c)] are found
to be very close to those of the TW distribution for the Gaussian unitary ensemble (GUE)
[98], or the largest-eigenvalue distribution of large complex Hermitian random matrices. In
contrast, those for the flat interfaces (red symbols) agree with the values of the TW distribu-
tion for the Gaussian orthogonal ensemble (GOE) [99], or for large real-valued symmetric
random matrices. These results suggest that the random variable χ in Eq. (8) asymptotically
obeys the GUE and GOE TW distributions for the circular and flat interfaces, respectively.

It is important to note that the GUE TW distribution for the circular, or, more generally,
curved growing interfaces was first identified rigorously by Johansson [43] on the basis of
notable mathematical progress in related combinatorial problems [3]. Subsequent studies
then derived the GUE TW distribution for a number of solvable models in the (1 + 1)-
dimensional KPZ class, namely the totally and partially asymmetric simple exclusion pro-
cesses (TASEP and PASEP) [43, 97], the polynuclear growth (PNG) model [71, 72]4 and
also the KPZ equation [2, 14, 23, 84, 85].5 Similarly, for the flat interfaces, since the work
by Prähofer and Spohn [71, 72] which clarified the connection to the corresponding combi-
natorial problem [6, 7], the GOE TW distribution has been shown for the PNG model [71,
72], the TASEP [11] and the KPZ equation [13]. Given these exact and nontrivial results,
which have been proved however only for the few highly simplified models with more or
less related analytical techniques, it is essential to test the emergence of the TW distributions

4The TASEP and the PNG model can actually be dealt with in the single framework of the directed polymer
problem [83].
5The derivations in Refs. [14, 23] rely on the replica method [63], while those in Refs. [2, 84, 85] do not.
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in a real experiment. This is what we reported briefly in the preceding letters [95, 96] and
shall present in detail in the following two sections.

3.3 Parameter Estimation

For the test, one needs to perform a direct comparison of χ in Eq. (8) with random variables
χGUE and χGOE obeying the GUE and GOE TW distributions, respectively. Here, in view of
the theoretical results for the solvable models [11, 13, 71, 72], we multiply the conventional
definition for the GOE TW random variable by 2−2/3 to define our χGOE. This choice allows
us to use the single expression (8) for both circular and flat cases and thus to avoid unneces-
sary complication. With this in mind, we first estimate the values of the two parameters, v∞
and Γ , which appear in Eq. (8).

The linear growth rate v∞ can be obtained as the asymptotic growth speed of the mean
height [53], since from Eq. (8)

d〈h〉
dt

 v∞ + cvt
−2/3 (9)

with a constant cv . Our experimental data are therefore plotted against t−2/3 in Fig. 7(a, b)
and indeed show this time dependence very clearly. The linear regression then provides a
precise estimate of v∞ at

v∞ =
{

33.24(4) µm/s (circular),

32.75(3) µm/s (flat).
(10)

Note that the estimates for the circular and flat interfaces are very close but significantly
different. We believe that this is because of possible tiny shift in the controlled temperature
and of aging of our sample, which is a well-accepted property of MBBA [32, 94], during
the days that separated the two series of the experiments.

The amplitude Γ of the t1/3-fluctuations is best estimated in our data from the am-
plitude of the second-order cumulant 〈h2〉c, or equivalently from the overall width W(t),
by using the relation 〈h2〉c  (Γ t)2/3〈χ2〉c. In this method we need to set the variance
of χ at an arbitrary value. Given that this choice does not affect the following results
as we confirmed in our preceding letter (Supplementary Information of Ref. [96]), we
choose such a value that we can compare χ directly with χGUE and χGOE. This is achieved
by plotting (〈h2〉c/〈χ2

GUE,GOE〉
c
)3/2/t as a function of t and reading its asymptotic value

[Fig. 7(c, d)]. For the circular interfaces [Fig. 7(c)], the data are already stable from early
times, so that the value of Γ is obtained from the average taken over t ≥ 10 s, which yields
Γ = 2.29(3) × 103 µm3/s. In contrast, finite-time effect is visible for the flat interfaces
[Fig. 7(d)] as we have already seen in their width [Fig. 5(a, b)]. To take it into consideration,
we attempt a power-law fitting a1t

−δ + a2 to the experimental data and find that it works
reasonably, with an estimate of the power at δ = 0.59(10). It is noteworthy to remark that
recent finite-time analyses of the TASEP, the PASEP and the PNG model [4, 26], as well as
of the exact (curved) solution of the KPZ equation (see the next section for details), show
that the finite-time effect in the second-order cumulant is at most O(t−2/3). Our estimate
of δ covers this power and in particular excludes any other multiples of 1/3. It is therefore
reasonable to assume that the power −2/3 also applies to our experimental data. With this
constraint on the power-law fitting and with a weight proportional to (y − a2)

−2, where y

is the ordinate of the data and a2 is the estimate from the preceding fit, we finally obtain
Γ = 2.15(10) × 103 µm3/s for the flat interfaces. Here the confidence interval covers such
values of Γ that (y − Γ ) as a function of t does not apparently deviate from the power-law
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Fig. 7 Parameter estimation. (a, b) Estimation of the linear growth rate v∞ for the circular (a) and flat (b)
interfaces. The time derivative of the mean height d〈h〉/dt , averaged here over 2.5 s, is plotted against t−2/3.
The value of v∞ is estimated from the y-intercept of the linear regression (dashed line). (c, d) Estimation of
the amplitude Γ of the t1/3-fluctuations for the circular (c) and flat (d) interfaces. The left axis indicates the

raw amplitude of the second-order cumulant, 〈h2〉3/2
c /t , whereas the right axis displays the corresponding

value for Γ . For the circular interfaces (c), the estimate of Γ is given by averaging the data at late times
t ≥ 10 s (dashed line). For the flat interfaces (d), in contrast, Γ is given by fitting at−2/3 + Γ (dashed line)
to take into account the finite-time effect (see text). (Color figure online)

decay with exponent −2/3. In summary, the parameter Γ is estimated at

Γ =
{

2.29(3) × 103 µm3/s (circular),

2.15(10) × 103 µm3/s (flat).
(11)

Note that the values of both v∞ and Γ are very close between the two cases. Recalling
the inevitable tiny change in the parameter values that may occur between the two sets
of the experiments, we consider that the parameter values are, ideally, independent of the
different cluster shapes. This is also expected from the theoretical point of view, because
the parameter Γ in the present definition is given in terms of the parameters in the KPZ
equation (5) [49, 71], as

Γ = 1

2
A2|λ|, with A ≡ D/2ν. (12)

Concerning v∞, the parameter λ of the KPZ equation (5) is given by λ = v′′∞(0), where
v∞(u) is the asymptotic growth rate as a function of the average local inclination u ≡ 〈 ∂h

∂x
〉

[50, 53]. Since for the circular interfaces v∞(u) = √
1 + u2v∞, it simply follows that

v∞ = λ. (13)
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Fig. 8 Histogram of the rescaled
local height
q ≡ (h − v∞t)/(Γ t)1/3 for the
circular (solid symbols) and flat
(open symbols) interfaces. The
blue circles and red diamonds
display the histograms for the
circular interfaces at t = 10 s and
30 s, respectively, while the
turquoise up-triangles and purple
down-triangles are for the flat
interfaces at t = 20 s and 60 s,
respectively. The dashed and
dotted curves show the GUE and
GOE TW distributions,
respectively, defined by the
random variables χGUE and
χGOE. (Color figure online)

For the flat interfaces, one in principle needs to impose a tilt u to measure v∞(u) [53], but
supposing the rotational invariance of the system, one again finds v∞(u) = √

1 + u2v∞ and
thus Eq. (13). This is justified by practically the same values of our estimates v∞ in Eq. (10).
In passing, the rotational invariance also implies v0 = 0 in the KPZ equation (5), without the
need to invoke the comoving frame.

3.4 Distribution Function

Using the two experimentally determined parameter values (10) and (11), we shall directly
compare the interface fluctuations χ with the mathematically defined random variables χGUE

and χGOE. This is achieved by defining the rescaled local height

q ≡ h − v∞t

(Γ t)1/3
 χ (14)

and producing its histogram for the circular and flat interfaces (solid and open symbols in
Fig. 8, respectively). The result clearly shows that the two cases exhibit distinct distribu-
tions, which are not centered nor symmetric, and hence clearly non-Gaussian. Moreover,
the histograms for the circular and flat interfaces are found, without any ad hoc fitting, very
close to the GUE (dashed curve) and GOE (dotted curve) TW distributions, respectively, as
anticipated from their values of the skewness and the kurtosis as well as from the theoretical
results for the solvable models. The agreements are confirmed with resolution roughly down
to 10−5 in the probability density.

A closer inspection of the experimental data in Fig. 8 reveals, however, a slight devia-
tion from the theoretical curves, which is mostly a small horizontal translation that shrinks
as time elapses. To quantify this effect, we plot in Fig. 9 the time series of the difference
between the nth-order cumulants of the measured rescaled height q and those for the TW
distributions. We then find for both circular and flat interfaces [Fig. 9(a, b)] that, indeed, the
second- to fourth-order cumulants quickly converge to the values for the corresponding TW
distributions, whereas the first-order cumulant 〈q〉, or the mean, shows a pronounced devia-
tion as suggested in the histograms. This, however, decreases in time, showing a clear power
law proportional to t−1/3 [Fig. 9(c, e)], and thus vanishes in the asymptotic limit t → ∞.
Similar finite-time corrections are in fact visible in other cumulants, though less clearly for
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Fig. 9 Finite-time effects in the nth-order cumulants 〈qn〉c. Displayed are the differences in the cumulants
between the experimental data 〈qn〉c and the corresponding TW distributions 〈χn

GUE〉c for the circular inter-
faces (a, c, d) and 〈χn

GOE〉c for the flat interfaces (b, e–h). The same data as in the panels (a, b) are shown
in the panels (c–h) in the logarithmic scales with guides for the eyes showing the indicated exponent values.
The absolute values of the differences are shown for the third- and fourth-order cumulants (d, g, h) in order
to display both positive and negative differences, though they are essentially negative for the third-order cu-
mulant in both cases (d, g) and positive for the fourth-order cumulant of the flat interfaces (h). (Color figure
online)

higher-order ones. The data for the flat interfaces [Fig. 9(e–h)] indicate that all of the cumu-
lants from n = 1 to 4 exhibit finite-time corrections proportional to t−n/3. This is also seen
for the first- and third-order cumulants of the circular interfaces [Fig. 9(c, d)], while the
corrections in their second- and fourth-order cumulants are so small within the whole obser-
vation time [see Fig. 9(a)] that we cannot recognize any systematic change in time, larger
than experimental and statistical errors. We are at present unable to explain why the finite-
time corrections of the even-order cumulants apparently vanish for the circular interfaces.

It is intriguing to compare these experimental results with recent theoretical approaches
on finite-time fluctuations in the solvable models. Sasamoto and Spohn showed with their
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exact curved solution that the finite-time effects in the KPZ equation are essentially con-
trolled by the Gumbel distribution, or more specifically, q = χGUE −γ −1

t χG + O(t−4/3) with
γt ≡ (λ4D2t/26ν5)1/3 and χG obeying the Gumbel probability density e−χG exp(−e−χG) [74,
81, 84, 85].6 This implies that the finite-time corrections in 〈qn〉c are in the order of t−n/3

up to n = 4, which is consistent with our experimental results. A difference, however, arises
in the values of their coefficients. In particular, for the first-order cumulant, the finite-time
effect in the KPZ equation is given by 〈q〉 − 〈χGUE〉  −γ −1

t 〈χG〉 ≈ −0.577γ −1
t ∼ −t−1/3,

which has the sign opposite to ours7 (compare also the numerical evaluation in Ref. [74] with
our Fig. 8). In contrast, Ferrari and Frings studied finite-time fluctuations of the TASEP, the
PASEP and the PNG model, and showed that the leading correction is again O(t−1/3) for
the first-order cumulant [4, 26], with the positive sign for the TASEP like in our experiment.
Given that the TASEP and the KPZ equation correspond to the limit of strongly and weakly
asymmetric growth, respectively [26, 84, 85], our result on the sign of the correction in 〈q〉c

implies that the DSM2 growth is also strongly asymmetric. Concerning the higher-order
cumulants, Ferrari and Frings showed that the correction is O(t−2/3) for all the higher-order
moments 〈qn〉 when h is appropriately shifted [4, 26], and hence at most O(t−2/3) for the
corresponding cumulants 〈qn〉c. On the numerical side, Oliveira and coworkers performed
simulations of flat interfaces in some discrete models and discretized versions of the KPZ
equation [69]. They reported that the corrections in the cumulants are O(t−1/3) for the first
order and O(t−2/3) for the second to fourth orders, in disagreement with the exponents we
found for the third- and fourth-order cumulants [Fig. 9(d, g, h)]. Although such finite-time
effects are argued to be model-dependent, further study is clearly needed to elucidate these
partial agreements and disagreements between our experimental results and the theoretical
outcomes on the finite-time corrections. An interesting conclusion that can be drawn from
our finite-time analysis is that the random variable that should be added to Eq. (8) as the
leading finite-time correction term is statistically independent from the TW variable χ , since
otherwise the finite-time corrections for the second- and higher-order cumulants would be
O(t−1/3) [26].

The identification of the different TW distributions for the two studied geometries implies
that, at the level of the distribution function, the single KPZ universality class should be
divided into at least two “sub-universality classes” corresponding to the curved and flat
interfaces. In the following sections, we shall argue that this splitting is not a particular
feature for the distribution function, but on the contrary results in more striking differences
in other statistical properties, especially in the correlation functions.

3.5 Spatial Correlation Function

The recent analytic developments for the solvable models are not restricted to the distribu-
tion function. One of the other most studied quantities is the spatial correlation function

Cs(l; t) ≡ 〈
h(x + l, t)h(x, t)

〉 − 〈
h(x + l, t)

〉〈
h(x, t)

〉
. (15)

Theoretical studies have shown that in the asymptotic limit the spatial correlation of the
interface fluctuations is given exactly by the time correlation of the stochastic process called
the Airy2 process A2(t

′) for the curved interfaces [73, 75] and the Airy1 process A1(t
′) for

6This can be easily shown from the finite-time expression of their exact solution reported in Refs. [84, 85].
7In Sasamoto and Spohn’s solution [84, 85], one has, in addition to −0.577, another term that reads 2 logα in
their expression. This however comes from their narrow wedge initial condition and cannot be independently
chosen. The sign of the first-order cumulant is therefore always negative [81].
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Fig. 10 Spatial correlation function Cs(l; t). (a) Rescaled correlation function C′
s(ζ ; t) ≡ Cs(l; t)/(Γ t)2/3

against rescaled length ζ ≡ (Al/2)(Γ t)−2/3. The symbols indicate the experimental data for the circular and
flat interfaces (top and bottom pairs of symbols, respectively), obtained at t = 10 s and 30 s for the former
and t = 20 s and 60 s for the latter (from bottom to top). The dashed and dashed-dotted lines indicate the
correlation function for the Airy2 and Airy1 processes, respectively, estimated numerically by Bornemann
et al. [9, 10]. (b) Integral of the rescaled correlation function Cint

s (t) ≡ ∫ ∞
0 C′

s(ζ ; t)dζ for the circular (blue
circles) and flat (red diamonds) interfaces. The dashed and dashed-dotted lines indicate the values for the
Airy2 and Airy1 processes, respectively, gint

i
≡ ∫ ∞

0 gi(ζ )dζ . The inset shows the difference gint
2 − Cint

s (t)

for the circular interfaces, with a guide for the eyes indicating the slope −1/3. (Color figure online)

the flat ones [12, 80]. The predictions in their general form read

Cs(l; t)  (Γ t)2/3gi

(
Al

2
(Γ t)−2/3

)
(16)

with gi(ζ ) ≡ 〈Ai (t
′ + ζ )Ai (t

′)〉, A defined by Eq. (12) and i = 1 for the flat interfaces and
2 for the curved ones.8 Moreover, it is known [44] that the Airy2 process coincides with the
dynamics of the largest eigenvalue in Dyson’s Brownian motion for GUE random matrices
[61]. It implies that the spatial profile of a curved KPZ-class interface is equivalent to the
locus of this largest-eigenvalue dynamics, to be compared with that of (usual) Brownian mo-
tion for the stationary interfaces [8, 35]. In contrast, the Airy1 process for the flat interfaces
was recently found not to be the largest-eigenvalue dynamics of Dyson’s Brownian motion
for GOE random matrices [10]. This indicates that the statistics of the KPZ-class interfaces
is not always connected to random matrix theory.

We compute the spatial correlation function (15) from our experimental data and plot it in
Fig. 10(a) within the rescaled axes C ′

s(ζ ; t) ≡ Cs(l; t)/(Γ t)2/3 against ζ ≡ (Al/2)(Γ t)−2/3.
Comparing the experimental results for the circular interfaces (top symbols), obtained at
different times, with the Airy2 correlation (dashed line), and the flat interfaces (bottom sym-
bols) with the Airy1 correlation (dashed-dotted line), we find both pairs in agreement at
large times, with considerable finite-time effect for the circular interfaces. To quantify it, we
calculate the integral of the correlation function

C int
s (t) ≡

∫ ∞

0
C ′

s(ζ ; t)dζ, (17)

8Different definitions of the Airy1 process (by constant factors) are occasionally found in the literature. Here,
for the sake of simplicity, we adopt the definition that allows us to use the single mathematical expression
(16) for both circular and flat interfaces. In this definition, together with that for χGOE with the factor 2−2/3,
we have in particular 〈A2

1〉c = 〈χ2
GOE〉c.
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Fig. 11 Temporal correlation function Ct(t, t0) for the flat (a) and circular (b) interfaces, measured with
different t0. The reference time t0 is t0 = 4 s, 10 s, 25 s for the flat case (a) and t0 = 4 s, 8 s, 15 s for the
circular case (b) from bottom to top. The insets test the scaling ansatz (19). The dashed lines are guides for
the eyes showing the indicated slopes. (Color figure online)

which is in practice estimated within the range where C ′
s(ζ ; t) is positive and decreasing,

to get rid of statistical errors at large ζ . The result is shown in Fig. 10(b). This indicates
that C int

s (t) for the flat interfaces (red diamonds) reaches and stays close to the correspond-
ing value gint

1 for the Airy1 correlation (dashed-dotted line), while C int
s (t) for the circular

interfaces (blue circles) is still approaching the value gint
2 for the Airy2 correlation (dashed

line). The difference however decreases in time as t−1/3 [inset of Fig. 10(b)] and therefore
vanishes in the limit t → ∞.

In short, we find that the spatial correlation of the circular and flat interfaces is indeed
given, in the asymptotic limit, by the Airy2 and Airy1 correlations, respectively, confirming
the universal correlation functions of the KPZ-class interfaces. We note that this actually
implies qualitative difference between the circular and flat cases; it is theoretically known
that the Airy2 correlation for the circular interfaces decreases as g2(ζ ) ∼ ζ−2 for large ζ ,
while the Airy1 correlation g1(ζ ) for the flat interfaces decays faster than exponentially [10].

3.6 Temporal Correlation Function

In contrast to the spatial correlation, correlation in time axis is a statistical property that
has not been solved yet by analytical means. It is characterized by the temporal correlation
function

Ct(t, t0) ≡ 〈
h(x, t)h(x, t0)

〉 − 〈
h(x, t)

〉〈
h(x, t0)

〉
. (18)

The temporal correlation should be measured along the directions in which fluctuations
propagate in space-time, called the characteristic lines [20, 25]. In our experiment, these are
simply perpendicular to the mean spatial profile of the interfaces, namely the upward and
radial directions for the flat and circular interfaces, respectively, which are represented in
both cases by the fixed x in Eq. (18).

Figure 11 displays the experimental results for Ct(t, t0), obtained with different t0 for the
flat (a) and circular (b) interfaces. Here, again, we find different functional forms for the
two cases; with increasing t , the temporal correlation function Ct(t, t0) decays toward zero
for the flat interfaces [Fig. 11(a)], while that for the circular ones seems to remain strictly
positive indefinitely [Fig. 11(b)]. Recalling that the interface fluctuations grow as (Γ t)1/3,
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Fig. 12 Functional form of the temporal correlation function Ct(t, t0) for the circular interfaces.
(a) Ct(t, t0)/Ct(t0, t0) against t/t0 with different t0 (as shown in the legend). The brown dotted curve in-
dicates the result of the best fitting obtained with Singha’s original equation (21), while the black dashed
ones display those for the modified equation (23) with the leftmost data point excluded. Notice that the corre-
lation function remains far above zero. (b) The values of the fitting parameters b and c in Eq. (23) as functions
of t0. The inset shows 1 − c against t0 in the logarithmic scales. The two dashed lines are guides for the eyes
showing the slope −2/3 and −1. (Color figure online)

one may argue that a natural scaling form for Ct(t, t0) would be

Ct(t, t0)  (
Γ 2t0t

)1/3
Ft(t/t0), (19)

with a scaling function Ft. This indeed works for the flat interfaces, showing a long-time
behavior Ft(t/t0) ∼ (t/t0)

−λ̄ with λ̄ = 1 [inset of Fig. 11(a)] in agreement with past numer-
ical studies [38, 47]. For the circular interfaces, in contrast, the natural scaling (19) does not
seem to hold as well within our time window, as the data with different t0 do not overlap on
a single curve [inset of Fig. 11(b)]. The autocorrelation exponent λ̄ would be formally 1/3
in this case, but this only reflects the observation that the unscaled Ct(t, t0) converges to a
non-zero value at t → ∞. These results support Kallabis and Krug’s conjecture [47] that the
following scaling relations for the linear growth equations [47, 88] also hold for nonlinear
growth processes, especially in the KPZ class:

λ̄ =
{

β + d/z (flat),

β (circular),
(20)

where d is the spatial dimension. Given the close relation between the temporal correlation
function and the response function, as well as the recent interest in their aging dynamics
[38], the geometry dependence of the response function would be an interesting property
that should be addressed in future studies.

Concerning the temporal correlation Ct(t, t0) for the circular interfaces, Singha per-
formed an approximative theoretical calculation for the KPZ class, which yields [88]

Ct(t, t0)

Ct(t0, t0)
≈ FSingha(t/t0;b), (21)

FSingha(x;b) ≡ eb(1−1/
√

x)Γ (2/3, b(1 − 1/
√

x))

Γ (2/3)
, (22)

with a single unknown parameter b, the upper incomplete Gamma function Γ (s, x) ≡∫ ∞
x

ys−1e−ydy and the Gamma function Γ (s) = Γ (s,0). This however does not fit our ex-
perimental results, as shown by the brown dotted curve in Fig. 12(a). Instead, we find it
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sufficient to introduce an arbitrary (t0-dependent) factor c to Eq. (21), i.e.,

Ct(t, t0)

Ct(t0, t0)
≈ cFSingha(t/t0;b) (t �= t0) (23)

in order to fit all the experimental curves as exemplified by the black dashed curves in
Fig. 12(a), except for t = t0 at which the left and right hand sides are equal to 1 and c, respec-
tively, by construction. This suggests that the experimentally obtained correlation function
includes a fast decaying term as follows:

Ct(t, t0) ∼ t
2/3
0

[
(1 − c)Ffast(t − t0; t0) + cFSingha(t/t0;b)

]
, (24)

with a function Ffast(t − t0; t0) that satisfies Ffast(0; t0) = 1 and decays much faster than
the data interval in Fig. 12(a), namely 0.5 s. The best nonlinear fits of Eq. (23) to our
experimental data provide t0-dependent values for the two fitting parameters b and c as
shown in Fig. 12(b). From those obtained at late times, we roughly estimate b ≈ 0.8(1),
while the factor c increases with time toward one, perhaps by a power law, 1 − c ∼ t−δ′

0
with δ′ ∈ [2/3,1], as shown in the inset of Fig. 12(b).9 If δ′ = 2/3, we have Ct(t, t0) ∼
c′Ffast(t − t0; t0) + t

2/3
0 c(t0)FSingha(t/t0;b) with a constant c′, which supports an expec-

tation that Ffast(t − t0; t0) is a microscopic contribution decoupled from the macroscopic
evolution of the interfaces. In any case, it is this nontrivial t0-dependence of the factor
c that has apparently hindered a successful rescaling by the ansatz (19) in Fig. 11(b). In
fact, Eqs. (22) and (23) with c → 1 and a constant b imply that the ansatz (19) asymp-
totically holds. Moreover, it also follows that a non-zero correlation remains forever, or
limt→∞ Ct(t, t0) ∼ t

2/3
0 > 0, and thus λ̄ = 1/3 for the circular interfaces. We finally note that

a similar result is obtained with the correlation function defined with the samplewise av-
erage, Ct(t, t0) ≡ 〈(h(x, t) − 〈h(x, t)〉s)(h(x, t0) − 〈h(x, t0)〉s)〉, except that the value of b

changes to 1.2(2) in this case.
Short-time behavior of the temporal correlation function is also of interest. It is known

that the leading terms are given, in our notation, by

Ct(t, t0)  (
Γ 2t0t

)1/3〈
χ2

〉
c

[
1 − R

2

(
1 − t0

t

)2/3]
, (25)

for t − t0 � t0, with a coefficient R which is universal at least for the flat interfaces [47, 53].
Our data for the flat case indeed confirm this [Fig. 13(a)], providing an estimate R/2 ≈ 0.94
in agreement with the value found in past numerical studies R = 1.8(1) [47, 53]. This
short-time behavior is less clearly seen for the circular interfaces [Fig. 13(b)] because of
the t0-dependence of the factor c, but assuming Eq. (23) and c → 1 for t0 → ∞, we have
R/2 ≈ 3b2/3/25/3Γ (2/3) [88]. Our estimate b ≈ 0.8(1) then yields R/2 ≈ 0.6, which is in-
dicated by the dashed lines in Fig. 13(b) and is significantly different from the value for the
flat case. It is not clear if the coefficient R and the parameter b are universal in the circular
case, because the former is given as an amplitude ratio of the second-order cumulants of the
growing and stationary interfaces, the latter of which is never attained in the circular case.
Simulations of an off-lattice Eden model by one of the authors [92] yield b = 1.22(8) and
R/2 ≈ 0.68 (estimated independently of b), to be compared with b ≈ 0.8(1) and R/2 ≈ 0.6
in our experiment.

9Note that for larger t0 we have less data points for Ct(t, t0) and thus the estimates of b and c have larger
uncertainties.
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Fig. 13 Short-time behavior of the temporal correlation function Ct(t, t0) for the flat (a) and cir-
cular (b) interfaces. The main panels show x2 ≡ 1 − C′

t (t, t0)/〈χ2〉c against x1 ≡ 1 − t0/t with
C′

t (t, t0) ≡ Ct(t, t0)/(Γ 2t0t)1/3 and the corresponding χ for each case. The insets show the same data in

the rescaled axes, x2x
−2/3
1 against x1. The dashed lines indicate the right hand side of Eq. (25) with the

value of R estimated from the shown data (a) or from the value of b (b). (Color figure online)

3.7 Temporal Persistence

Dynamic aspects of the stochastic processes are not fully characterized by the two-point
correlation function. Another interesting and useful property in this context constitutes first-
passage problems [56], which concern stochastic time at which a given event occurs for the
first time. A central quantity of interest is the persistence probability, which is the probabil-
ity that the local fluctuations do not change sign up to time t . It is known to exhibit simple
power-law decay P±(t, t0) ∼ t−θ± in various general situations such as critical behavior and
phase separation, though it is rarely solved by analytic means since it involves infinite-point
correlation [56]. It has also been studied for fluctuating interfaces, first for linear processes
[52] and then for KPZ-class interfaces [47, 62, 88], without analytic results in the latter case.
The present section is devoted to showing experimental results on this nontrivial quantity.

We define the persistence probability P±(t, t0) as the joint probability that the interface
fluctuation δh(x, t) ≡ h(x, t) − 〈h〉 at a fixed location is positive (negative) at time t0 and
maintains the same sign until time t . Figure 14(a-c) displays the results for the positive and
negative fluctuations, P+(t, t0) and P−(t, t0), respectively, with varying t and fixed values
of t0. We find, for both flat and circular interfaces, that the persistence probabilities indeed
decay algebraically for large t :

P±(t, t0) ∼ (t/t0)
−θ± (26)

with the persistence exponents θ±, which can be different for the positive and nega-
tive fluctuations. In order to check the quality of the power-law decays and to mea-
sure the persistence exponents, we plot in the insets the running exponents θ±(t, t0) ≡
−d[logP±(t, t0)]/d[log(t/t0)] as functions of t/t0. The values of θ±(t, t0) with different
t0 turn out to overlap in this representation, and, in particular, converge to constants, which
substantiate the power laws (26) with well-defined time-independent exponents θ±. We es-
timate them at

{
θ+ = 1.35(5)

θ− = 1.85(10)
(flat) and

{
θ+ = 0.81(2)

θ− = 0.80(2)
(circular), (27)
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Fig. 14 Temporal persistence probabilities P±(t, t0) for the flat (a, b) and circular (c, d) interfaces, with dif-
ferent t0 as shown in the legends. The panels (a–c) shows the positive and negative persistence probabilities
as functions of t/t0, while the panel (d) indicates the ratio of the positive and negative persistence probabili-
ties shown in (c), which confirms θ+ = θ− for the circular interfaces. The insets show the running exponents
−θ±(t, t0) ≡ d[logP±(t, t0)]/d[log(t/t0)] averaged over 1.0 s in the unit of t . Note that, in the panel (c),
including its inset, the data for both positive and negative fluctuations are shown (solid and open symbols,
respectively). The dashed lines show the indicated values of the persistence exponents θ±. In the panel (c),
the dashed and dotted lines correspond to θ+ = 0.81(2) and θ− = 0.80(2), respectively. (Color figure online)

which are remarkably different between the two cases. In passing, if we use the samplewise
average to define the sign, i.e., δh(x, t) ≡ h(x, t) − 〈h〉s, we find θ+ = 0.88(2) and θ− =
0.91(2) for the circular case. We believe however that the physically relevant figures are the
preceding ones (27) obtained with the ensemble average.

The persistence exponents have also been measured in a few past studies. For the flat
interfaces, numerical estimates of θ+ = 1.21(6) and θ− = 1.61(8) were reported for a model
in the KPZ class with λ > 0, and θ+ = 1.67(7) and θ− = 1.15(8) for λ < 0 [47]. We find
small discrepancies from our values (27) for both larger and smaller exponents, but these
are probably due to the different choice of the reference time t0: in the numerical study [47],
t0 was fixed to be a single Monte Carlo step after the flat initial condition and therefore not
yet in the KPZ regime. The persistence was also measured in the slow combustion exper-
iment [62]; although for the stationary interfaces the authors found a power-law decay in
agreement with theory, for the growing ones, they found no asymmetry between P+(t, t0)

and P−(t, t0) and could not identify power-law decays within their time window. For the
circular interfaces, past simulations of an on-lattice Eden model reported θ+ = 0.88(2) and
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θ− = 0.80(2) [88], which are reasonably close to our estimates (27). After the compari-
son to these earlier studies, however, the most important finding we reach in the present
work is that, while the positive and negative persistence probabilities are asymmetric for the
flat interfaces, this broken symmetry is somehow recovered for the circular case [compare
θ+ and θ− in Eq. (27)]. This is clearly confirmed by plotting the ratio P−(t, t0)/P+(t, t0)

in Fig. 14(d), which asymptotically shows a plateau indicating θ+ = θ−. A similar result
is also obtained by one of the authors’ simulations of an off-lattice Eden model, namely
θ+ = 0.81(3) and θ− = 0.77(4) [92]. The asymmetry in the flat case is naturally attributed
to the nonlinear term of the KPZ equation (5), which pulls back negative fluctuations and
pushes forward positive humps, leading to θ+ < θ− if λ > 0 (and contrary if λ < 0) [47]. We
have no explanation why and how this asymmetry is canceled for the circular interfaces.

3.8 Spatial Persistence

Similarly to the temporal persistence studied in the preceding section, we can also argue
a persistence property in space, which is known to be nontrivial as well [18, 57, 58]. It is
quantified by the spatial persistence probability10 P

(s)
± (l; t), defined as the probability that a

positive (negative) fluctuation continues over length l in a spatial profile of the interfaces at
time t . For the stationary interfaces in the KPZ class, since their spatial profile is equivalent
to the one-dimensional Brownian motion, their spatial persistence is mapped to the temporal
persistence of the Brownian motion [57, 58].11 Its analogue for the growing interfaces has
been, however, studied only in the slow combustion experiment to our knowledge, which
reported a power law P

(s)
± (l; t) ∼ l−1/2 [62].

We measure this quantity for our growing interfaces and plot it in Fig. 15, for both pos-
itive [panels (a, c)] and negative (b, d) fluctuations as well as for the flat (a, b) and circular
(c, d) interfaces. In all these cases, we identify exponential decays within our statistical ac-
curacy, instead of any power laws, as opposed to the slow combustion experiment [62]. This
is simply written as

P
(s)
± (l; t) ∼ e−κ

(s)
± ζ , (28)

with the dimensionless length scale ζ ≡ (Al/2)(Γ t)−2/3. We confirm that the coefficients
κ

(s)
± defined thereby do not depend on time for large t (Fig. 15). Their values, however,

do depend on the global shape of the interfaces, like in other statistical properties we have
studied so far. Using the data at five different times near the end of the time series, namely
60 s ≤ t ≤ 63 s and 28.5 s ≤ t ≤ 30.5 s for the flat and circular interfaces, respectively, we
find

{
κ

(s)
+ = 1.9(3)

κ
(s)
− = 2.0(3)

(flat) and

{
κ

(s)
+ = 1.07(8)

κ
(s)
− = 0.87(6)

(circular). (29)

10The persistence probability argued in the present paper is sometimes called the survival probability in the
literature. In this case, the persistence probability indicates a related but different quantity; it is defined in
terms of fluctuations from the leftmost (or rightmost) height of each segment of the interfaces, instead of
the global average 〈h〉 [18, 58]. We, however, define the persistence probability with the global average, in
order to be consistent with the definition of the temporal persistence probability for the growing interfaces
[47, 62, 88], for which one needs to use the global average since the height grows. Our definition is also more
common, as far as we follow, in other subjects such as critical phenomena [56, 94].
11It is interesting to note that, for general cases of the linear growth equation (with an arbitrary value of the
dynamic exponent z), stationary interfaces are equivalent to the fractional Brownian motion, which allows us
to compute the value of the persistence exponent exactly [57].
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Fig. 15 Spatial persistence probabilities P
(s)
± (l; t) for the flat (a, b) and circular (c, d) interfaces, with differ-

ent t as shown in the legends. The length l is shown in the rescaled unit ζ ≡ (Al/2)(Γ t)−2/3 [also notice the
different scales between (a, b) and (c, d)]. Data for early times that deviate from the asymptotic exponential
decay are shown by light-color symbols for the sake of visibility. The dashed lines are guides for the eyes

indicating the estimated values of the decay coefficients κ
(s)
± . The inset of the panel (b) displays the ratio

P
(s)
− (l; t)/P (s)

+ (l; t) for the flat interfaces, which suggests κ
(s)
+ = κ

(s)
− in this case. (Color figure online)

We notice here, besides the clear geometry dependence, the equality κ
(s)
+ = κ

(s)
− for the flat in-

terfaces. It is also supported by plotting the ratio P
(s)
− (l; t)/P (s)

+ (l; t) in the inset of Fig. 15(b),
which shows no significant increase or decrease in a systematic manner. In contrast, for the
circular case, we recognize a slight asymmetry between the positive and negative fluctua-
tions, though we do not reach a definitive conclusion on it as mentioned below. We also
remark that apparent deviations from the exponential decay in Fig. 15 do not seem sta-
tistically significant, because we find that the plots can deviate both upward and downward
without any systematic variation in time, even at latest consecutive times. We however stress
that the exponential decay itself is convincing in all our experimental data.

Having used the same rescaled length scale ζ as for the analysis of the spatial correlation
function (Sect. 3.5), we expect that the values of κ

(s)
± in Eq. (29) are universal in the (1 + 1)-

dimensional KPZ class. Moreover, given the expected equivalence of the asymptotic spatial
profile of the flat and circular interfaces to the Airy1 and Airy2 processes [10, 12, 73, 75,
80], respectively, our results may also shed light on the temporal persistence of the Airy pro-
cesses, as well as, for the circular case, that of the largest-eigenvalue dynamics in Dyson’s
Brownian motion for GUE random matrices. The latter is studied in the Appendix by direct
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simulations of GUE Dyson’s Brownian motion; we then find exponential decay of the per-
sistence probability with the rates κ+ = 0.90(8) and κ− = 0.90(6), which are indeed close to
the values of κ

(s)
± found for the circular interfaces. We however recognize a small discrepancy

between κ
(s)
+ and κ+ and in particular notice that there is no asymmetry between the positive

and negative fluctuations for the results of Dyson’s Brownian motion. On the one hand, this
suggests that the true asymptotic values of κ

(s)
± for the curved KPZ class are also identical,

but somewhat obscured in our data because of statistical error and finite-time effect. We
indeed notice in Fig. 15(c) that the apparent value of κ

(s)
+ seems to decrease with increasing

time. On the other hand, to our knowledge, no theoretical study has computed the persis-
tence probability for the Airy processes or for Dyson’s Brownian motion; correspondence
to the spatial persistence in the KPZ class should therefore be explicitly checked. Although
one of the authors numerically finds κ

(s)
+ = 0.90(2) and κ

(s)
− = 0.89(4) for an off-lattice Eden

model [92], in quantitative agreement with the results for GUE Dyson’s Brownian motion,
theoretical estimation for κ

(s)
± would be necessary to give a firm conclusion on this issue. In

any case, it is interesting that the exponential decay is identified in the spatial persistence,
especially for the circular interfaces whose two-point correlation function decays no faster
than g2(ζ ) ∼ ζ−2. This result may remind us of Newell and Rosenblatt’s theorem [68] for
Gaussian stationary processes, which states that the persistence probability decays exponen-
tially if the two-point correlation function decays by a power law g(ζ ) ∼ ζ−μ with μ > 1.
It would be intriguing to investigate the possibility of extending Newell and Rosenblatt’s
theorem to non-Gaussian stationary processes such as the Airy1 and Airy2 processes. Note
however that, in our experiment, because of the limited precision of the data for the spatial
persistence, we cannot exclude the possibility of superexponential decay for large length
scales ζ (Fig. 15), in particular for the flat case corresponding to the Airy1 process.

3.9 Extreme-Value Statistics

In this section, we turn our focus to extreme-value statistics [17, 34] for the interface fluctu-
ations, studying in particular the distribution of their maximal values. First of all, let us note
that the TW distributions are unbounded. The maximal height is therefore not an intrinsic
quantity for the flat interfaces, for which the system size (or the lateral size) L can be taken
arbitrarily large at any times. For this reason we focus here only on the circular interfaces,
for which L, or the circumference, is finite at finite times and therefore the maximal height is
a well-defined, intrinsic quantity. The asymptotic one-point distribution in this case is given
by the GUE TW distribution [Fig. 8; reproduced by blue circles in Fig. 16(a)].

First we measure Rmax(t) ≡ maxx h(x, t) for each interface at a fixed time t = 30 s, which
we call the maximal radius in this section [Fig. 16(b)]. Its distribution, in the rescaled axis
q(r)

max ≡ (Rmax − v∞t)/(Γ t)1/3, is by definition on the right of the one-point distribution
[green squares in Fig. 16(a)]. It turns out to be the Gumbel distribution [17, 34], character-
ized by the double exponential function of the cumulative distribution function (cdf)

cdf
(
q(r)

max

) = exp
[−e−g(q

(r)
max−q0)

]
, (30)

as identified in Fig. 17, with evidence of the double exponential regime in Fig. 17(c). Fitting
Eq. (30) to the experimental data therein, we obtain q0 = 0.49(6) and g = 2.23(11). The
parameter q0 is called the characteristic largest value in extreme-value statistics and is con-
nected to the one-point distribution by cdf(q = q0) = 1−1/n with the effective number n of
independent samples [34]. From our experimental data for the one-point distribution [inset
of Fig. 17(b)], we have n = 62(9), which is indeed in the same order as the dimension-
less circumference 2π〈h〉(A/2)(Γ t)−2/3 = 20.6 at t = 30 s. The realization of the Gumbel
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Fig. 16 Maximal height distributions for the circular interfaces at t = 30 s. (a) The distributions of the
local radius h (blue circles), the maximal radius Rmax ≡ maxh (green squares) and the maximal height
on fictitious substrates (see text), Hmax ≡ max(h sinφ) (red diamonds), are shown in the rescaled axis
q ≡ (h − v∞t)/(Γ t)1/3. The dashed and dotted lines indicate the GOE and GUE TW distributions, re-
spectively (with the factor 2−2/3 for the former). (b) Sketch of the definitions of the maximal radius Rmax
and the maximal height Hmax. Xmax indicates the position on the fictitious substrate that gives the maximal
height Hmax. (Color figure online)

Fig. 17 Probability density function (a) and cumulative distribution function (b, c) for the rescaled maxi-

mal radius q
(r)
max ≡ (Rmax − v∞t)/(Γ t)1/3 at t = 30 s. The dashed lines show the results of the fitting of

Eq. (30) to the data in the panel (c). The inset of the panel (b) displays the cumulative distribution function
for the rescaled local height q , with the dotted line indicating the value of q0 from the fitting of the Gumbel
distribution. (Color figure online)

distribution is not very surprising if one is aware that it arises generically from one-point
distributions that decay faster than any power law [17], like the TW distributions.

The circular shape of the growing interfaces allows us to argue another interesting
extremal of the interface position, namely, the maximal height Hmax measured with re-
spect to a fictitious flat substrate passing through the origin [Fig. 16(b)]. It is defined by
Hmax ≡ maxx h(x, t) sinφ(x, t) with the angle φ between the substrate and the vector con-
necting the origin and the point h(x, t) on the interface. Rotating the substrate arbitrarily,
or varying the direction of φ = 0, we can accumulate as good statistics for Hmax as for the
local height h. The histogram of the maximal height Hmax obtained thereby is plotted by red
diamonds in Fig. 16(a) in the rescaled axis q(h)

max ≡ (Hmax − v∞t)/(Γ t)1/3. Interestingly, in
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Fig. 18 Distribution of the maximal height Hmax with respect to the fictitious substrates. (a) Skew-

ness 〈H 3
max〉c/〈H 2

max〉3/2
c (diamonds) and kurtosis 〈H 4

max〉c/〈H 2
max〉2

c (triangles) against time t . The hor-
izontal lines indicate the values of the skewness (black) and the kurtosis (gray) for the GUE (dot-
ted) and GOE (dashed) TW distributions [72]. (b) Finite-time corrections in the nth-order cumulants,

〈(q(h)
max)n〉c − 〈χn

GOE〉c. The inset shows the data for n = 1 in the logarithmic scales, with the dashed line
indicating the exponent −1/3. (Color figure online)

contrast to the GUE TW distribution for the local height h, the maximal height Hmax obeys
the GOE TW distribution like the local height of the flat interfaces. This is also confirmed
from the values of the skewness and the kurtosis as shown in Fig. 18(a). We also observe due
finite-time corrections from the GOE TW distribution [Fig. 18(b)]. The first-order cumulant
shows again a pronounced correction decreasing as t−1/3 (inset; though the exponent may
look slightly less, we consider this is not significant within our accuracy). For the higher-
order cumulants, we could not single out reliable functional forms within our experimental
accuracy. Theoretically, the GOE TW distribution was indeed identified analytically in the
maximal height of the curved PNG interfaces at infinite time, or, equivalently, in the maxi-
mal position of the infinitely many non-intersecting Brownian particles with fixed end points
(called the vicious walkers) [22, 29, 44, 55, 65, 86]. This remarkable result is attributed, in-
tuitively, to the same time-reversal symmetry in its space-time representation as for the local
height of the flat interfaces. In our experiment we have demonstrated that this nontrivial
property on the extrema is also universal and robust enough to control the growth of the real
turbulent interfaces.

The horizontal position Xmax associated with the maximal height Hmax [Fig. 16(b)] is also
a quantity of interest. In Fig. 19(a), we show histograms of Xmax at different times t from
our experimental data (symbols), together with those from simulations of the PNG model
at finite times offered by Rambeau and Schehr [77, 78] (dotted color lines) and the exact
asymptotic solution for the vicious walkers [86] and for the last passage percolation [65, 76]
(solid black line; a numerical evaluation by Quastel and Remenik [76] is shown), both of
which are equivalent to the PNG model. We find similar curves for all the presented distribu-
tions when plotted in the appropriate dimensionless unit, with noticeable finite-time effects
in the experimental and numerical data toward the exact asymptotic solution. Interestingly,
concerning these finite-time effects, the experimental data indicate the opposite sign from
the PNG model at finite times, which is more clearly visible in time series of the cumulants
[Fig. 19(b)]. From the theoretical side, analytic expressions for the distribution of Xmax have
been obtained, first for finite numbers of vicious walkers [77, 78], and, very recently, even
in the infinite limit [65, 76, 86], as indicated by the solid line in Fig. 19(a). The tail of the
asymptotic distribution was shown to decay as exp(−c0|Xmax|3) with a constant c0 [65, 76,
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Fig. 19 Distribution of the position Xmax associated with the maximal height Hmax. (a) Probability density
function (pdf) in the rescaled unit X′

max ≡ (AXmax/2)/(Γ t)2/3 from our experiment (symbols), as well as
that from simulations of the PNG model (dotted color lines) and the exact asymptotic solution (solid black
line). The numerical data for the PNG model and the numerical evaluation of the exact asymptotic solution
were generously offered by Rambeau and Schehr [77, 78] and by Quastel and Remenik [76], respectively. The
arrows indicate how the distributions shift with time t . The inset shows the experimental data at t = 30 s with
the different axes to check the functional form of the tail. The dashed line is a guide for the eyes showing the
slope expected from the theoretical prediction pdf(X′

max) ∼ exp(−c′
0|X′

max|3) [65, 76, 86]. (b) Cumulants
〈(X′

max)n〉c with n = 2 and 4 (top and bottom panels, respectively) against t . The dashed lines indicate the
values estimated from the exact solution, 0.2409 and −0.0138 for n = 2 and 4 [76], respectively. (Color
figure online)

86], which is indeed identified in our experimental data [inset of Fig. 19(a)]. Further quan-
titative comparison of the experimental and numerical data to the exact solution would be
helpful to elucidate the interesting finite-time behavior reported in Fig. 19.

To end this section, we briefly discuss difference between the two maxima, Rmax

and Hmax. Given that both are the maximum of weakly correlated random variables, h

and h sinφ, respectively, and that the arc length grows faster than the correlation length
(t vs t2/3), it is noteworthy that Rmax and Hmax have the different limiting distributions as
evidenced in the present section. This is an interesting example where collections of iden-
tical variables and of non-identical ones result in a remarkable difference in extreme-value
statistics [87].

3.10 What If Applied Voltage is Varied?

All the experimental results presented so far were obtained at the fixed applied voltage
V = 26 V applied to the convection cell of the liquid crystal. Finally we briefly mention
how these results change if the applied voltage is varied.

First, for higher voltages, we confirmed that all the results are reproduced, as far as we
explicitly checked statistical properties that are expected to be universal, such as the scaling
exponents and the asymptotic distributions. In particular, for all the voltages we studied in
the range 26 V ≤ V ≤ 30 V, the asymptotic one-point distribution is always given by the
GUE and GOE TW distributions for the circular and flat interfaces, respectively, as demon-
strated for example from the values of the skewness and the kurtosis [Fig. 20(a)]. The change
in the applied voltage is reflected in the values of the non-universal parameters v∞ and Γ ,
which are connected to the three parameters in the KPZ equation (5) via Eqs. (12) and (13).
We estimate them in the same manner as for V = 26 V and find that, with increasing ap-
plied voltage V , v∞ increases and Γ decreases [Fig. 20(b)]. This indicates that the interface
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Fig. 20 Experimental results from the circular interfaces at different applied voltages 26 V ≤ V ≤ 30 V. (a)

Time series of the skewness 〈h3〉c/〈h2〉3/2
c (filled symbols) and the kurtosis 〈h4〉c/〈h2〉2

c (empty symbols) at
different voltages V (as shown in the legend). The horizontal lines indicate the values of the skewness (dashed
line) and the kurtosis (dotted line) for the GUE TW distribution. (b) Estimated values of the parameters
v∞ = λ (blue circles), Γ (green squares) and A (inset) as functions of V . (Color figure online)

grows faster as expected, but with smaller amplitudes of the fluctuations. We expect that
these claims hold for even higher voltages, though it becomes difficult to confirm because
of more frequent spontaneous nucleation of DSM2 nuclei [46].

In contrast, when one lowers the voltage by a few volts from 26 V, the system enters
the spatiotemporal intermittency regime, in which the DSM2 clusters are not compact any
more and replaced by small patches of DSM2, moving around amidst the DSM1 region [93,
94]. The dynamics in this regime is described in coarse-grained scales by local spreading
and vanishing of DSM2 patches, which correspond in microscopic scales to proliferation,
turbulent diffusion and annihilation of disclinations. This coarse-grained picture is similar to
the model called the contact process, albeit oversimplified, defined by nearest-neighbor con-
taminations (spreading) and local recessions that take place at constant rates on a lattice [36,
39]. Indeed, the DSM1-DSM2 turbulence and the contact process were shown to share the
same critical behavior at the onset of the spatiotemporal intermittency [90, 93, 94], known as
the directed percolation universality class [39], at least when the planar alignment of liquid-
crystal molecules is chosen. We can then interpret that the DSM2 growth for higher voltages
is realized by rapidly increasing ratio of the contamination rate to the recession rate with in-
creasing voltage. In this line of thoughts the realization of the KPZ-class dynamics would
be a reasonable consequence, because in the limit of the infinitely rapid contamination rate
the contact process reduces to a variant of the Eden model, a representative numerical model
which belongs to the KPZ class [8]. One of the authors indeed shows by simulations that
this type of the Eden model, when placed on continuous space, exhibits growing interfaces
very similar to the ones observed in our experiment [92]. We stress, however, that the actual
dynamics of the DSM1-DSM2 turbulence is far more complicated [32] and neither the cor-
respondence to the contact process nor the realization of the KPZ-class interfaces is obvious.

4 Summary

Throughout this paper, we have studied growing interfaces of the DSM2-turbulent domains
in the electrically driven liquid crystal. We have experimentally realized both circular and
flat interfaces and carried out detailed statistical analyses of their scale-invariant fluctuations.
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These confirm, first of all, that the DSM2 growing interfaces clearly belong to the (1 + 1)-
dimensional KPZ class. We have confirmed not only the universal scaling exponents but
also shown the validity of the far more detailed universality, which controls even the precise
form of the distribution function and the spatial correlation function in the asymptotic limit.
At this level, the KPZ universality class splits into at least two distinct sub-classes corre-
sponding to different global geometries, namely to the flat and circular (or, more generally,
curved) interfaces. It was previously argued by analytic studies for the few solvable models
[19, 49, 72, 83] and is now evidenced in our experimental system.

We have then extended our analyses to the statistical properties that remain out of reach
of rigorous theoretical treatment, especially those related to the temporal correlation. Our
experimental results are summarized in Table 1, together with the numerical results for an
off-lattice Eden model obtained by one of the authors [92]. We notice here that, among the
properties we have studied, it is only the values of the scaling exponents that are shared by
both circular and flat interfaces. For all the rest, the different geometries lead to different
results, sometimes even with qualitative differences, such as the superexponential decay of
the spatial correlation in the flat interfaces, as well as the lasting temporal correlation and the
symmetry between the positive and negative temporal persistence in the circular interfaces.

In view of the recent theoretical developments on the universal fluctuations of the KPZ
class [19, 49, 83], our experimental results lead to a good number of remarks and conclu-
sions. While we refer the readers to the corresponding sections of the present paper for
details, we consider that the following are particularly worth stressing:

– Distribution function and spatial correlation function. We have found the GOE and GUE
TW distributions and the Airy1 and Airy2 covariance for the flat and circular interfaces,
respectively, in agreement with the rigorous results for the TASEP and PASEP, the PNG
model and the KPZ equation [19, 49, 83]. Our experimental results obviously do not rely
on any elaborate mathematical mappings used more or less in common in these analytical
studies, and hence underpin the robustness of the universality in these quantities.

– Finite-time corrections in the distribution function. We have found that the finite-time
corrections for the nth-order cumulants 〈qn〉c are in the order of O(t−n/3) for n ≤ 4, except
that we could not extract any finite-time corrections for n = 2 and 4 from our data of the
circular interfaces. As detailed in Sect. 3.4, although these do not contradict any analytical
results for the solvable models [4, 26, 84, 85], only some of the properties are confirmed
to be shared. One clearly needs further study to distinguish universal and non-universal
aspects of this finite-time effect. In particular, explaining the vanishing corrections in the
even-order cumulants of the circular interfaces, as well as the absence of the O(t−1/3)

correction in the first-order cumulant of the off-lattice Eden model [92], is an interesting
issue left for future studies.

– Temporal correlation. The temporal correlation function and the temporal persistence
probability are important statistical quantities that remain out of reach of the rigorous
theoretical developments, and at the same time exhibit clear differences between the flat
and circular interfaces (see Table 1). We believe that the evidenced difference in the tem-
poral correlation function of the circular interfaces is essentially captured by Singha’s
approximative theory [88], though a modification was needed to fit our experimental re-
sults at finite times. More importantly, Singha explicitly assumed the circular growth of
the interfaces. It therefore remains to be clarified to what extent our results on the tempo-
ral correlation function and the temporal persistence hold for the general situation of the
curved interfaces.

– Spatial persistence. We have found exponential decay of the spatial persistence proba-

bility, P
(s)
± (l) ∼ e−κ

(s)
± ζ , for both flat and circular interfaces, albeit with different values
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Table 1 Summary of the main results for the flat and circular interfacesa

Flat interfaces Circular interfaces

Our experiment Our experiment Off-lattice Eden [92]

Scaling exponents α = 1/2, β = 1/3, z = 3/2

One-point distribution for q GOE TW distribution GUE TW distribution

Finite-time corrections

in the nth-order cumulants 〈qn〉c t−n/3 (n = 1,2,3,4) t−n/3 (n = 1,3) t−2/3 (n = 1,2)

Spatial correlation function C′
s(ζ ; t) Airy1 covariance Airy2 covariance

Finite-time correction

in Cint
s (t) ≡ ∫ ∞

0 C′
s(ζ ; t)dζ – t−1/3 t−1/3

Spatial persistence probabilityb κ
(s)
+ = 1.9(3) κ

(s)
+ = 1.07(8) κ

(s)
+ = 0.90(2)

P
(s)
± (l) ∼ e−κ

(s)
± ζ

κ
(s)
− = 2.0(3) κ

(s)
− = 0.87(6) κ

(s)
− = 0.89(4)

Temporal correlation function

C′
t (t, t0) ∼ (t/t0)−λ̄ λ̄ = 1 λ̄ = 1/3 λ̄ = 1/3

Fitting by the modified form b ≈ 0.8(1) b ≈ 1.22(8)

of Singha’s correlation (23)c,d – 1 − c ∼ t−δ′
c = 1

Short-time behavior

of Ct(t, t0) [Eq. (25)]e R/2 ≈ 0.94 R/2 ≈ 0.6 R/2 ≈ 0.68

Temporal persistence probability θ+ = 1.35(5) θ+ = 0.81(2) θ+ = 0.81(3)

P±(t, t0) ∼ (t/t0)−θ± θ− = 1.85(10) θ− = 0.80(2) θ− = 0.77(4)

Extreme-value statistics

maximal radius q
(r)
max – Gumbel distribution

maximal height q
(h)
max – GOE TW distribution

finite-time correction in 〈q(h)
max〉 – t−1/3 t−2/3

position X′
max of q

(h)
max – see Fig. 19

aq ≡ (h − v∞t)/(Γ t)1/3 is the rescaled height; ζ ≡ (Al/2)(Γ t)−2/3 is the rescaled length. q
(r)
max and q

(h)
max

are rescaled as the former and X′
max as the latter. The other rescaled variables are defined by C′

s(ζ ; t) ≡
Cs(l; t)/(Γ t)2/3, C′

t (t, t0) ≡ Ct(t, t0)/(Γ 2t0t)1/3

bSimulations of Dyson’s Brownian motion for GUE random matrices give κ+ = 0.90(8) and κ− = 0.90(6)

(see Appendix)
cThe estimate of b for our experiment is obtained by averaging the values at late times. This might be un-
derestimated if the value of b at each t0 increases slowly but indefinitely with t0, such as by a power law

b∞ − b(t0) ∼ t−δ′′
0 . This power law is indeed suggested for the off-lattice Eden model [92], though not

definitively
dThe value of the exponent δ′ is roughly estimated to be in the range δ′ ∈ [2/3,1]
eThe values of R/2 are estimated directly from the short-time behavior of Ct(t, t0), except for the experi-
mental circular interfaces showing rather strong finite-time effects in this respect. For this case, we give in the
table the value of R/2 obtained from b (see Sect. 3.6)

of the coefficients κ
(s)
± in the appropriately rescaled unit. Given the correspondence to

the Airy processes and, for the circular case, to Dyson’s Brownian motion, this result
may also shed light on the temporal persistence properties of these stochastic processes.
From another viewpoint, one may check the expected equivalence up to the persistence
probability, which formally concerns infinite-point correlation functions. In this respect
we present numerical studies on Dyson’s Brownian motion in the Appendix and obtain
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roughly consistent results for the GUE/circular case, though better precision is required to
draw a conclusion on it (see Appendix and Sect. 3.8). Mathematical approach and refined
numerical evaluation for the persistence of Dyson’s Brownian motion and that of the Airy
processes are indispensable to put these observations on firmer ground.

– Extreme-value statistics. We have also obtained quantitative results on it for our circular
interfaces, in particular on the distribution of the maximal height Hmax and its position
Xmax on fictitious substrates (see Sect. 3.9). Our experimental results are in good agree-
ment with the asymptotic analytical predictions for both Hmax and Xmax, confirming the
GOE TW distribution for the former. The finite-time corrections in their cumulants have
also been measured and found to have, for Xmax, the opposite sign from those in the
PNG model. Further quantitative analyses and theoretical accounts for these interesting
finite-time effects are left for future studies.

Despite these new experimental results, one should be aware that the range of the exper-
imentally investigated quantities or situations still remains quite narrow, compared with the
vast theoretical explorations marked in recent years. For example, stationary interfaces are
not realized in the liquid-crystal turbulence yet, which constitute an as important situation as
the growing interfaces and are theoretically predicted to have another nontrivial distribution
called the F0 distribution [5, 19, 27, 42, 49, 72]. To add, many other situations have been
considered in analytical work and shown to have a variety of intriguing distributions, such
as the TW distribution for Gaussian symplectic ensemble [72, 82] and that for (GOE)2 [5,
72],12 expected under certain conditions with boundary or external sources. In the recent
review [19], six such sub-universality classes are argued. It is a challenging open problem
to test these predictions in a real experiment, though it is statistically much more demand-
ing because one cannot take advantage of spatial homogeneity as in the present study. As a
complementary approach, it is also essential to find other experimental examples for the uni-
versal fluctuations of the KPZ class. Systems showing the KPZ scaling exponents, whether
directly or indirectly, are of course primary candidates. Above all the paper combustion ex-
periment [59, 66, 67] is a quite promising and interesting case, for which the KPZ scaling
exponents were clearly found [59, 66] but different results from ours were reported on the
temporal and spatial persistence [62]. Although the same group performed a test for the KPZ
universal distribution in this system [64], we consider that it is not statistically significant to
draw a conclusion on it [91]; we hope that the data will be analyzed again along the same
lines as the present study or in any equivalent way.

On the theoretical side, in addition to further expanding the realm of exact solu-
tions and analytic expressions for particular models, it would be fundamentally impor-
tant to have a general theoretical framework that can explain the evidenced detailed
yet geometry-dependent (or, equivalently, initial-condition-dependent) universality of the
(1 + 1)-dimensional KPZ class. A promising approach in this direction have recently been
undertaken by studies of non-perturbative renormalization group [15, 16] and renormaliza-
tion group combined with variational formulation [21]. We believe that such cooperative
progress in experimental and theoretical investigations will afford a further understanding
toward this remarkable universality, which underlies the general phenomenon of the growing
interfaces with deep connection to apparently unrelated areas of physics and mathematics.

12It describes the distribution of the largest eigenvalue among all eigenvalues of two random matrices inde-
pendently drawn from GOE.
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Appendix: Simulations of Dyson’s Brownian Motion

In Sect. 3.5 we have experimentally shown that the spatial two-point correlation of the cir-
cular and flat interfaces is indeed given, asymptotically, by that of the temporal correlation
of the Airy2 and Airy1 processes, respectively. Theoretically, however, this correspondence
is expected to be far beyond; the spatial profile of the interfaces itself is considered to be
statistically equivalent to the locus of the Airy processes, or, for the curved interfaces, to that
of the largest-eigenvalue dynamics in Dyson’s Brownian motion of GUE random matrices.
Our analysis on spatial correlation of the interfaces may therefore shed light also on the tem-
poral correlation of these stochastic processes. In this context, particularly interesting, and
not investigated yet to our knowledge, is their temporal persistence property, which may be
realized as the spatial persistence of the interfaces studied in Sect. 3.8. This correspondence
might be mathematically not obvious, because the asymptotic equivalence in the moments of
the Airy2 process and those of the largest eigenvalue in Dyson’s Brownian motion for GUE
has not been rigorously proved yet [10]. Here, performing direct simulations of Dyson’s
Brownian motion, we shall indeed probe this bridge to the interface problem at the level of
the persistence property, which should also help interpret our experimental results shown in
Sect. 3.8.

Dyson’s Brownian motion is defined as the time evolution of the eigenvalues of a random
matrix, taken from GUE or GOE here, whose independent elements exhibit uncorrelated
Ornstein-Uhlenbeck processes [61]. Specifically, for an N × N Hermitian or symmetric
matrix M , we consider the process

dM(t)

dt
= −γM(t) + Ξ(t), (31)

where γ is a constant scalar and Ξ(t) is a matrix with independent white-noise elements
Ξij (t) preserving the same symmetry as M ; these matrix elements satisfy 〈Ξij (t)〉 = 0,
〈Ξii(t)Ξi′i′(t ′)〉 = δii′δ(t − t ′) for the diagonal elements and 〈[ReΞij (t)][ReΞi′j ′(t ′)]〉
(= 〈[ImΞij (t)][ImΞi′j ′(t ′)]〉 for GUE) = (1/2)δii′δjj ′δ(t − t ′) for the nondiagonal elements
i > j . The one-point distribution for M(t) defined thereby remains to be that for GUE or
GOE at any time t . We then focus on the largest eigenvalue λ1(t) of the matrix M(t), which
is rescaled as

λGUE
(
t ′
) ≡ √

2γN1/6
[
λ1

(
t ′/γN1/3

) − √
2N/γ

]
, (32)

λGOE

(
t ′
) ≡ 21/3γ 1/2N1/6

[
λ1

(
21/3t ′/γN1/3

) − √
N/γ

]
, (33)

for GUE and GOE, respectively. The factors for this rescaling are determined, after Borne-
mann et al. [10], in such a way that λGUE(t ′) and λGOE(t ′) have the same values of the
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Fig. 21 Temporal persistence probability P±(ζ ) for Dyson’s Brownian motion of GUE (a, b) and GOE
(c, d) random matrices. The four series of colored symbols in the main panels correspond to different N and
�t as shown in the legend of the panel (a). The dashed lines are guides for the eyes indicating the estimated
values of κ± for each case. The inset of the panel (b) shows the ratio P−(ζ )/P+(ζ ) for the four data series
shown in the panels (a, b). The insets of the panels (c, d) display the data for both GUE (blue and green) and
GOE (red and turquoise) with N = 64 in the original time unit of Dyson’s Brownian motion, which overlap
reasonably well within statistical accuracy. (Color figure online)

covariance and its derivative at zero as the Airy2 and Airy1 processes, respectively. Note
that the factors for the GOE case are different from those used by Bornemann et al. [10]
because of our somewhat unconventional definition for the Airy1 process, which is however
useful in the context of the growing interfaces (see footnote 8 on page 17).

We numerically integrate Eq. (31) using the standard numerical scheme for the Ornstein-
Uhlenbeck process [33], which is exact for any finite time step �t . We then compute the tem-
poral persistence probability P±(ζ ) for the fluctuations of λGUE(t ′) and λGOE(t ′) as functions
of a period ζ over which the sign of positive or negative fluctuations remains unchanged.
Since the measurement of the persistence probability is influenced by the choice of the dis-
crete time step �t , we use in the following �t = 10−2N−1/3 and 10−3N−1/3 and check that
the results are not affected in a significant way. Concerning the other parameters, we fix
γ = 1 without loss of generality, and compare N = 64 and 256 to confirm that our results
reflect the property in the asymptotic limit N → ∞.

Figure 21 shows the results obtained from more than 1000 and 50 independent simu-
lations for N = 64 and 256, respectively, both of length 106 time steps. It clearly shows
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that, for both GUE and GOE and for both positive and negative fluctuations, the persistence
probability decays exponentially within our statistical accuracy, P±(ζ ) ∼ exp(−κ±ζ ), as we
have found for the spatial persistence of the interface fluctuations (Fig. 15). Concerning the
coefficient κ±, we find here

{
κ

(s)
+ = 0.90(8)

κ
(s)
− = 0.90(6)

(GUE) and

{
κ

(s)
+ = 1.14(8)

κ
(s)
− = 1.12(5)

(GOE) (34)

in the unit defined by Eqs. (32) and (33). This shows no significant difference between
the positive and negative fluctuations for both cases, which is also confirmed from the ra-
tio P−(ζ )/P+(ζ ) [inset of Fig. 21(b) for GUE]. In contrast, the values of κ± seem to be
slightly different between GUE and GOE, but this turns out to result from the different
normalizations of the time in Eqs. (32) and (33). Measuring the duration τ in the original
time unit of Dyson’s Brownian motion, we find that the persistence probabilities P±(τ ) for
GUE and GOE overlap reasonably well for both positive and negative fluctuations [insets of
Fig. 21(c, d)].

The appropriate rescaled time units used to define κ± allow us to make a direct compari-
son to the experimental values κ

(s)
± for the spatial persistence of the growing interfaces. For

the circular case, we have found κ
(s)
+ = 1.07(8) and κ

(s)
− = 0.87(6), to be compared with the

GUE values κ+ = 0.90(8) and κ− = 0.90(6). While the values for κ
(s)
− and κ− are in good

agreement, we notice that those for κ
(s)
+ and κ+ seem to be slightly different. In particular, the

apparent asymmetry between the positive and negative spatial persistence in the experiment
is not reproduced in the temporal persistence of GUE Dyson’s Brownian motion. Two pos-
sibilities can be considered; our estimates for κ

(s)
+ and κ+ are not sufficiently precise and/or

affected by finite-time effects and they actually take the same value, or the spatial profile
of the circular interfaces and the locus of the largest eigenvalue in GUE Dyson’s Brown-
ian motion are not equivalent at the level of the persistence property. One of the authors’
simulations of an off-lattice Eden model give κ

(s)
+ = 0.90(2) and κ

(s)
− = 0.89(4) [92] and

thus support the former possibility, but we do not single out either of them at present. This
should be clarified by further study with better precision, preferably with numerical estima-
tion of the persistence probability for the Airy processes, for which Bornemann’s method
for evaluating Fredholm determinants [9, 10] could be utilized.
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