Prof. Dr. Joachim Krug Dr. Ivan Szendro Institut für Theoretische Physik Sommersemester 2012

1. Exercise sheet to the lecture "Statistical Physics Far from Equilibrium"

Exercise 1: Positivity of response functions

Be S the entropy of some thermodynamic system and A_i the extensive variables characterizing this system. As stated in the lecture, the matrix

$$\delta S_{ij}^{(2)} = \frac{\partial^2 S}{\partial A_i \partial A_j}$$

is negative definite at the equilibrium. Show, for the examples of the specific heat c_V and the compressibility κ_T :

$$c_V = \left. \frac{\partial E}{\partial T} \right|_V, \qquad \kappa_T = -\frac{1}{V} \left. \frac{\partial V}{\partial p} \right|_T,$$

that due to this property, the response functions of thermodynamic systems at equilibrium are positive.

Hint: Let S be a function of V and E alone. Write down the total differential corresponding to differentiating S twice and replace the dependence on E by a dependence on T and V. To do so it is convenient to consider the total differential of 1/T. Identify the prefactors of dV^2 and dT^2 .

Exercise 2: Temperature relaxation time

Consider two thermodynamic systems, Σ_1 and Σ_2 , that for times t < 0 are kept isolated from one another at temperatures T_1 and T_2 respectively. At time t = 0 the systems are brought into contact by means of a thermal bridge of length L, cross section area A, and thermal conductivity λ (see Fig. 1). Calculate the relaxation time of the system.

Hint: Here we consider constant c_V .

Figure 1: Thermal bridge.