UNIVERSITÄT ZU KÖLN

Prof. Dr. Joachim Krug Dr. Ivan Szendro Institut für Theoretische Physik Sommersemester 2012

6. Exercise sheet to the lecture "Statistical Physics Far from Equilibrium"

Exercise 14: The Katz-Lebowitz-Spohn model¹

In this exercise, we would like to construct a lattice gas model whose stationary distribution is given by the Boltzmann distribution

$$P^*(\eta) = \frac{\mathrm{e}^{-\beta H}}{Z}$$
, with the Hamiltonian $H = -J \sum_{j=1}^L \eta_j \eta_{j+1}$.

Periodic boundary conditions are assumed, $\eta_{L+1} = \eta_1$. To archive this goal, we must make an appropriate choice for the transition rates $\alpha(\eta)[i \rightarrow i + 1]$ (jumps to the right) and $\gamma(\eta)[i \rightarrow i - 1]$ (jumps to the left). Note that the Hamiltonian implies nearest neighbor interactions. Therefore, the rates must also depend on the neighbors of the particle before and after the jump.

- a) Name all the possible jump configurations taking into account all the possible neighborhoods before and after the jump. How many different rates does this imply?
- b) To control the degree of asymmetry we switch on an external field, E, such that for two neighboring sites the energy of the right hand one is lowered by E. Thus, E measures how strongly jumps to the left are suppressed with respect to jumps to the right. A physical example would be an electric field \mathcal{E} , where E would stand for the combination $q\mathcal{E}a$, with charge q and lattice spacing a. Demanding that detailed balance should still hold locally in the presence of the field yields relations between the γ 's and the α 's.
- c) Let us for now restrict ourselves to the totally antisymmetric case $E \to \infty$, i.e. particles can only jump to the right. We want to identify conditions upon the different α 's that must be fulfilled so that $P^*(\eta)$ is invariant under the dynamics. To that purpose, consider a ring consisting of L_{\min} sites and N_{\min} particles, where L_{\min} and N_{\min} are the minimal number of sites and particles necessary to construct all possible jump configurations. Evaluate the flow into, and out of, all specific configurations η under the condition that the η are distributed according to $P^*(\eta)$. Demanding stationarity yields two conditions. Which are these?
- d) Now return to the case of finite E. Verify that the conditions obtained in c) are still sufficient to ensure the stationarity of P^* when using the γ 's obtained in b).

¹S. Katz, J. Lebowitz and H. Spohn, J. Stat. Phys., 34 (1984), p. 497

Exercise 15: The zero range process

In the zero range process² (ZRP) an unlimited number $n_i = 0, 1, 2, ...$ of particles can occupy each site i = 1, ..., N of the one-dimensional lattice with periodic boundary conditions (a ring). A particle at site *i* jumps to the right $(i \rightarrow i + 1)$ with probability *q* and to the left $(i \rightarrow i - 1)$ with probability 1 - q at a rate which is a function $\gamma(n_i)$ of the number of particles at the site of origin with $\gamma(0) = 0$. There is no dependence on the occupancy of the target site (= zero range interaction). The ZRP has the remarkable property that the stationary distribution is a product measure for a broad class of functions $\gamma(n)$, i.e. the stationary weight of a configuration $\{n_1, ..., n_N\}$ is of the form

$$\mathbb{P}[n_1, \dots, n_N] \sim \prod_{i=1}^N f(n_i).$$
(1)

a.) In the symmetric case q = 1/2 use the condition of detailed balance to show that

$$f(n) \sim \alpha^n \prod_{k=1}^n \gamma(k)^{-1} \tag{2}$$

where α is a constant to be fixed by normalization. Under what conditions on the rate function $\gamma(n)$ is (2) in fact normalizable?

- b.) Using the concept of pairwise balance introduced in the lectures, show that the product measure (1, 2) remains stationary also when $q \neq 1/2$.
- c.) We now show that the asymmetric exclusion process is equivalent to a special case of the ZRP. To this end we consider the ASEP with N particles on a ring of L sites. We label the particles by an index i = 1, ..., N, and denote by n_i the number of vacant sites in front of particle i. Show that in this representation the ASEP dynamics is of ZRP form and identify the corresponding rate function $\gamma(n)$. What is the meaning of the ASEP lattice size L in this context? Use the general result (2) to write down the stationary distribution of the 'gaps' n_i , and show that the same expression follows from the stationary Bernoulli measure of the ASEP.

²F. Spitzer, Adv. Math. **5**, 246 (1970); M.R. Evans, T. Hanney, J. Phys. A **38**, R195 (2005).