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Abstract

The movement of plankton, either by turbulent mixing or their own inherent motility, can be simulated in a Lagrangian
framework as a random walk. Validation of random walk simulations is essential. There is a continuum of mathematically valid
stochastic integration schemes upon which random walk simulations depend, each of which lead to radically different macro-scale
dynamics as expressed in their corresponding Fokker–Planck equations. In addition, diffusivity is not a unique parameter
describing a random walk and its corresponding Fokker–Planck equation. Spatially varying translation speed and turn frequency
have different effects on population distributions. Validation requires extra information either in the form of the well-mixed
condition for physical diffusion, or in detailed information on the sensing ability, internal state modulation and swimming response
for plankton motility.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Planktonic marine organisms are confronted by the
need to search for patchy and scarce resources in a
medium that is continually stirred by turbulence, and
that lends itself to relatively poor transmission of spatial
information. Two important components of their motion
through space, their quasi-random swimming behaviour
and their advection by turbulent motion, are both
diffusive-like processes that can be simulated for
individual plankters, at least in its simplest form, as a
random walk. Simulations of the relative motion of
planktonic organisms derived in this manner can lead for
instance to a mechanistic understanding of their
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encounter rates with each other and patchy distributions
of resources, as well as pointing to more complex
descriptions such as Levy walks (e.g. Klafter et al.,
1996, 2001; Viswanathan et al., 2001), fractional
random walks (e.g. Metzler and Klafter, 2000; Schmitt
and Seuront, 2001; Metzler and Klafter, 2004), or area-
restricted searches (e.g. Grünbaum, 2000; Hill et al.,
2000; Leising and Franks, 2002) that may better
simulate observed behaviours.

Lagrangian simulations and individual based models
(IBMs) are becoming increasingly widespread in
investigating marine processes, and provide a natural
platform upon which the interactions (oftentimes
nonlinear) of plankton with each other and their
environment can be modelled. The prevalence of afford-
able and powerful computing capacity has made this
approach not only feasible, but readily accessible. One
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Fig. 1. Examples of the motility of a marine copepod. (a) Discrete run-
tumble and (b) continuous random walk. In the discrete trajectory, the
re-orientation angle θi is uniformly random in n dimensions, and run
lengths Δi are exponentially distributed following the distribution of
tumble intervals τi. The continuous case can be seen in a similar
fashion where the trajectory is sampled at time intervals δi. This then
looks like a discrete run-tumble trajectory with a degree of correlation
between successive run directions.
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of the cornerstones of Lagrangian and individual based
models is the use of random walks to simulate diffusive-
like processes, and provide a transparent means of
modelling both turbulent dispersion (e.g. Yamazaki and
Kamykowski, 1991; Kamykowski et al., 1994; Franks
and Marra, 1994; Visser, 1997; Hannah et al., 1998) as
well as behavioural aspects of swimming (e.g. Davis
et al., 1991; Turchin, 1998; Flierl et al., 1999; Leising,
2001).

While random walk models are useful tools in
Lagrangian simulations, they also have a strong con-
ceptual appeal. In particular, one of the most powerful
aspects of random walks is that they connect the
kinematics of individual organisms at the micro-scale
with macro-scale dynamics of a population of like
organisms. Properties of individual motion can be related
directly to a continuum description of concentration
fields in advection–diffusion-like equations (more prop-
erly Fokker–Planck equations), the currency of tradi-
tional Eulerian based models.

Random walks are deceptively simple. That is, there
are any number of seemingly simple aspects of random
walks that can lead to unexpected results. With respect
to the implementation of random walk models in
simulating the Lagrangian aspects of the movement of
plankton, I will address the following points:

a) Random walk can be characterized by diffusivity.
b) Conversely, a diffusive process can be simulated by a

random walk.
c) Random walks so characterized and realized, equate

to a Fokker–Planck description of a probability
density function.

d) The form of the corresponding Fokker–Planck
description is determined by the axiomatic assump-
tion of the stochastic integration of the random walk
process.

e) Diffusivity is not a unique parameter governing all
aspects of the Fokker–Planck description of a spe-
cific random walk process.

f) An area-restricted search predicated on changing
rates of turning requires a memory, and can be for-
mulated in terms of an encounter modulated random
walk.

Points (a–c) are the simple aspects of random walks,
while points (d–f) are deceptive.

2. Random walk to diffusion and back again

A simple random walk of discrete, straight-line seg-
ments in n dimensions, interrupted by instantaneous
uniformly random reorientations (Fig. 1a), can be
characterized by an equivalent diffusivity

D ¼ 1
n
v2s ¼ 1

n
k2

s
ð1Þ

where v is the uniform speed at which the particle
(organism) travels, and τ is the mean intensity of
exponentially distributed reorientation events. That is,
the probability of reorienting in the time interval (t, t+δ) is
P(t, t+δ)=1−e−δ/τ. This diffusive limit is reached for time
scales t≫τ, (i.e. after a large number of run-tumble
cycles). There are a number of classic works that examine
this relationship (Chandrasekhar, 1943; Berg, 1992;
Okubo and Levin, 2001). While some planktonic organ-
isms exhibit run-tumble motility patterns (e.g. bacterial,
flagellates) others exhibit a more continuous and sinuous
trajectory (Fig. 1b). Taylor's analysis of continuous
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random walk (Taylor, 1921) examines both the ballistic
(tbτ) and diffusive (t≫τ) regimes, and provides a
reasonable model for a range of plankton motile
behaviours (Jakobsen et al., 2005; Visser and Kiørboe,
2006), as well as physical stirring by turbulence. The
analysis of a continuous randomwalk is similar to that of a
discrete run-tumble random walk with the additional
consideration of correlations between successive run
directions. It can be arrived at by sampling the continuous
trajectory at time intervals δ (Fig. 1b), and examining net
displacement properties in the limit as δ→0 (Taylor,
1921, see also Othmer et al., 1988). For the continuous
random walk, τ in Eq. (1) is the correlation time scale, and
can be related to the mean correlation between trajectory
directions (ϑ̂(t)) at time offsets δ, i.e.

̂#ðtÞd ̂#ðt þ dÞ
D E

¼ hcoshii ¼ w ð2Þ

as

s ¼ d=ð1� wÞ ð3Þ
so that diffusivity (or the random motility of organisms)
may be written as

D ¼ 1
n

v2d
1� w

ð4Þ

(Berg, 1992). In the above, as in what follows, 〈…〉
indicates the expectation value or ensemble average of the
enclosed expression— these are equivalent for an ergodic
process (Monin and Yaglom, 1975). Eq. (4) links the
micro-scale kinematics of the motion of individual
particles to the dynamics of a population of like particles.

Conversely, a diffusive process can be simulated by a
random walk. That is, given a diffusivity D, the trajec-
tory of individual particles, x(t), can be simulated as

xiþ1 ¼ xi þ ri
ffiffiffiffiffiffiffiffiffiffiffi
2nDd

p
ð5Þ

where xi=x(t= iδ), δ is a short time interval, and ri is a
random vector in n space such that the expectation value
of its moments satisfy 〈ri〉=0, 〈ri ·ri〉=1, and 〈ri ·rj〉=0
for i≠ j. From this, it can be readily shown that the
evolution of the variance (2nd moment) of the particle
distribution follows

ðxm � x0Þ2
D E

¼ 2nDt ð6Þ

where t=mδ. That is, variance increases linearly with
time — a characteristic of a diffusive process. In fact,
Eq. (6) can serve as a definition of diffusivity D, it is 1/
(2n) times the rate of change of variance of a particle
distribution (Taylor, 1921).
3. Relating a random walk to a Fokker–Planck
equation

3.1. Random walk as a stochastic integral

A random walk characterized and realized in terms of
diffusivity equates to the Fokker–Planck equation in the
continuum. That is, if the position x of a particle exe-
cuting a random walk is governed in n dimensions by

xiþ1 ¼ xi þ uðxiÞdþ ri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nDðxiÞd

p
ð7Þ

then in the long time limit (t≫δ), the evolution of the
probability density function (or concentration) is
described by

Ap
At

¼ �jd ðupÞ þj2ðDpÞ ð8Þ

For the 3 dimensional case, p(x, y, z, t) dx dy dz dt is
the probability of finding the particle within a small
volume of space [x+dx, y±dy, z±dz] in a small time
interval [t, t+dt], although p can also be interpreted as
the concentration of a population of like random
walkers, provided they do not interact with each other.
For generality, an advection velocity u is included. This
result, i.e. Eq. (7)⇒Eq. (8) is well known and its
derivation can be found in a number of places (e.g.
Chapman, 1928; Skellam, 1951; Patlak, 1953; Lapidus
and Levandowsky, 1981; Turchin, 1998; Okubo and
Levin, 2001).

An important point to note is that Eq. (8) is not the
advection–diffusion equation. It contains an effective
additional advective term, ∇· ( p∇D), transporting
particles down gradients of diffusivity. A consequence
of this is that at steady state, p∝D−1. That is, random
walking particles following a trajectory defined by
Eq. (7) will aggregate in regions where diffusivity is
low. For physical diffusion, (e.g. turbulent diffusion)
this is deemed non-physical, violating the well-mixed
condition (Thomson, 1987; Sawford, 2001) and neces-
sitating a “correction” term (Hunter et al., 1993; Visser,
1997). For behavioural diffusivity (motility), the well-
mixed condition need not apply, as the organisms in-
volved have internal energy reserves that can be utilized
to decrease entropy. Indeed, one of the best studied
motility mediated aggregative effects, the “chemotaxis”
of bacteria (any directed motion towards or away from
chemicals, regardless of underlying mechanism, Schnit-
zer et al., 1990), is often explained in terms of a kinetic
response of an increased turn rate (klinokinesis) in
regions of high chemical concentration (Berg and
Brown, 1977). In this interpretation the macroscale
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phenomenon of chemotaxis (a movement along a chem-
ical gradient) is achieved even though the organisms
involved have no knowledge of the gradient itself
(cf Lapidus and Levandowsky, 1981). For physical
diffusion (i.e. molecular and turbulent), aggregation
does not occur. For instance, salt does not accumulate in
the thermocline where turbulent diffusivity is low and
neither should passively drifting particles; at least not
through this mechanism. Since Lagrangian simulation
may very well rely on similar random walk descriptions
for both behavioural and physical aspects of planktonic
motion, it is of some concern to identify where and why
a correction term should be used and where it shouldn't.

In the following, I will examine the origin of the
“correction” term, and outline how it relates to the axiom-
atic conditions inherent in stochastic integration.While in
general, the problem is 3 dimensional, for simplicity I
examine only the 1 dimensional case in what follows, and
note that results so obtained can be projected into 3
dimensions by considering the superposition of 1 dimen-
sional solutions onto 3 independent coordinates.

Consider a 1 dimensional stochastic trajectory where
particle positions, x(t), evolve according to

xðt þ DtÞ � xðtÞ ¼ uDt þ kDg ð9Þ
Here Δt is a small time step and Δη is a Wiener

process such that 〈Δη〉=0 and 〈(Δη)2〉=Δt (Gardiner,
1985) This is a discretization of the stochastic differ-
ential equation

dx ¼ u dt þ kdg ð10Þ
where u and λ are respectively the drift and intensity of
the stochastic process. Given this process, it is easily
shown that in terms of the ensemble average of position
statistics, the drift parameter u is given by

u ¼ lim
DtY0

xðt þ DtÞ � xðtÞh i
Dt

ð11Þ

That is, u is the time rate of change of the 1st moment
of the evolving probability density function. Likewise,
the intensity parameter λ is given by

k2 ¼ lim
DtY0

ðxðt þ DtÞ � xðtÞÞ2
D E

Dt
ð12Þ

corresponding to the time rate of change of the 2nd
moment of the evolving probability density function.
Thus, the intensity can be related to diffusivity D
(cf. Eq. (6)) as

k ¼
ffiffiffiffiffiffiffiffiffi
2nD

p
ð13Þ
where we include n as the number of dimensions for
generality, although herein we set n=1. It can be shown
that the continuum equation – the Fokker Planck
equation – describing the time evolution of the prob-
ability density function (or concentration) for particles
following this general random walk process can be
written as

Ap
At

¼ � A

Ax
ðupÞ þ A

2

Ax2
ðDpÞ ð14Þ

(cf Okubo, 1980 p145 to 147), and is examined further in
what follows. This is quite general, and takes into account
the possibility that u and/or D (and thus λ) can vary
spatially.

The drift term, u, in the above can be any function. A
particularly revealing case is when this term is set to

u ¼ a
AD
Ax

ð15Þ

and where α is a factor between 0 and 1. In this case, the
corresponding Fokker Planck equation becomes

Ap
At

¼ ð1� aÞ A

Ax
p
AD
Ax

� �
þ A

Ax
D
Ap
Ax

� �
ð16Þ

Thus, when α=0, we have

Ap
At

¼ A

Ax
p
AD
Ax

� �
þ A

Ax
D
Ap
Ax

� �
¼ A

2

Ax2
ðpDÞ ð17Þ

which leads to aggregation in regions of low D, whereas
when α=1, we have

Ap
At

¼ A

Ax
D
Ap
Ax

� �
ð18Þ

which is pure diffusion, and leads to no aggregation.
The interpretation of α can be got by examining the

relationship

xðt þ DtÞ � xðtÞ ¼ n ¼ kðxþ anÞDg
This is simply Eq. (9) where 1) the explicit drift term is

dropped and 2) the intensity of the stochastic process is
evaluated not at the start of each excursion, but at a point
between the start and end locations. This is sketched in
Fig. 2. A Taylor expansion about x thus leads to

xðt þ DtÞ � xðtÞ ¼ n ¼ kðxÞDgþ an
Ak
Ax

Dg

¼ kðxÞDgþ ak
Ak
Ax

Dt

¼ kðxÞDgþ a
AD
Ax

Dt

ð19Þ



Fig. 2. Intensity λ of the stochastic integral (random walk) is evaluated
at a fractional position a between the start and end of a run.

Fig. 3. Sketch of Chapman–Kolmogorov arrivals for spatially varying
jump lengths. Arrival of random walkers at x±dx is determined by the
Itô stochastic integral. Departure intervals dx± scale with jump
lengths ξ±.
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Thus, evaluating the intensity of the stochastic process at
a position x+αξ with no drift, is equivalent to evaluating
the intensity at a position x (start position) and adding a
drift velocity u=α∂D/∂x. The corresponding Fokker
Planck equation is Eq. (16) which leads to a pure
diffusive process when α=1, that is when the intensity of
the stochastic process is approximated by that at the end
point of each excursion.

At this stage, a couple of points should be noted.
Firstly, on the sliding scale, α=0 corresponds to Itô
stochastic integration where as α=1/2 corresponds to
Stratonovich stochastic integration. There is no formal
name for the integration scheme that arises out of α=1,
so we will term it Transport stochastic integration.
Secondly, all integration schemes for αN0 remain
technically Markov processes as in practice they use
only information at the start of each run.

In contrast to the above development, Okubo, 1986)
(see also Skellam, 1973; Okubo and Levin, 2001)
appears to derive a result that predicts that the pure
diffusive case is given when the intensity is evaluated
half way between start and end points — that is for the
Stratonovich stochastic integration (Yamazaki et al.,
2002). Thus there is an apparent inconsistency between
the above analysis and that of Okubo. A closer
examination however reveals that Okubo's derivation
assumes a priori that all jump lengths have the same
variance for equal time intervals, and that spatial
variation of diffusivity arises only when the pause
time (i.e. the probability of not moving) is a function of
space. This is quite a different type of stochastic process
from that described in Eq. (9). Here the probability of
not moving is zero, and the variance of jump lengths
changes in space for a given time step — depending on
spatial gradients of the intensity λ(x) for instance. In
what follows, we will examine a derivation of the
Fokker–Planck equation corresponding to Eq. (9) where
explicit spatial variation or jump lengths are taken into
account.

3.2. Fokker–Planck equation for spatially variable
jump lengths: Itô integration

The Chapman–Kolmogorov master equation for a
one dimensional stochastic jump process corresponding
to Eq. (9) with u=0, can be written as

pðx; t þ DtÞdx ¼ 1
2
pðx� n�; tÞdx�

þ 1
2
pðxþ nþ; tÞdxþ

ð20Þ

where

n� ¼ kðx� n�ÞjDgj
nþ ¼ kðxþ nþÞjDgj ð21Þ

This relates the probability of a particle being at x at
time t+Δt to where it must have come from at time t.
Given equal probability of moving left or right, half must
have arrived from x−ξ−, and the other half from x+ξ+

(cf. Fig. 3). Here, the jump length can vary in space as
would arise when the intensity of the stochastic process is
a spatial variable. p(x,t) is the probability density function
of finding particles in a small region x±dx in a time
interval t±dt. It should be noted that because the jump
lengths are variable, particles arriving at x±dx will have
originated from different spatial intervals depending on
the local intensity at their point of departure. For instance,
if intensity increases to the right, particles arriving in
the interval x±dx from the left will have initially been
in the interval (x−ξ−)±dx− where dx− bdx. Thus the
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distinction between dx, dx− and dx+ in Eq. (20). ATaylor
expansion of Eq. (21) about x leads to:

n� ¼ kðxÞjDgj � 1
2
Ak2

Ax
jDgj2 þ O jDgj3

� �
¼ kðxÞjDgj � AD

Ax
Dt þ O jDgj3

� �

nþ ¼ kðxÞjDgj þ 1

2

Ak2

Ax
jDgj2 þ O jDgj3

� �
¼ kðxÞjDgj þ AD

Ax
Dt þ O jDgj3

� �
ð22Þ

from which we can derive

dx� ¼ dðx� n�Þ ¼ dx 1� Ak
Ax

jDgj þ A
2D
Ax2

Dt

� �
þ O jDgj3

� �
dxþ ¼ dðxþ nþÞ ¼ dx 1þ Ak

Ax
jDgj þ A

2D
Ax2

Dt

� �
þ O jDgj3

� �
ð23Þ

Thus, to O(|Δη|3),

pðx; t þ DtÞ ¼ pðx; tÞ þ Dt
Ap
At

¼ 1

2
pðx; tÞ � n�

Ap

Ax
þ ðn�Þ2

2

A
2p

Ax2

 !
1� Ak

Ax
jDgj þ A

2D

Ax2
Dt

� �

þ 1
2

pðx; tÞ þ nþ
Ap
Ax

þ ðnþÞ2
2

A
2p

Ax2

 !
1þ Ak

Ax
jDgj þ A

2D
Ax2

Dt

� �

¼ pðx; tÞ 1þ A
2D

Ax2
Dt

� �
þ nþ � n�

2

Ap

Ax

þ nþ þ n�

2
Ak
Ax

jDgj Ap
Ax

þ ðnþÞ2 þ ðn�Þ2
4

A
2p

Ax2

ð24Þ

Noting the following identities derived from Eq. (22):

nþ � n�

2
¼ AD

Ax
Dt

nþ þ n�

2

Ak
Ax

jDgj ¼ k
Ak
Ax

Dt ¼ AD

Ax
Dt

ðnþÞ2 þ ðn�Þ2
4

¼ 1
2
k2Dt ¼ DDt

ð25Þ

Eq. (24) reduces to

Ap
At

¼ p
A
2D
Ax2

þ 2
AD
Ax

Ap
Ax

þ D
A
2p

Ax2
ð26Þ

or in simplified form

Ap
At

¼ A
2

Ax2
ðDpÞ ð27Þ

This is the same as Eq. (16) for α=0.
3.3. Fokker–Planck equation for spatially variable
jump lengths: General stochastic integration

We can go through the whole exercise again, this time
evaluating the displacements not at the point of departure,
but at a location somewhere between the start point and the
end point (Fig. 4). If we take α as the ratio of the position
of evaluation to the total displacement, then we can write

n� ¼ kðx� ð1� aÞn�ÞjDgj
nþ ¼ kðxþ ð1� aÞnþÞjDgj ð28Þ

which can be evaluated via a Taylor expansion as

n� ¼ kðxÞjDgj � ð1� aÞAD
Ax

Dt þ O jDgj3
� �

nþ ¼ kðxÞjDgj þ ð1� aÞAD
Ax

Dt þ O jDgj3
� � ð29Þ

and lead to

dx� ¼ dx 1� Ak
Ax

jDgj þ ð1� aÞ A
2D
Ax2

Dt

� �
þ O jDgj3

� �

dxþ ¼ dx 1þ Ak
Ax

jDgj þ ð1� aÞ A
2D
Ax2

Dt

� �
þ O jDgj3

� �
ð30Þ

The corresponding equation governing the evolution
of the probability density function is then given by

pðx; t þ DtÞ ¼ pðx; tÞ þ Dt
Ap
At

¼ 1
2

pðx; tÞ � n�
Ap
Ax

þ ðn�Þ2
2

A
2p

Ax2

 !
1� Ak

Ax
jDgj þ ð1� aÞA

2D
Ax2

Dt

� �

þ 1
2

pðx; tÞ þ nþ
Ap
Ax

þ ðnþÞ2
2

A
2p

Ax2

 !
1þ Ak

Ax
jDgjþð1�aÞA

2D
Ax2

Dt

� �

¼ pðx; tÞ 1þ ð1� aÞA
2D

Ax2
Dt

� �
þ nþ � n�

2
þ nþ þ n�

2

Ak
Ax

jDgj
� �

�Ap
Ax

þ nþ
� �2þ n�ð Þ2

4
A
2p

Ax2 ð31Þ

where from Eq. (29) the identities involving ξ− and ξ+

are given by

nþ � n�

2
¼ ð1� aÞAD

Ax
Dt

nþ þ n�

2
Ak
Ax

jDgj ¼ k
Ak
Ax

Dt ¼ AD
Ax

Dt

nþ
� �2þðn�Þ2

4
¼ 1

2
k2Dt ¼ DDt

ð32Þ

Thus, substituting and arranging terms

Ap
At

¼ ð1� aÞpA
2D
Ax2

þ ð2� aÞAD
Ax

Ap
Ax

þ D
A
2p

Ax2
ð33Þ

This can be recast as

Ap
At

¼ A

Ax
D
Ap
Ax

� �
þ ð1� aÞ A

Ax
p
AD
Ax

� �
ð34Þ

which is equivalent to Eq. (16).



Fig. 4. Sketch of Chapman–Kolmogorov arrivals for variable jump
lengths. Arrival of random walkers at a location are determined by the
general α stochastic integral.
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These results are verified numerically in Fig. 5.
Specifically, a spatially varying diffusivity of the form
D=a0+a1 x

2 is chosen (a0=10
−3 cm2/s, a1=10

−3 s−1),
similar in form to that used byYamazaki andNagai (2005),
and a random walk of the form

xiþ1 ¼ xi þ riþ1

ffiffiffiffiffiffiffiffiffi
6Dd

p
þ a

AD
Ax

d ð35Þ

implemented, and where α is assigned the values 1, 1/2
and 0 respectively. ri is a random variable, uniformly
distributed between −1 and 1, thus with variance 1/3. The
simulation time step is δ=1 s. The distribution of random
walking particles is plotted for each of these cases after 4 h
of simulated time, and compare favourably with the
theoretical distributions predicted by the steady state
solution of Eq. (34) viz. p∝D−(1−α). That is, α=1
maintains a uniform distribution, while aggregation
becomes progressively more pronounced for α=1/2 and
Fig. 5. Numerical experiment results for random walking particles following
3 s time steps and the particle concentration after 4 h plotted (symbols). The th
indicated by the line.
α=0, and is consistent with the model of Yamazaki and
Nagai (2005).

There is something quite remarkable about these
results; namely that the evaluation of the stochastic
integral is strongly dependent on where the integrand is
evaluatedwithin a small interval— even in the limit as the
interval tends to zero!! This is a phenomenon not
encountered in ordinary integration and arises because
of the nature of the stochastic process: a small change in
interval Δt corresponds to a change in integrand
proportional to (Δt)1/2 becoming comparatively more
important as Δt→0. From a practical point of view, this
means that whenever a stochastic integration is preformed
(e.g. a random walk implementation) the axiomatic
assumption of the integration scheme, whether Itô,
Stratonovich or any one of the α-integration scheme
continuum, pre-determines the nature of the solution.
There is nothing in the mathematical formalism that
promotes one specific α-integration scheme over another.

In this interpretation, the correction term introduced to
maintain the well-mixed condition in random walk
simulations of physical diffusion (Hunter et al., 1993;
Visser, 1997) is simply transforming from the Itô
stochastic integral (α=0) to the Transport integral
(α=1); that is, transforming to a stochastic integration
scheme that is consistent with physical diffusion.
Mathematical rigour cannot be used to distinguish one
form the other. Model validation can only come from
additional information such as the macroscopic distribu-
tion of particles (e.g. is the well-mixed condition met?) or
Eq. (35) for α=1, 1/2 and 0 respectively. 10,000 particles are tracked at
eoretical distribution predicted by the steady state solution of Eq. (34) is
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a microscopic analysis of organisms' behaviour (e.g. does
translocation exhibit a directional bias?).

4. Decomposition of diffusivity

Thus, it appears to be a straightforward chain of
reasoning from a random walk to diffusivity to the
corresponding Fokker–Planck equation and so to advec-
tion–diffusion–reaction, and population level descrip-
tions of spatial and temporal distribution patterns.
However, D is a compound parameter, depending on 2
microscale variables; speed and correlation time scale (or
correlation length scale). The same spatial variation of
diffusivity can be achieved by varying either speed, or
timescale, or both. Despite seemingly flawless arguments
outlined above (i.e. points (a) to (c) from the introduction),
these do not yield the same macroscopic, Fokker–Planck
description (Schnitzer, 1993; Visser and Thygesen, 2003).
Indeed, we can simulate the random walk not via Eq. (5)
or Eq. (7), but at a more fundamental level as:

• At each time step δ, an angle θi is select from a
normal distribution with mean 〈θ(x)〉=0 and variance
〈θ(x)2〉=σ(x). Note that the variance may be a func-
tion of position.

• The angle of motion ϕ is updated; ϕi+1=ϕi+θi
• The particle position is updated; xi+1=xi+ν (xi) δφ̂i+1

where φ̂i+1 is the unit vector in the direction defined
by ϕi+1.

For a normal distribution of angles, the probability of
a specific angle laying in the interval [θ,θ+dθ] is

Pðh; hþ dhÞ ¼ dh

r
ffiffiffiffiffiffi
2p

p e�h2=ð2rÞ

and 〈cosθ〉=e−σ/2 =ψ (cf Eq. (2)). Thus the correlation
time scale (cf Eq. (3)) can be related to the variance of
the turn angle at time lag δ as

rðxÞ ¼ 2ln
sðxÞ

sðxÞ � d

� �

In regions where the correlation time scale is large,
the angular variance is small; particles tend to travel in
long straight paths. Conversely, where this time scale is
small, the angular variance is large; particles tend to
travel in convoluted paths. Within the above formula-
tion, the correlation time scale (klinokinesis), and the
speed of swimming (orthokinesis) can be adjusted
independently, in response to an environmental cue.

While this problem can be approached analytically, it is
extremely useful to model such processes numerically.
Such models can be written in a couple of lines of code,
run quickly, and can be used to verify the macro-scale
effects of particular random walk implementations —
effects that may be hidden in rigorous but impenetrable
mathematical analysis. In Fig. 6 the results of such amodel
are presented. This represents, for instance, a vertical slice
through a thin layer, wherein motile organisms change
their local diffusivity by changing either (a) their
correlation time scale (klinokinesis), or (b) their swim-
ming speed (orthokinesis). 10,000 particles execute a
vertical random walk with speed v(z) and correlation time
scale τ(z). The simulation covers a 2 m vertical section of
the water column with a 20 cm thin layer wherein
organisms (i.e. particles) change their turning frequency or
swimming speed. For (a), τ(z)=15 s outside and 1.5 s
inside the thin layer while v(z)=1 cm/s throughout the
whole simulated region. For (b), v(z)=1 cm/s outside and
0.316 cm/s inside the thin layer, while τ(z)=15 s through-
out the whole simulation. In both cases, diffusivity (i.e.
that due to motility, Fig. 6c) has the same variation across
the thin layer. The simulation time is 1 hour, after which
the klinokinesis case (a) is still homogeneous while the
orthokinesis case (b) displays a significant increase in
concentration within the thin layer. It is apparent is that the
effect of variable swimming speed leads to aggregation
while variable turn frequency does not — even though
their contribution to variable diffusivity,D(z)=v(z)2 τ(z) /n
is equivalent.

By carefully considering the transition probabilities
and the Chapman–Kolmogorov master equation, the
corresponding Fokker–Planck continuum description is

Ap
At

¼ 1
n
jðvsdjðvpÞÞ ð36Þ

(Visser and Thygesen, 2003). Thus, at steady state, p∝1/
v∝D−1/2, and is independent of correlation time scale.
Note that in the example in Fig. 5b themean concentration
ratio (Ci/Co)=3.19 compares favourably with the diffu-
sivity ratio (Di/Do)

−1/2 =3.16. While this example is for a
continuous random walk parameterized in terms of
correlation time scale, an identical result is found for
continuous run-tumble random walks parameterized in
terms of turn frequency (Visser and Thygesen, 2003).

This result is somewhat surprising as klinokinesis is
most often identified as the mechanism responsible for
chemotaxis in bacteria (Keller and Segel, 1971) and prey-
taxis in insects (Kareiva and Odell, 1987). The above is
for a random walk where information is continually
collected by the organism, and acted on immediately. That
is, the organism's behaviour and the cue that triggered it
are exactly spatially correlated. On the other hand, if the
organism acts only on information at the start of each run



Fig. 6. Numerical experiment results. Spatially variable random walk where diffusivity (c) has the same profile, but where variable correlation time
scale (a: klinokinesis) and translational speed (b: orthokinesis) are examined separately. 10,000 particles are tracked at 1 s time steps. Reflecting
boundary conditions are applied at the surface and bottom while periodic boundaries are applied at the sides. The frequency distribution is calculated
in 2 cm bins; the symbols giving the distribution at the last time step (after 1 h simulated time), and the solid line giving mean distribution per bin over
the previous 1/2 h.
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(i.e. when a tumble occurs), the governing Fokker–Planck
equation becomes

Ap
At

¼ 1
n
j2ðv2s pÞ ð37Þ

(Visser and Thygesen, 2003). This corresponds to the
commonly used random walk Eq. (7) and its associated
continuum description Eq. (8), and leads to aggregation
for both ortho- and klinokinesis. In this case, the
organism's behaviour and the cue that triggers it become
uncorrelated. That is, at a fixed location, organisms that
are observed there can exhibit behaviours that have been
triggered by non-local cues.

There are 2 points to be made here. Firstly, diffusivity
is a single parameter describing how the local variance of
a random walk increases with time. However, it is a
composite parameter and in itself does not uniquely
describe all relevant aspects of the macro-scale proper-
ties of the randomwalk.Whether there is a spatial change
in speed or tumble rate makes a difference, even if the
spatial variation of diffusivity is the same. Secondly, how
spatial information is acted upon also matters. For the
behavioural factors governing random walk motility,
instantaneous and continual responses to spatial infor-
mation are apparently less efficient in aggregating
organisms than responding periodically or with a time
delay.

5. Area-restricted search

For planktonic organisms, the rate at which they
encounter other organisms (prey, predators, andmates) is a
key determinant in governing the rates of fundamental life
processes (growth, mortality, and reproduction). More-
over, the distribution of resources (e.g. food organisms) is
patchy. Area-restricted search is a foraging strategy
characterized by a time dependent reduction in the turning
frequency after the last resource has been located (e.g.
Tinbergen et al., 1967; Leising and Franks, 2002). This
strategy prolongs the time spent in areas of high resource
abundance, and extends the search in regions where
resources are scarce.

The criterion of a time dependent reduction in turn rate
is important. As we saw in the previous section an im-
mediate reduction in turn rate yields no aggregation.
Inherent in the idea of an area-restricted search is the
supposition that organisms have some memory of their
recently sampled environment (e.g. Berg and Brown,
1977; Grünbaum, 1999, 2000). For instance, a bacterium
travelling along a chemical gradient can compare the local
chemical concentration to that sampled some time before.



Fig. 7. Encounter modulated random walk. The transition from fast to
slow is initiated by an encounter. The transition form slow to fast is a
constant time interval T after the most recent encounter. Encounter
times te are shown as filled circles, while te+T are shown a blank
circles.

Fig. 8. Trajectory of an encounter modulated random walk. Particle
starts at (0,0), and encounters are indicated by open circles. The
correlation time scale for the fast and slow state are 10 and 2 s
respectively, while the transition time is 50 s. Encounter rate is
0.01 s−1.
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In this way, the bacterium can tell if its present motion is in
a favourable direction or not. In other instances, organisms
may not have a continuum cue, but rather rely on episodic
events such as the encounter with a prey organism. In this
case the pertinent parameter may be how long it has been
since the last food particle was encountered. Any number
of biochemical processes could provide a “clock” by
which the time elapsed since an event can be measured
(e.g. the decay of a chemical impulse initiated by an
encounter).

An area-restricted search can be achieved via an
encounter modulated random walk. That is, an organism
remains in a slow-diffusion state for a period T following
an encounter, before transiting to a fast-diffusion state.
This transition from fast to slow diffusion and back again
is illustrated in Fig. 7. We would expect that the relative
proportion of time spent in one state versus the other
depends on the ratio of the switching time T, to the mean
time between encounters.

An encounter modulated random walk shares some
characteristics of Levy walks, in that convoluted trajec-
tories are interspersed periodicallywith long runs (Schmitt
and Seuront, 2001; Schmitt et al., 2006). Fig. 8 shows an
example path in 2 dimensions, where increased turning is
initiated by contact with a prey item. The encounter
modulated random walk has a conceptual advantage over
a Levy walk proper in that a relatively simple biological
mechanism can used tomodel the transition fromone state
to another— a mechanism that does not rely a long term
“memory” integrating all past events.

Observational evidence at the macroscopic scale in-
dicates that organisms can react to prey or solutes (Buskey
and Stoecker, 1988; Fenchel and Blackburn, 1999;
Bartumeus et al., 2003) and aggregate on thin layers —
an ability observed for both copepods (Tiselius, 1992;
Woodson et al., 2005) and ciliates (Menden-Deuer and
Grünbaum, 2006). In many instances, behavioural shifts
appear to be associated with direct prey contact. The
behavioural shifts themselves take the form of either
orthokinesis or klinokinesis. In some cases where ag-
gregation is documented, organisms speed up in thin
layers, a behaviour that acts against aggregation. It is
therefore of some interest to explore whether an encounter
modulated random walk expressed in terms of klinokin-
esis only, can lead to aggregation of organisms in favoured
regions, supporting an area restricted foraging strategy.

The probability of encountering prey in a short time
interval δ is

Pencðt; t þ dÞ ¼ 1� e�Zd ð38Þ

where Z(x) is the encounter rate of the predator ( j) on
the prey (i), and can be formulated as

Z ¼ pCiR
2
ijðu2i þ u2j þ 2w2Þ1=2 ð39Þ

(Evans, 1989)Here, Ci is the prey concentration, Rij is
the distance at which the organism can detect a prey, ui
and uj are the swimming velocities of the predator and
prey respectively, and w is the turbulent velocity scale at
the detection distance Rij (Visser and MacKenzie, 1998).
For a given situation, encounter rate increases with prey
concentration, and it is this that wewill primarily focus on
here. However, it should be noted that encounter rate can
also vary due to different levels of turbulence, or changes
in prey swimming behaviour.

To illustrate the macro-scale effects of encounter mod-
ulated random walks, a numerical simulation is presented



Fig. 9. Encounter modulated klinokinesis in a thin layer. (a) Profile of encounter rate, Z. (b) Vertical profile of particle concentration; symbols show
concentration after 1 h of simulation time, while the solid line is the mean concentration over the last 1/2 h of simulation. (c) The probability of a
particle being in the slow state as a function of depth; symbols show mean probability over the last 1/2 h of simulation while solid line gives
theoretical curve; p(slow)=1−e−ZT.
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in Fig. 9. The rate at which organisms encounter prey
(Fig. 9.a) is proportional to the prey concentration
distributed in a thin layer. Motility parameters are the
same as for the klinokinesis case in the previous section
(i.e. τ(z)=15 s outside, 1.5 s inside the thin layer and v(z)=
1 cm/s uniform throughout). The switching time is T=10 s.
An initially uniform distribution of 105 particles is tracked
at 1 sec intervals for 1 hour. It appears that an encounter
modulated klinokinesis can lead to aggregation of organ-
isms in regions of high encounter rate (Fig. 9b). This is in
contrast with a spatially varying klinokinesis with no
memory (Fig. 6a) which leads to no aggregation and
presumably does not increase foraging efficiency. Al-
though a full analysis of the encounter modulated random
walk is beyond the scope of this work, it appears that the
steady state particle distribution (Fig. 9b) appears to follow
the profile of the probability that the particle is in the slow
diffusion state (Fig. 9c).

6. Conclusions

Random walk simulations and their associated
Fokker–Planck equations provide a well founded path
coupling micro-scale, individual-based, Lagrangian as-
pects of plankton motion to their macro-scale, Eulerian
descriptions of population-level distributions. This
approach can be used to examine both physical aspects
of turbulent diffusion, and well as the quasi-random as-
pects of plankton's motility behaviour. There are how-
ever important and subtle validation issues that must be
addressed.

The integration of a stochastic process – randomwalks
and random flights being examples – requires an
axiomatic decision. That is, for a specific stochastic
process continuous in time, the choice of integration
scheme used – whether Itô, Stratonovich or any of the
continuum of α-integration schemes – directly effects the
outcome of the integration. The choice of integration
schememust be validated. This requires extra information
over and above the statistical properties of the random
walk (e.g. diffusivity).

The recommendation for physical diffusion comes
from thermodynamics — that a diffusive process cannot
unmix a uniformly random particle distribution. This is
the well mixed condition (Thomson, 1987). Any random
walk simulation of physical diffusion that violates this
condition cannot be validated. The stochastic integration
scheme that is consistent with this criterion is the
Transport stochastic integral (α=1).

For behavioural motility, the choice of integration
scheme is more complex. The well mixed condition need
not apply. What is required is a detailed – or at least
credible – understanding of how the organism senses its
immediate environment, the internal processes through
which this information is modulated, and the behavioural
responses these trigger. The recommended integration
scheme for a biologically mediated random walk, in the
absence of other information, is the Itô stochastic integral
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(α=0). There is, however a strong rider on this recom-
mendation, namely, that organisms can “choose” their
speed and turning rate depending not only on local
conditions, but also their internal state. That is, the history
of the organism also plays a role in its random walk
characteristics and hence its spatial distribution. It is
highly recommended that when detailed behavioural
responses are known, simple numerical experiments
should be conducted to verify that the appropriate
Fokker–Planck equation is used to describe the distribu-
tion dynamics at the population level.
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