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The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically.
Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above
and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on
large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has
different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a
reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to
antiferromagnetic quantum spin chains and multiferroics are discussed.
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Introduction.—Landau theory describes phase transi-
tions accompanied by a loss of symmetry. Strong fluctua-
tions lead either to non-mean-field critical behavior or
first order transition [1]. The situation is by far less clear in
frustrated systems, where discrete and continuous sym-
metries can be broken simultaneously. Villain, in a seminal
work [2], showed that in helical magnets, in addition to the
magnetic order, there exists a second, chiral order param-
eter related to the mutual spin orientation on neighboring
sites

κ ¼ hSi × Siþx̂i: (1)

It soon became clear that many other—interaction or lattice
frustrated—models exhibit this type of order as well
(see [3–5] for reviews).
The considerations in the present article are restricted to

helical magnets for three reasons: (i) they are interesting
because of their possible applications as multiferroics [6,7],
(ii) they are sufficiently simple to allow controlled ana-
lytical approaches, but (iii) still give a rich phase diagram
(see Fig. 1).
Villain [8] considered a system of XY spins with

competing nearest- and next-nearest-neighbor interaction
along the x̂ axis, which gives rise to helical order with
κ ¼ �κx̂. Below we use this helical XY (HXY) model as a
prototype model of frustrated spin systems. It describes
likewise frustrated quantum spin chains at zero temper-
ature, which can be mapped to 1þ 1-dimensional classical
spin models, provided the spin S is large enough [9].
Using mean-field analysis, Villain [8] found a chirally

ordered phase above the transition where magnetic order
disappears. Whereas in three dimensions more sophisti-
cated renormalization group (RG) methods indicate the
existence of a single transition [10], the situation is
significantly more complicated in two dimensions.

Here the condensation of topological defects as vortices
and domain walls are expected to be relevant mechanisms.
Garel and Doniach [11] mapped the HXY model to two
coupled XY models, resulting in a phase diagram with the
chiral transition below the magnetic transition, in contrast
to [8]. However, their mapping procedure is doubtful (see
[12]). Okwamoto [13] used a self-consistent harmonic
approximation (SCHA), which yields a phase diagram of
the same topology as in [11], but the dependence of the
transition lines on the pitch of the helix is different.
Kolezhuk used simple estimates for the energy of the
topological defects in a 1þ 1-dimensional quantum spin
chain to find an Onsager-like chiral transition above the XY
transition, tacitly assuming that the Ising order parameter
has a standard local Hamiltonian [12]. Most of the
analytical work on quantum spin chains is restricted to
the S ¼ 1=2 case, where the mapping to our classical model
is questionable, or to parameter regions far from those
considered in this Letter [14,15].

0.30 0.35 0.40 0.45

0.1

0.2

0.3

0.4

0.5

K0
1

helical quasimagnet

paramagnet Kc
1

KKT
1

helical spin liquid

KKT
1

quasi FM

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0
T s

KKT
1 Kc

1
Tp,c

Tp,KT

Tp,c

quantum critical region

FIG. 1 (color online). Left panel: Phase diagram of the HXY
model as a function of K2=K0, calculated from (18). The bold
lines mark the BKT transition, the dashed line marks the chiral
transition. Right panel: Quantum critical regions, T > Tp;c for
the chiral and T > Tp;KT for the magnetic transition, respectively,
of a frustrated quantum spin chain. The thick arrow denotes the
parameter region accessible in GdðhfacÞ3NITiPr.

PRL 112, 157201 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

0031-9007=14=112(15)=157201(5) 157201-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.157201
http://dx.doi.org/10.1103/PhysRevLett.112.157201
http://dx.doi.org/10.1103/PhysRevLett.112.157201
http://dx.doi.org/10.1103/PhysRevLett.112.157201


Different numerical approaches have been used as well.
Hikihara et al. [16] considered a spin-1 chain using density
matrix RG and obtained, depending on frustration, gapped
and gapless chiral phases. These correspond in the 2D
classical case to magnetically disordered and quasi-long-
range ordered phases, respectively. In extended Monte
Carlo studies on the 2D classical HXY model, Cinti et al.
[17] and Sorokin and Syromyatnikov [18] found transition
lines and critical exponents. However, they used an
inappropriate finite size scaling analysis [19] which does
not take into account the strong anisotropy of systems
near the Lifshitz point. As it was shown in [20,21] such
anisotropy requires a strong modification of the scaling
analysis. Nevertheless, it is possible to extract from their
raw data exponents which turn out to be close to ours
(see below).
The new features we have found in this model, which

distinguish our work from all preceding literature are the
following. (i) The nonlocality of the chiral order fluctua-
tions leading to strong modifications of its critical behavior
in comparison to 2D Ising model possessing the same
symmetry. (ii) The strong anisotropy of the model leading
to different scaling behavior in different direction, as
known from Lifshitz points. (iii) The anomalous large
core of the vortices leads to strong modification of the
vortex fugacity.
Our investigation reveals a remarkable simple picture. In

the helical ground state both U(1) and parity symmetry are
broken. With the degeneracy space SOð2Þ × Z2, relevant
excitations are spin waves, vortices, and domain walls.
Generically, domain walls consist of a regular array of
magnetic vortices [22]. At low temperatures spin waves
reduce the magnetic order to quasi-long-range (algebraic)
order. Spin wave interaction on scales small compared to
the chiral correlation length ξ results in nonclassical critical
exponents at the chiral transition. Vortices on these scales
do not interact. On scales larger than ξ the role of spin
waves and vortices interchanges: spin wave interaction
becomes irrelevant, whereas the vortex interaction is
logarithmic. Reduction of the chiral order at increasing
temperatures lowers the energy of vortices, resulting in
the Berezinskii-Kosterlitz-Thouless (BKT) transition [1]
before the chiral transition takes place. Both phases exhibit
a nonzero vector chirality (1). Close to the Lifshitz point
there appears a reentrant transition to a quasiferromagnetic
phase (see Fig. 1).
The model.—In this Letter we will consider the classical

anisotropic XY model on a square lattice [23]

H̄ ¼ −
X

i

ðK0SiSiþx̂ þ K1SiSiþŷ − K2SiSiþ2x̂Þ: (2)

Here, Kn ¼ Jn=T, K1, K2 > 0, x̂, ŷ denotes the unit vector
in the x, y direction and the lattice spacing is set equal to
unity. In terms of the parameter k ¼ K0=4K2, the ground

state of (2) is either ferromagnetic (1 < k), helical magnetic
(−1 < k < 1), or antiferromagnetic (k < −1). At k ¼ 0
the system decays into two independent sublattices which
undergo separate BKT transition. Since the Hamiltonian
is invariant under the change K0 → −K0 and simultane-
ously flipping all spins on one sublattice of the bipartite
lattice, the results for K0 < 0 can be obtained from that
for K0 > 0, to which we restrict ourselves now. With
Si ¼ ðcosϕi; sinϕiÞ the Hamiltonian can be expressed
in terms of ϕiþx̂ − ϕi → ∂xϕ≡ ϕx, etc. Assuming for
simplicity K1 ¼ jK0j we get

H̄ ¼ K0

Z

x

�
1

4k
cos ð2ϕxÞ − cosϕx þ

1

8k
ϕ2
xx þ

1

2
ϕ2
y

�
; (3)

where
R
x ¼ R

dxdy. With the ansatz ϕx ¼ θ the energy is
minimized by θ ¼ � arccos k. Below θ will be considered
as a small parameter ensuring the validity of continuous
approximation. Then Eq. (3) simplifies to

H̄ ¼ K0

2

Z

x

�
−
1

2
θ2ϕ2

x þ ϕ2
y þ

1

4
ðϕ2

xx þ ϕ4
xÞ
�
: (4)

Perturbation theory.—At low temperatures K0θ
2 ≳ 1,

the Hamiltonian (4) can be expanded around one of the
minima. With ϕ ¼ �θxþ φ we get

H̄ ¼ K0

2

Z

x

�
θ2φ2

x þ φ2
y � θφ3

x þ
1

4
ðφ2

xx þ φ4
xÞ
�
: (5)

For a simple estimate of the anharmonic terms we ignore
the compact nature of φ and use φ3

x ≈ 3φxσ
2 and φ4

x ≈
6φ2

xσ
2 where σ2 ¼ hφ2

xi. Hence

H̄ ≈
K0

2

Z

x

��
θ2 þ 3

2
σ2
�
ðφx − δθÞ2 þ φ2

y þ
1

4
φ2
xx

�
: (6)

δθ ¼ ∓3θσ2=ð2θ2 þ 3σ2Þ represents a temperature depen-
dent correction to the wave vector �θx̂, reducing the
modulation. The critical coupling constant K0 ¼ Kc, at
which the chiral symmetry is restored, can be estimated
from δθ ¼ ∓OðθÞ. Alternatively, one can start with the
chirally symmetric phase. To lowest order in the anharmo-
nicity, −θ2 in (4) is replaced by 2r0 ¼ −θ2 þ 3σ2ðr0Þ,

σ2ðrÞ ¼ 1

4π2K0

Z
dkxdkyk2x

�
rk2x þ k2y þ

1

4
k4x

�
−1
: (7)

With σð0Þ ¼ C1K−1
0 , C1 ¼ 0.73 one gets

r0 ≈ θ2t; t ¼ Kc

K0

− 1; KcðθÞ ≈ 3C1=θ2: (8)

A variational calculation gives equivalent results.
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Vortices.—So far we have neglected the compact nature
of the ϕ field. For the further discussion we replace (4) by
the effective Hamiltonian

H̄ ¼ K0

2

Z

x

�
rϕ2

x þ ϕ2
y þ

1

4
ϕ2
xx þ

u
4
N½ϕ4

x�
�
: (9)

N½ϕ4
x� ¼ ϕ4

x − 6σ2ϕ2
x þ σ4 denotes the normal product.

Apparently, ξx ¼ r−1=2 and ξy ¼ r−1 play the role of the
correlation length parallel to the x and y direction,
respectively. To discuss the nature of vortices, we consider
a region of area LxLy containing a single vortex. Rescaling
the coordinates according to x=Lx → x, y=Ly → y, the
linearized saddle point equation reads

λ2xϕxx −
1

4
λ4xϕxxxx þ λ2yϕyy ¼ 0; λα ¼ ξα=Lα: (10)

Here we ignored a term ∼uðϕ2
x − σ2Þϕxx since the effective

(unrescaled) coupling ueff ∼ L−1=2 vanishes on large scales
(see below).
ϕ can then be decomposed into a spin wave and a vortex

contribution, ϕ ¼ ϕðswÞ þ ϕðvÞ, which do not interact. ϕðswÞ
carries the chiral order and will be treated in the RG
calculation below. Since in a vortex configuration ϕðvÞ is of
the order unity, all derivatives in (10) are also of order unity.
The vortex solution of Eq. (10) is different in two limiting
range of length scales: (i) On small scales, λα ≫ 1, one
can ignore the first term on the left-hand-side of (10).
A variational calculation of the vortex configuration with
the ansatz

ϕðx; yÞ ¼ fðζÞθðxÞ þ ½π − fðζÞ�θð−xÞ; (11)

where fðζÞ ¼ arcsin ζ and ζ ¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϰ2x4 þ y2

p
, gives ϰ ¼

0.42 and the vortex energy Ēcore ¼ 2.38K0. From the fact
that the energy of these vortices is dominated by small
scales we conclude that the interaction between the vortices
is short range, in contrast to the BKT scenario. In this case
screening of vortices by vortex pairs on smaller scales is
absent. The vortex density is of the order e−Ēcore and hence
of the order e−5.24=θ

2 ≪ 1 below the chiral transition. (ii) In
the opposite case of large scales, λα ≪ 1, the second term
on the left-hand side of (10) is negligible. With the choice
λx ¼ λy we get standard BKT vortices as solutions.
RG calculation.—The separation of length scales used in

the previous paragraph is also relevant to the RG analysis.
On small scales ξα ≫ Lα, spin waves strongly interact,
implying nonclassical critical exponents at the chiral
transition. On the contrary, on large scales ξα ≪ Lα, spin
wave interaction becomes irrelevant, whereas vortex inter-
action leads to the BKT scenario.
We begin with the scales ξα ≫ Lα. ϕx ≡ ψ plays the role

of the order parameter. Equation (9) has the form of a soft
spin ψ4 Ising model, apart from the second term in (9)
which can be written as a nonlocal gradient term

−
1

2

Z
dxdx0dyjx − x0jψyðx; yÞψyðx0; yÞ: (12)

Therefore, the critical exponents are expected to be in a
universality class different from the Onsager exponents.
We use the standard derivation of the RG flow equa-

tions [1] for r, u, K, and the dimensionless vortex fugacity
z. Their initial values, defined on the scale of the lattice
constant, are r0 ≪ 1, u0 ¼ 1, K0 and z0 ¼ expð−ĒcoreÞ. To
make the model amendable to an ϵ ¼ ð5=2Þ − d expansion
we replace y by a (d − 1)-dimensional vector y. We first
integrate out fluctuations ϕk of wave vectors limited by
inequalities π2 > ðk4x=4Þ þ k2y > π2e−2l and then rescale
according to x ¼ x0el=2, y ¼ y0el, r0 ¼ rel. ϕ as a compact
variable as well as u are not rescaled. This leads to the flow
equations

d ln u
dl

¼ −
C2u
K

;
d ln r
dl

¼ 1 −
C2u
3K

: (13)

Here C2 ¼ 9=ð2π3Þ. Since there is no vortex interaction
on these scales, K and z changes only due to rescaling,
i.e., d lnK=dl ¼ −ϵ, d ln z=dl ¼ 3=2. The rescaling of
z ¼ exp ð−Ēcore þ SÞ follows from the vortex entropy
S ¼ ln½xy=ðx0y0Þ� ¼ 3l=2. The RG stops at rlc ≈ 1 where
elc ≡ ξy. Integration of (13) between l ¼ 0 and l ¼ lc
gives for ξy

ξy ¼
2

tθ2
T 1=3; T ðξyÞ ¼ 1þ C2

ϵK0

ðξϵy − 1Þ: (14)

For ðC2=ϵK0Þξϵy ≫ 1, i.e., inside the critical region of the
chiral transition, one finds ξy ∼ θ−2jtc=tjνy . To order ϵ,

ν−1y ¼ ð2νxÞ−1 ¼ γ−1 ¼ 1 − ϵ=3: (15)

να denotes the correlation length exponent in the α
direction. With K0 ≈ Kc we obtain in two dimensions
C2=ðϵKcÞ ≈ 0.13θ2 and hence tc ≈ 0.034θ2 for the size of
the critical region. The specific heat exponent α ¼ νyϵ=3
obeys the hyperscaling relation [20]

νx þ ðd − 1Þνy ¼ 2 − α; (16)

which applies to the anisotropic system considered here.
We have also calculated the exponents ηx;y defined by the

critical propagator G−1ðkÞ ¼ ðk4−ηxx =4Þ þ k
2−ηy
y and found

to order ϵ2 ηx ¼ −0.212ϵ2 and ηy ¼ 0. As expected, all
exponents are different from the Onsager values α ¼ 0,
ν ¼ 1, η ¼ 1=4.
On larger scales l > lc, the nonlinear term in (9) is

irrelevant. Since rðlcÞ ¼ 1, the effective model on this
scale is the standard XY model. The RG flow equations in
two dimensions are those of BKT [1],

dK−1
0 =dl ¼ 4π3z2; d ln z=dl ¼ 2 − πK0; (17)
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where we use isotropic rescaling. These equations have to
be integrated with the initial conditions on the scale elc .
Thus Klc ¼ K expð−ϵlcÞ and zlc ≈ expð3lc=2 − ĒcoreÞ.
Integration of the flow equations gives the following
relation for the BKT transition temperature

2=ðπKlc
Þ ¼ 1þ ln 2þ 2π2z2lc

− lnðπKlcÞ: (18)

The gapped chiral phase.—Below Tc ¼ J=Kc we
rewrite ϕx ¼ κ þ φx, where κ ¼ hϕxi ≪ 1. The expansion
of the free energy density with respect to κ can be written as

F̄ ¼ 1

2
K0

�
r0T −1=3κ2 þ 1

4
T −1κ4

�
: (19)

Minimization of F gives κ2 ¼ −2r0T 2=3. The correlation
length is therefore given again by (14) provided t is
replaced by 2jtj. This gives

κ ≡ hϕxi ∼ jtjβ; β ¼ ð1 − ϵÞνx: (20)

Our exponents fulfill the scaling relation αþ 2β þ γ ¼ 2.
As already mentioned, previous numerical analysis has

ignored the strong anisotropy of the system [17,18] which
changes the finite size scaling analysis [21]. By the
procedure used in [18] most probably the larger of the
two correlation length exponents is obtained, i.e.,
νy ¼ 2νx ≈ 1. Then, according to (16), α ≈ 1=2, whereas
using the standard scaling relation with no anisotropy,
α ≈ 0.115 was found in [18]. However, a direct examina-
tion of the temperature plots for the specific heat and the
order parameter (Figs. 7 and 19 of [18]) gives α ≈ 0.32,
β ≈ 0.30, suggesting γ ≈ 1.08, in reasonable agreement
with our values α ¼ 1=6, β ¼ 1=3, γ ¼ 7=6 when
expanded to first order in ϵ ¼ 1=2.
Phase diagram.—At low temperatures we have long

range chiral order and a power law decay of spin corre-
lations. This is the chiral nematic (gapless) phase consid-
ered in [12,14]. Increasing K−1

0 the numerical solution
of (18) shows that there is a BKT transition below the
chiral transition (see Fig. 1), in qualitative agreement with
numerical results [18]. It is important to note that for
finding the correct phase boundary the contribution of
small scale free vortices (l < lc) is essential. For θ ≪ 1,
K−1

c , K−1
KT ∼ θ2, in agreement with [13] (but the opposite

sequence of transitions was found there).
Above the BKT transition the spin correlations are short

range, the correlation length ξKT ≈ e1.5=
ffiffiffiffiffi
tKT

p
is of the order

of the vortex distance. Here tKT ¼ KKT=K0 − 1. The chiral
order parameter vanishes at Tc ¼ JK−1

c that is slightly
larger than TKT ¼ JK−1

KT.
In the region 0.25 < K2=K0 < 0.316 there is a reentrant

phase transition to the quasiferromagnetic phase (see
Fig. 1). It should, however, be taken into account that
our approach is restricted to small θ. Thus the size of the

reentrant region may be overestimated when going to larger
θ values. Reentrant behavior was seen before using SCHA
[13]. However, the SCHA cannot consider vortices accu-
rately and ignores completely the vortex structure on scales
smaller ξ.
Antiferromagnetic quantum spin chains.—Using the

standard mapping, antiferromagnetic (J0 < 0) spin-S
chains at zero temperature are described by 1+1 classical
systems (4) with the replacements

K0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
S; y ¼ vsτ; vs ¼ ωSa; (21)

provided S ≫ 1 [9]. τ denotes the imaginary time, a ¼ 1
the lattice constant, vs the spin-wave velocity, and
ωS ¼

ffiffiffiffiffiffiffiffi
3=2

p jθJ0jS=ℏ. For increasing K0 the spin chain
undergoes two quantum phase transitions: at Kc from a
paramagnetic to helical spin liquid and at KKT to a quasi-
long-range ordered magnetic phase (see Fig. 1). The
dynamical critical exponents at the quantum phase tran-
sitions follows from the relation ξy ∼ ξzx as z ¼ 2 − ηx=2
at the chiral, and z ¼ 1 at the BKT transition,
respectively [24].
Adding a weak interchain coupling J⊥ ¼ ε⊥jJj, ε⊥ ≪ 1,

the system is equivalent to a higher-dimensional classical
system. The latter presumably undergoes a single phase
transition [10] to a long range ordered magnetic phase.
The transition happens at t ¼ t3D which follows from the
condition [25] 1 ≈ 2J⊥χmagn, where χmagn denotes the
magnetic susceptibility of the 1D chain. This gives
t3D ∼ 1= ln2 ε⊥, in agreement with a more elaborate RG
calculation [26].
At low but finite T, the imaginary time τ is restricted to

the region 0 < τ < ℏ=T, i.e., y < Ly ¼ ℏωS=T. At ε⊥ ¼ 0
the system is now equivalent to a one-dimensional classical
model and hence no true phases transition can occur. Finite
size scaling gives for the susceptibility [24]

χðKS; LyÞ ¼
S2

jJ0j
�
ℏωS

T

�
2−ηy

~χ

�
ℏωS

Tξy

�
: (22)

In the quantum critical domain, where ℏωS ≲ Tξy and
~χðxÞ ≈ ~χð0Þ, χ ∼ T−2þηy .
At the chiral transition, with χchiral ∼

R
x hψðxÞψð0Þi, one

finds from ξy ≈ jtj−νy and ηy ¼ 0 that χchiral grows as ∼T−2

before reaching a maximum at T ≈ Tp;c ∼ ℏωSjtjνy . At the
BKT transition where 2 − ηy ¼ 7=4 one obtains analo-
gously χmagn ∼T−7=4 at T≳Tp;KT∼ℏωS expð−1.5=

ffiffiffiffiffiffiffi
tKT

p Þ.
For nonzero interchain coupling, the transition temper-

ature for the magnetic transition is found from 1 ¼ 2J⊥χ1D
and (22) as

T3D ≈ ℏωS½ε⊥S2 ~χðe−1.5=
ffiffiffiffiffi
tKT

p
ℏωS=T3DÞ�1=ð2−ηÞ: (23)

At the BKT transition of the chains, where tKT ¼ 0,
T3D ∼ ℏωSε

4=7
⊥ which is smaller than the peak temperature

Tp by a factor ε4=7⊥ ≪ 1. Our result for the ℏωS and ε⊥

PRL 112, 157201 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

157201-4



dependence of T3D agrees with that found in [27] if
the mean field exponent 2 − ηy ¼ 2 is used. Other details
differ since in [27] spin wave theory was used within the
chains.
Experiments.—There is a large number of rare earth

metals, alloys, and compounds which exhibit helical
phases [28–30]. Unfortunately, experiments on films to
our knowledge were done only for cases where the
helical axis is perpendicular to the film plane [31]. The
other group of materials to which our theory applies are
frustrated quantum spin with large S. In GdðhfacÞ3NITiPr
half of the spins are S ¼ 7=2 and hence sufficiently
large, as required, the other half are S ¼ 1=2 such that
Seff ≈

ffiffiffi
7

p
=2. Two peaks at TN ¼ 1.88 K and Tc ¼ 2.19 K

were indeed found in the specific heat of this material [32],
which were interpreted as the magnetic and chiral
transition, respectively. In contrast our theory explains
these peaks as quantum critical phenomena. With
J0 ≈ 7.06 K, ε⊥ ≈ 2.3 × 10−3, and θ ≈ 0.36π [32] one finds
ℏωS ≈ 12.87 K, K0 ¼ 1.08, Kc ¼ 1.74, and KKT ≈ 2.44;
i.e., at zero temperature the single chains are in their
paramagnetic phase (see Fig. 1). T3D ≈ 0.55 K is much
smaller than the observed peak temperatures. The latter are
given only up to prefactors of order unity as Tp;c ≈ 7.23 K
and Tp;KT ≈ 3.39 K. The values of the prefactors follow
from a calculation of ~χðxÞ, which is beyond the scope of
this article.
The other chain compounds have spin S ¼ 1=2, resulting

in a competition of dimerization and frustration. In some of
them the effect of the frustration is dominating. An example
is LiCu2O2 where two nearby transitions have been found
as well [33].
In multiferroics the electric polarization P is coupled to

the magnetisation according to P∼ðm·∇Þm−mð∇·mÞ∼γx̂
[6]. Long range chiral order should be therefore detectable
by measuring P.
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