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Pre-melting of crossing vortex lattices
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received 21 June 2013; accepted in final form 6 August 2013
published online 16 September 2013
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PACS 74.25.Op – Mixed states, critical fields, and surface sheaths
PACS 74.25.Dw – Superconductivity phase diagrams

Abstract – The pre-melting of high vortex density planes observed recently in layered supercon-
ductors in tilted magnetic field (Segev Y. et al., Phys. Rev. Lett., 107 (2011) 247001) is explained
theoretically. Based on the structural information of the crossing lattices of pancake and Joseph-
son vortices the effective vortex cage potential at different lattice sites is determined numerically.
Melting takes place when the thermal energy allows proliferation of vacancy-interstitial pairs. It
is found that the increased density of pancake vortex stacks in the planes containing Josephson
vortices, rather than their incommensurate structure, is the main cause for pre-melting.
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Introduction. – Melting of solids, an everyday phe-
nomenon from the shrinking ice cube in a drink to the
processes in the Earth mantle, is far from being well un-
derstood. At the melting transition the shear modulus of
the material vanishes [1]. There are several phenomeno-
logical criteria predicting when this will happen (see [1–3]
for a discussion). Most prominent is the Lindemann crite-
rion [4], stating that melting occurs when the mean square
fluctuation of the atoms in a solid is a fraction cL (the
Lindemann number) of the interatomic distance. On a
more conceptual level it is expected that the proliferation
of defects or grain boundaries plays an important role in
melting. In two dimensions melting was indeed shown to
be a two-stage process, driven by unbinding of dislocations
and disclinations, respectively [5], while in three dimen-
sions a sudden increase of the vacancy concentration was
observed at the transition [2,6–8].

In this letter we address the question of the melting
process in a heterogeneous system. Since inhomogeneities
and extended defects occur naturally in any practical
system, comprehension of the melting transition in such
systems is of broad importance. Vortex lattices in su-
perconductors have been extensively utilized as a model
system for theoretical and experimental studies of the
melting transition [9,10]. The melting line in (isotropic)
superconductors is parametrized by the dimensionless ra-
tio ǫT = λ/ΛT. Here λ denotes the London penetration
depth and ΛT = φ2

0/(16π
2kBT ) is a thermal length scale,

only related to the temperature T and the flux quantum
φ0 = hc/(2e). In high-Tc materials with their elevated
transition temperatures and large values of λ, ǫT can be-
come of order one, replacing a large part of the mean-field
phase diagram by the vortex liquid phase [11].

An additional and qualitative new aspect appears
in extremely anisotropic systems like Bi2Sr2CaCu2O8+δ

(BSCCO), which are composed of alternating normal
and superconducting layers. Vortex lines perpendicular
to the layers consist of stacks of pancake vortices (PVs),
residing in the superconducting layers, whereas the cou-
pling between them is mainly of electromagnetic origin.
Vortex lines parallel to the layers take advantage of normal
regions and are hence Josephson vortices (JVs) [12,13].
Denoting the layer period by s, two further dimension-
less ratios, λab/s ≡ ǫs and λc/λab ≡ γ, characterize the
system (ǫs � 130 and γ ≈ 500 in BSCCO). λc and λab

denote the out-of-plane and in-plane penetration depth,
respectively.

When the magnetic field is tilted away from the c-axis,
chains of higher vortex density were found in Bitter dec-
orations [14–16], scanning Hall probe microscopy [17,18],
Lorentz microscopy [19], and magneto-optical imag-
ing [20–22], and described as crossing lattices of pancake
and Josephson vortices (see fig. 1(a)) [23–29]. The result-
ing vortex lattice structure displays a very rich phase dia-
gram that depends critically on the strength and direction
of the magnetic field H and on the ratio of ǫs/γ.
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It was recently found [30] that in a tilted magnetic
field the melting transition in BSCCO changes from a
homogeneous first-order process into a two-step transi-
tion that is apparently driven by an intrinsic heterogene-
ity of the vortex lattice structure. Melting occurs first
in the planes containing the Josephson vortices (hence-
forth called Josephson planes), creating an intermediate
periodic solid-liquid state [30]. The previous theoretical
studies of the melting of the crossing lattices [23–28] have
investigated the global behavior assuming a single melting
transition. It is therefore the goal of the present work to
give a first theoretical explanation for this effect.
In its full generality this a very difficult task. The fre-

quently used Lindemann criterion cannot be applied in the
present case since it requires the knowledge of the spatial
dependence of the elastic constants, resulting from the su-
perstructure of the flux line lattice. However, since the
Lindemann criterion is dominated by the physics on short
length scale it seems to be obvious to apply a local theory.
Consequently, in this paper we will calculate the effective
cage potential, acting on a given PV due to its interac-
tion with all other vortices. In doing this we will replace
the instantaneous positions of the surrounding vortices by
their equilibrium ones. Melting is concluded to occur at
temperatures where the PV under consideration can es-
cape from the cage potential via its lowest saddle point,
triggering proliferation of vacancy-interstitial pairs. This
happens first for PVs in the Josephson planes. The melt-
ing temperature determined in this way is in reasonable
agreement with the experimental findings.

Model. – We follow here the conclusions of [28] that
the discrete layer structure has strongest influence on the
cores of tilted and Josephson vortices, but that interaction
contributions to the total energy usually can be computed
within continuous approximation. PVs and JVs in their
equilibrium position can be considered to be threaded on
a contour line ri(t). The vorticity ω of the lattice can be
written as

ω(r) =
∑

i

∫

dt(dri(t)/dt)δ(r− ri(t)), (1)

which is related to the magnetic induction B by

B+∇×
∑

α

λ2
α(∇ ×B)αr̂α = −φ0ω(r). (2)

Here λz ≡ λc and λx = λy ≡ λab. The free energy F of
vortex systems is a functional of the vorticity field which
includes contributions both from the magnetic and the
Josephson interaction [28]

F [ω] =
φ2
0

8π

∫

d3k

(2π)3
|ωk|2 + λ2

abk
2(γ2|ωzk|2 + |ω⊥k|2)

(1 + λ2
abk

2)[1 + λ2
ab(k

2
z + γ2k2

⊥)]
.

(3)
ωk is the Fourier transform of ω(r). The subscript ⊥
denotes the projection of a vector onto the xy-plane. The

Fig. 1: (Colour on-line) (a) Schematic 3D plot of the crossing
PV-JV lattice. The JVs are aligned along the x-axis and are
stacked along z forming “Josephson planes” along xz-planes.
(b) Top view (xy-plane) of the PVs (red) and JVs (blue). The
vortex numbers are used in figs. 2 and 3. (c) Front view of
the JV lattice (yz-plane). (d) Side view of PVs and JVs in the
Josephson plane (xz-plane).

actual equilibrium flux lattice structure follows from the
minimization of

F [ω]−
∫

d3rB ·H/4π (4)

for a given magnetic field H.
Once the equilibrium structure is known, the effec-

tive potential for a pancake vortex displacement ui,n in
stack i and layer n can be found from the change of
the vorticity field Δω(r) in (3). Its Fourier transform is
Δωk = ẑseikri [eik⊥ui,n − 1]. This allows to calculate the
free-energy change ΔF(ui,n) which depends in general on
i and n. The actual vortex structure in the Josephson
planes consists of continuous vortex lines formed of stacks
of PVs, connected by JVs, as indicated in fig. 1(d) [28,31].
The resulting discontinuity of the JVs in a single plane
(and hence also the displacements of the PVs from a
straight stack) is of the order λabǫs/[(2n−1)γ] [31], which
is for our parameter values � 0.06 aJ/n. n ≥ 1 denotes the
number of layers between the JVs [31]. We will therefore
ignore in the following this small effect and assume a sim-
ple crossing lattice of straight stacks of PVs and straight
JVs [32].

Effective cage potential. – Displacing a single PV
from a straight stack generates an antiparallel pair of JVs
in the adjacent non-superconducting layers. Because of
their large mutual annihilation, the interaction of this ex-
cited JV pair with the static JVs of the crossing lattice
will be very small, provided the displaced PV is not too
close to the JV. We will ignore this weak interaction in
the following as well. With these approximations, ω̂ of
PV and JVs are now perpendicular to each other, and
hence Josephson vortices do not contribute to the effec-
tive potential of the displaced pancake vortices once the
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Fig. 2: (Colour on-line) Set of contour plots of the cage po-
tential ΔF(ui) for a single displaced PV in a stack of PVs
in the Josephson plane for the different stacks numbered as
in fig. 1(b). Only the PV with rest position in the center is
assumed to be displaced, keeping all other PVs at their equi-
librium positions. With the choice of aJ/a = 5/6 this sequence
is repeated every 6 stacks.

structure is fixed. Moreover, the effective potential for a
single displaced PV does not depend on its position in the
stack. This approximation is justified the more the larger
the distance between the displaced PV and the JV.

After summation over the PVs in the stacks and sup-
pressing the layer index n, the effective cage potential
ΔF [ui] for a single PV, displaced from a straight stack
by ui, can be written in the form

ΔF =
kBT

ǫTǫs

∑

j( �=i)

[K0(|Rij −ui|/λab)−K0(Rij/λab)]. (5)

Here K0(x) is the modified Bessel function, Rij the posi-
tion vector connecting stacks i and j, and Rij = |Rij |. In
addition there is a small entropic contribution−2T ln(a/ξ)
to the free energy. The remaining sum has to be per-
formed numerically which requires the knowledge of the
flux lattice structure. Both analytical theory [28] and ex-
perimental findings [14] are consistent with the following
reference flux lattice structure:

a) Vortices are located in planes parallel to the xz-plane
(Hy = 0) (compare fig. 1(a), (b)).

b) PV stacks outside the Josephson planes form a equi-
lateral triangular lattice of spacing a [15,25].

c) The PV distance in the Josephson planes is denoted
by aJ(< a) and the distance between Josephson and
the adjacent planes by b(>

√
3a/2) (fig. 1(b)). aJ < a

is the result of the attractive interaction between PVs
and JVs.

Fig. 3: (Colour on-line) Contour plot of ΔF for PVs in the
plane adjacent to the Josephson plane (numbered 7 to 11 in
fig. 1(b)) and in the bulk (number 12). Melting occurs at about
10 K higher than for PVs in the Josephson plane in fig. 2.

d) The projection of the JVs onto the yz-plane forms
squeezed Abrikosov lattice with the lattice parameter
ratio bJ/c =

√
3γ/2 (compare fig. 1(c)).

Although the reference structure is taken here as an addi-
tional input we will show below that relaxing these con-
ditions results only in weak deviations from the assumed
configuration.

Figure 2 shows the results of the calculation of the
free-energy change ΔF due to the displacement of the
individual PVs in the Josephson plane labeled 1 to 6
in fig. 1(b). Here we used the lattice parameters found
in the Bitter decoration experiment [14] performed in
BSSCO at H = (30, 0, 24)Oe where a = 1, aJ = 0.833,
b = 0.91, c = 0.04, bJ = 17.32, λab(T ) = λ(0)

√

1− T/Tc,
λ(0) = 0.2, all lengths in μm. The value of Hx is slightly
larger than that used in [30]. Since in the present case
aJ/a = 5/6, the potential shapes recur every six vortices.
The contour maps of lines of constant energy are depicted
in units of kBT . There are two important observations
here. First, although the precise shape of the potential
is different for the individual vortices, saddle points with
very similar value T ≈ 75K appear for all the locations.
At this temperature PVs can escape in direction transverse
to the Josephson plane, vacancy-interstitial pairs prolif-
erate, and the lattice starts to melt along the Josephson
planes. This transverse melting process appears to be uni-
form for the various PVs along the Josephson plane. The
second observation is that in contrast to the transverse
direction, the shape of the potential along the Joseph-
son plane is rather position dependent. Vortices that are
located at symmetric points that are in registry with the
adjacent planes, like vortex 3 and 6, show potential that is
quite localized in the x-direction. On the other hand, the
potentials at asymmetric locations, like vortex 1 and 5,
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Fig. 4: (Colour on-line) Melting temperature of PVs along the
Josephson planes Tm in a crossing lattices state with regular
lattice parameter a = 1µm as a function of b/a (left panel)
and of a/aJ (right panel).

show extended protrusions that indicate enhanced vor-
tex mobility at the less-stable vortex positions along the
Josephson planes. This finding can explain the apparent
observation of site-dependent enhancement of vortex fluc-
tuations along the Josephson planes in Lorentz microscopy
studies [19] that was discussed in terms of the incommen-
surability of the vortex chains structure.

The corresponding pictures for PVs in the plane adja-
cent to the Josephson plane are shown in fig. 3 along with
PV number 12 in the bulk. Despite the fact that each of
the PVs has a different local energy landscape, it is clearly
seen that all the PVs can leave their positions only at tem-
peratures of Tm ≃ 85K, 10K higher than the PVs in the
Josephson planes. The experimental bulk melting temper-
ature is Tm ≈ 90K. A remark is in order: since the vortex
cage potential is calculated with all surrounding vortices
in their equilibrium positions, proliferation is predominant
in the direction perpendicular to the Josephson plane. We
expect that in a treatment which allows simultaneous mo-
tion of all vortices this prevalence is reduced.

Figure 4 shows a detailed calculation of the melting tem-
perature Tm of the PVs in the Josephson planes as a func-
tion of their intervortex distance aJ and the separation b
between the Josephson plane and the adjacent PV plane
(see fig. 1(b)). Tm is found to drop rapidly with increasing
a/aJ and with decreasing b/a giving rise to pre-melting of
the Josephson planes that could in principle be as large
as 20K. In reality, however, aJ and b are not independent
parameters and are both determined by Hx and Hz. In
particular, increasing Hx decreases aJ but increases b, so
that the two dependences moderate each other to a large
extent. We therefore expect a much smaller pre-melting
as observed experimentally [30].

Distortions from the reference structure. – So far
we assumed for the vortex lattice structure the reference
structure taken from decoration experiments. We will now
study possible deviations from this configuration. As an
example we consider deviations from the assumed equidis-
tant vortex positions in the Josephson plane by replacing
aJ by aJ(n). Here n numbers the intervals. The aJ(n)
follow from the competition between the PV-JV interac-
tion in the Josephson plane on one side, which favors a
lattice spacing smaller than a, and their interaction with

the PVs outside the Josephson plane on the other side,
which favor registry with the lattice constant a, which we
assume to be fixed. Such a system can be described by
the Frenkel-Kontorowa model [33],

H =
∑

n

[(θn+1 − θn − δ)2 − 2ζ cos θn]. (6)

The θn describe the modulation of the PV positions, xn =
an + aθn/(2π), ζ = 2π2k2/(q

2k1), and q = a/λab. The
misfit parameter δ < 0, depending on Hx, favors a higher
PV density in the Josephson planes. It will be determined
below from the average vortex spacing 〈aJ(n)〉 ≡ aJ.
The coefficient k1 follows from the vortex interaction as
k1 = K0(q) + q−1K1(q). k2 is determined numerically by
fitting the actual vortex interaction of a Josephson plane
stack with its neighboring stacks in the satellite plane to
a cosine model, taking up to the fifth next neighbour into
account. The ground state configuration follows from the
saddle point condition θn+1 + θn−1 − 2θn = ζ sin θn. In
the continuum limit, θn → θ(n), one arrives at the rigid
pendulum equation θ′′(n) = ζ sin θ. Its solution can be
expressed by elliptic functions which depend on the con-
stant of integration η. η follows from the minimization
of K(η2 − 2) + 4E − πδη/

√
ζ. Here K(η) and E(η) are

the complete elliptic integrals of first and second kind,
respectively. For small misfit, |δ| < δc = 4

√
ζ/π, θ(n)

locks-in at a multiple of 2π, corresponding to aJ = a.
For |δ| � |δc| the solution for θ(n) is staircase-like with
horizontal terraces at θ(n) ≈ 2πp (p ∈ N), which are con-
nected by steps of width ∼ ζ−1/2. The average PV spac-
ing in the Josephson plane is in general incommensurate
with a. For a given aJ , δ is determined from the relations
aJ = a[1−

√
ζ/(2ηK)] and η = 4

√
ζE/(πδ). With the pa-

rameter values given above we get ζ = 0.409, |δc| = 0.814,
η = −0.876 and δ ≈ −1.115. Thus the system is indeed
in the incommensurate phase in which the PV distance
is modulated. However this modulation of aJ(n) is less
than 6% of the mean vortex distance and hence can be
safely ignored for the investigation of the melting tran-
sition. We expect that similar weak deviations from the
reference structure appear when other lattice parameters
are allowed to deviate from the reference structure.

Conclusions. – In summary, using a cage potential
model we have calculated the melting temperature of the
PVs at different locations in the crossing lattices state
parametrized by three different lattice constants a, aJ,
b. Detailed results were obtained for a reference PV lat-
tice structure relevant to highly anisotropic superconduc-
tor BSCCO. We showed that melting of crossing flux line
lattices sets in along the planes containing JVs where the
local melting temperature can be substantially lower than
in the bulk resulting in a periodic solid-liquid structure as
observed experimentally [30]. We also have analyzed the
effect of a possible incommensurate modulation of the PV
lattice constant aJ along the Josephson plane and found it
to be too weak to have a significant effect on the melting
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transition. The primary cause of the pre-melting transi-
tion is the proliferation of vacancy-interstitial PV pairs
at reduced temperatures due to the increased PV density
along the Josephson planes.
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