Coulomb Blockade and Transport in a Chain of 1-dimensional Quantum Dots^{*}

Thomas Nattermann Michael M.Fogler Sergey Malinin Cologne UCSD Detroit

*e=h=k_B=1

- □ Introduction
- Quantum wire as a chain of quantum dots
- Transport in short wires
- Experiments
- Long wires: Rare events
- Conclusions

Breakdown of Landau's Fermi liquid picture

\Rightarrow density wave excitations

- (a) 1D clean wire: Luttinger liquid $G = dJ/dV = \sigma/L = (K) e^2/h$
- (b) single impurity : K<1 (>1): impurity (ir)relevant, → G ~ (max (T, eV)) ^{2/K-2} Kane & Fisher '92, Furusaki & Nagaosa ´92,93

(c) Gaussian impurities: $\sigma \sim T^{2-2K(T)}$, $T \gg T_0$ Giamarchi &Schulz '87

 $\sigma \sim \exp(-T_0/T)^{1/2}$ T << T₀ T.N., Giamarchi, Le Doussal 03

Quantum wire as a chain of quantum dots

Strong impurities:

quantum wire as a chain of quantum dots

"quantum dot" with integer number q_i of electrons ► X X_{i+1} $X_{i+1} - X_i = a_i$

strong impurities, randomly distributed

Hangzhou 2007

Luttinger liquid with strong impurities:

charge density
$$\rho(x) = \frac{1}{\pi}(k_F + \partial_x \varphi)[1 + 2\cos(2\varphi + 2k_F x)]$$

$$S = \frac{1}{2\pi K} \int_{0}^{\frac{v}{T}} d\tau \left[\int_{0}^{L} dx [(\partial_{\tau} \varphi)^{2} + (\partial_{x} \varphi)^{2}] - \sum_{i=1}^{N} w \cos(2\varphi(x_{i}) + 2k_{F}x_{i}) \right]$$

$$K \quad \lambda_{T} = v/T \text{ thermal de Broglie wavelength}$$

$$W >> k_{F} \text{ pinning strength}$$

$$x_{i+1} - x_{i} = a_{i} \text{ impurity spacing}$$

$$\varphi(x_{i}) + k_{F}x_{i} = \pi N_{i}$$

$$\downarrow$$
integer number $q_{i} = N_{i+1} - N_{i}$ of electrons between impurities

Classical ground state

K,v \rightarrow 0, compressibility g=K/(π v) finite

$$S \rightarrow \frac{H}{T} \equiv \sum_{j} \frac{\Delta_{j}}{2T} (q_{j} - Q_{j})^{2}$$

$$q_i = N_{i+1} - N_i$$

 $\Delta_j = 1/(ga_j)$ charging energy of dot Q=k_Fa_j/ π "background charge"

Classical ground state

K,v \rightarrow 0, compressibility g=K/(π v) finite

$$S
ightarrow rac{H}{T} \equiv \sum_{j} rac{\Delta_{j}}{2T} (q_{j} - Q_{j})^{2}$$

$$q_i = N_{i+1} - N_i$$

 $\Delta_j = 1/(ga_j)$ charging energy of dot $Q_i = k_F a_j / \pi$ "background charge"

$$\mathsf{T} \mathrel{\prec} \Delta_{\mathsf{j}} \rightarrow q_{\mathsf{j}} = [\mathsf{Q}_{\mathsf{j}}]_{\mathsf{G}}$$
 ,

bifurcation dots: $q_j-Q_j = \pm \frac{1}{2}$

Charged excitations

E_i+

E_i-

← a_i →

 $E_{j}^{+} + E_{j}^{-} = \Delta_{j}$

$$\mathsf{E}_{\mathsf{j}^{\pm}} \texttt{=} \Delta_{\mathsf{j}} \left\{ \texttt{1/2} \pm (\mathsf{q}_{\mathsf{j}} \texttt{-} \mathsf{Q}_{\mathsf{j}}) \right\} \qquad \equiv \pm$$

Coulomb blockade if $E_{j}^{\pm} \gg T$

Bifurcation dots:

 q_j - Q_j = $\pm \frac{1}{2} \rightarrow E \mp = 0$

Example: Q=3/2, q=1, E⁺=0, E⁻=∆ Q=3/2, q=2, E⁺=∆, E⁻=0

 ε_j^{\pm}

3

μ

X

Neutral excitations

$$S = \frac{1}{2\pi K} \sum_{j=0}^{N} \sum_{\omega_n} \frac{\omega_n}{\lambda_T} \left[\frac{|\varphi_{j+1,\omega_n} - \varphi_{j,\omega_n}|^2}{\sinh \omega_n a_j} + \left(|\varphi_{j,\omega_n}|^2 + |\varphi_{j+1,\omega_n}|^2 \right) \tanh \frac{\omega_n a_j}{2} \right]$$

$$\label{eq:phi} \begin{split} \omega_n = 2\pi nT \gg \delta_j \;, \; \delta_{j+1}: \qquad \phi(x_j) \; \text{decoupled from neighbours} \\ \lambda_T {\mbox{\sc a}}_j \end{split}$$

<u>Add external field:</u> H_F= -F∫ dx φ(x)/π

Discrete energy levels ($\delta_j\text{=}K\Delta_j$) :

 \Rightarrow energy conservation forbids tunneling except from

rare dots $\rightarrow R \sim e^{\alpha L}$ Anderson et al (and many others)

conductivity vanishes

modification of the model: weak coupling to a bath

Bath: (i) electrons in the gate (ohmic)

$$S_d = \frac{\eta}{4\pi\lambda_T} \sum_j \sum_{\omega_n} |\omega_n| |\varphi_j(\omega_n)|^2$$

(ii) phonons

Transport in short wires

Transport at T=0

 \rightarrow effective action $\mbox{ S}\{\phi(\textbf{x}_i,\tau)\}$ on impurity sites

 \rightarrow classical metastale state $\phi_i(\tau) \rightarrow \phi_i = \pi (N_i + k_F x_i)$,

F>0 : Tunneling via instantons: $N_i \rightarrow N_i + 1$

Transport at T=0

bifurcation dots:

Hangzhou 2007

Sino-German Workshop on Disordered and Interacting Quantum Systems

Experiments

Different types of conductivity : (i) <u>variable range hopping</u>

Hangzhou 2007

Sino-German Workshop on Disordered and Interacting Quantum Systems

Different types of conductivity: (ii) Kane-Fisher behavior

MoSe Nanowires

Venkataraman, PRL (2006)

J /T
$$^{\alpha+1}$$
 \sim max (V/T, V $^{\beta+1}$ /T $^{\alpha+1}$)

FIG. 1 (color online). (a) Structural model of a 7-chain MoSe nanowire along with the triangular Mo_3Se_3 unit cell. (b) and (c) AFM height images of MoSe nanowires between two Au electrodes. The wire heights are 7.2 nm and 12.0 nm, respectively. Scale bar = 500 nm.

short wires (L ~ 1 μ m):

"Temperature" Exponent $\alpha\,$ is close to "Voltage" Exponent $\beta\,$

Agrees with the conventional "Luttinger-liquid" picture with

α=β=2/K-2

Different types of conductivity : (iii) <u>new behavior</u>

Polymer nanofibers

long wires: 10µm

FIG. 1 (color online). AFM image of a R-hel PA fiber; the inset shows the schematic of a two-probe device based on such a R-hel PA fiber on top of Pt electrodes.

"temperature" exponent **exceeds** "voltage" exponent!

J /T
$$^{\alpha+1}$$
 \sim max (V/T, V $^{\beta+1}$ /T $^{\alpha+1}$)

Disagrees with the conventional Luttinger-liquid picture

Observed Power-Law Exponents

L'io pin porymers	Sample	1	2	3	4	5	6
Aleshin et al.,	α	2.8	5.5	7.2	5.6	5.0	4.1
PRL (2004)	β	1.5	3.8	4.7	1.0	1.1	1.8

L ~ 100 µm InSb wires Zaitsev-Zotov et al., JPCM (2000)

Sample	1	2	3	4
α	2.3	3.4	4.5	4.6
β	1.3	3.4	2.8	2.0

• In long wires T-exponent exceeds V-exponent: $\alpha > \beta$

• Exponents are sample-dependent

Long wires: Rare events

4. Long wires: rare events

So far: typical quantum dots with $a_i \approx a$ Now: consider regions with many narrow dots with $a_i \ll a$

"Break" : sequence of narrow dots

Hangzhou 2007

Wire: non-overlapping breaks + low resistance connecting pieces*

break resistance $R_0 e^u \rightarrow total resistance R=L \int P_u(u) R_0 e^u du$

 $P_u(u)$: density of pieces with resistance e^u

* Ruzin and Raikh 1988

 $E_{jk}/T \gtrsim u$

(a) Ohmic break of <u>j-k</u> dots

$$R_{j \to k} \approx R_0 e^{s|j-k|} e^{\frac{1}{T}E_{kj}} \ge R_0 e^u$$

simplification: rectangular break $s|j-k| \ge u$,

$$\mathsf{P}_{\mathsf{u}}(\mathsf{u}) \sim \mathsf{P}_{\varepsilon}(\varepsilon)^{|\mathsf{j}-\mathsf{k}|} \sim \mathsf{P}_{\varepsilon}(\mathsf{u}\mathsf{T})^{\mathsf{u}/\mathsf{s}} \sim$$

$$\label{eq:relation} \begin{split} & \ln P_u(u) \sim - \, u^2 T / \Delta \, s & \mbox{if } u T {\prec} \, \Delta \\ & \ln P_u(u) \approx - \, u / s \, \ln \left(2 u T / \Delta \right) & \mbox{if } u T {\Rightarrow} \, \Delta \end{split}$$

$$\varepsilon^+$$
 (b)
 $T u$
 $-T u$
 ε^-

25

Infinite wire

$R=L\intP_{u}(u)R_{0}e^{u}du\rightarrow$	saddle point solution
s«1: $ ho\sim$ exp (s∆/4T) Raikh Ruzin '89
s>>1: $ ho\sim exp$ (Δ	e ^s /4sT) new
break size	$a_{b} \approx a \Delta e^{s}/(4sT) \gg a$
break distance	$L_b \approx a_b \exp [sa_b/a]$
	Example: s=5, $\Delta \approx T$ $\rightarrow a_b/a \approx 7,4$ $L_b/a \approx 10^{16}$

<u>Finite wire</u>: $P_u(u)(L/a_b) \approx 1 \rightarrow u_{max}$

$sT \ln(L/a_b) \ll \Delta : \qquad ln R \sim [s\Delta ln (L/a) / T]^{1/2} \qquad VRH$

Raikh Ruzin '89

$$\begin{split} \mathsf{sT} \ln(\mathsf{L}/\mathsf{a}_\mathsf{b}) &\gg \Delta : & \ln \mathsf{R} \sim \ \mathsf{s} \ln (\mathsf{L}/\mathsf{a}_\mathsf{b}) / \ln (\mathsf{T}\mathsf{s}/\Delta) \sim \alpha \, \mathsf{InT} \\ & \alpha = \mathsf{s}(\mathsf{T}) \, \ln (\mathsf{L}/\mathsf{a}_\mathsf{b}) / \, \mathsf{In}^2 \, (\mathsf{T}\mathsf{s}/\Delta)] \end{split}$$

Numerics: Christophe Deroulers (unpublished)

Hangzhou 2007

Sino-German Workshop on Disordered and Interacting Quantum Systems

(b) Non-Ohmic breaks of m dots

$$J_{j \to k} \approx J_0 e^{-s|j-k| - \frac{1}{T}\varepsilon_{kj}} \sinh[(\zeta_j - \zeta_k)/T]$$

assumption: largest voltage drops $V_b = \xi_j - \xi_k \gg T$ at a few breaks constant I = $I_0 e^{-u}$ everywhere

$$u \leq s|j-k| + \varepsilon/T - V_b/T$$

Regime diagram

 $s = \log of$

$$p(R_j) \sim R_j^{-1-\kappa}, \kappa = s^{-1} \ln[\frac{TR}{\Delta R_j}]$$

 \sim power law \rightarrow R_j Levy random walk

P(R) Levy distribution , $\kappa \ll 1$: Frechet distribution

$$P_R(R) \sim R^{-1-\kappa} \exp[-(R^*/R)^{\kappa}]$$

$$\kappa^* \ln(R^*/R_0) = \ln(l_b/\kappa^*), \quad \kappa^* = \kappa(R^*)$$

Sino-German Workshop on Disordered and Interacting Quantum Systems

Conclusions:

- linear and non-linear conductivity , field and temperature cross-over between single and many impurity tunneling
- Iow field and temperature: Mott-Shklovskii-VRH larger V,T: Kane-Fisher - power law behavior
- Kane-Fisher "single-dominant-barrier" theory is not valid in long wires that contains many (> 100 ?) impurities
- true power-law exponents exceed the single-barrier ones by a "large" log-factor (perhaps, by 2 or 3 in practice)!
- resistance is controlled by "breaks" -dense clusters of impurities
- global weak/strong pinning regime diagram

 $S/\hbar = (2\pi \text{ K})^{-1} \int dx \int d\tau \{ v^{-1} (\partial_{\tau} \phi)^2 + v (\partial_x \phi)^2 + 2\text{ KF } \phi(x) \}$

Large Voltage/temperature: power laws

Larkin and Lee '78

<u>Tunneling action</u> dominated by spreading of charge:

 $S_{tun} \sim \int d\tau \ E(\tau) \sim \int d\tau \ (gx(\tau))^{-1} \sim -K^{-1} \ In \ (E_{final}/E_{initial})$

 $\textbf{s} \rightarrow \textbf{s}_{eff} \approx \textbf{s} + 2\textbf{K}^{-1} \text{ In [min(1, \textbf{K} \Delta / \textbf{T}, \Delta \textbf{/Fa})]}$

 \rightarrow T > Δ : J_{k,k+1} \sim (max(T,V)/ Δ)^{2/K}

Kane-Fisher 1992

Hangzhou 2007

Strong and weak pinning

- T>T_{1,cr}: single impurity weak
- $T < T_2$: collective effects

Giamarchi, 2004: "Quantum Physics in One Dimension"

 $u{\boldsymbol{\mathsf{\cdot}}} k_{\mathsf{F}}{\boldsymbol{\mathsf{:}}} \; \mathsf{SCHA} \;\; u{\boldsymbol{\to}} \; u_{\mathsf{eff}}$

Experiments: sample dependence

SWCNT = single-wall carbon nanotube, MWCNT = multiple-walls carbon nanotube.

System	Diameter	Length	e^- mean free path	g = K	Size l of dots	Nb. N of dots
MoSe nanowires	1-20 nm	$1 \ \mu m$	$0.3-0.6~\mu{ m m}$	0.15		
PRL 96 076601 (2006)	2-620 channels					
polyactelyne nanofibers	40-60 nm high	$2 \ \mu m$			$l = 10 \ \mu \mathrm{m}$	N = 200
PRB 72 153302 (2005)	\times 100-300 nm					
PRL 93 196601 (2005)						
polydiacetylene (PDA)		$25~\mu{ m m}$	hopping length:			N = 2500
PRB 69 214203 (2004)			10 nm at $120-300 K$,			
			$30 \mathrm{~nm}$ at $30 \mathrm{~K}$			
SWCNT	$\leq 5 \text{ nm}$	$0,4~{ m cm}$	$1 \ \mu m \ (defect-free)$			
NanoLetters						
$4 \ 2003 \ (2004)$						
SWCNT	1 nm	$300 \ \mu m$				
Physica B 279 200 (2000)						
MWCNT	5-25 nm	$1.1-2.6 \ \mu m$	25-250 nm			
PRL 93 086801 (2004)						
InSb nanowires	$0.5 \ \mathrm{nm}$	$0.1-1 \mathrm{mm}$			$l=1-10 \ \mu m$	N=2000-5000
J Phys: Condens Matter						
12 L303 (2000)						
CDW nanowires (NbSe ₃)	30-300 nm	$2\text{-}20~\mu\mathrm{m}$				
PRL 93 176602 (2004)	220 to 25640					
	$_{\rm chains}$					
2 parallel GaAs	20-30 nm	$2\text{-}10 \ \mu\text{m}$	$6 \ \mu m$	0.67 ± 0.07		
nanowires				0.59 ± 0.03		
Science 295 825 (2002)						
PRB 68 125312 (2003)						

Hangzhou 2007

Sino-German Workshop on Disordered and Interacting Quantum Systems

Tunneling rate

$$Z = Z_0 + iZ_1 = \int \mathcal{D}\varphi(x,\tau) e^{-1/\hbar \int_{-K_{\text{eff}}/2T}^{K_{\text{eff}}/2T} dy \mathcal{L}(\{\varphi\},f)}$$

$$\hbar \Gamma = -2 \operatorname{Im} F = 2\beta^{-1} \operatorname{Im} \ln Z,$$

$$\Gamma \approx 2(\beta \hbar)^{-1} \frac{Z_1}{Z_0}$$

$$\frac{Z_1}{Z_0} \propto \text{Im} \int \sqrt{\frac{S_{\text{inst}}}{\hbar}} dR \ e^{-S(R)/\hbar}$$
$$\propto e^{-S_{\text{inst}}/\hbar} \text{Im} \int_{-R_c}^{\infty} dr \sqrt{\frac{S_{\text{inst}}}{\hbar}} e^{2\pi f r^2/(pK_{\text{eff}})}.$$

Hangzhou 2007

