Weakly interacting Bose gas in disordered environment

G.M. Falco and T. Nattermann
University of Cologne, Germany

V.L. Pokrovsky,
TAMU, TX, USA & Landau Institute, Moscow

Acknowledgements: DOE, grant DE-FG02-06ER 46278, DFG project NA222/5-2 and SFB 608

*PRL 100, 060402 (2008)
EPL 85, 30002 (2009)
Outline

Introduction

Interacting Bose gas in weak random potential

Strong disorder

Bosons in lower dimensions

Bosons in traps
Introduction

BEC: finite part of atoms in the state with minimal energy.

Examples: Superfluid 4He, laser cooled atoms in a trap*

Disorder: Superfluid He in porous media (J.D. Reppy et al '92)
Cold atoms in speckle potential (R.G. Hulet et al. '08)

Breakdown of superfluidity at strong disorder

Other examples: excitons in semiconductors, BEC of spin waves
Phase Coherence and Superfluid-Insulator Transition in a Disordered Bose-Einstein Condensate

Yong P. Chen,1,2,* J. Hitchcock,1 D. Dries,1 M. Junker,1 C. Welford,1 and R. G. Hulet1

1Department of Physics and Astronomy and Rice Quantum Institute,
Rice University, 6100 Main St., Houston TX 77005, USA

2The Richard E. Smalley Institute for Nanoscale Science and Technology,
Rice University, 6100 Main St., Houston TX 77005, USA

(Dated: October 30, 2007)

Hulet et al

\(t_{\text{TOF}} = 0 \text{ ms} \)

(a)

(c)

(e)

(g)

\(t_{\text{TOF}} = 8 \text{ ms} \)

(b)

(d)

(f)

(h)
Bosons in disordered environment:

Review: Weichman, Mod. Phys. Lett. '08

\[T_c(n) \]

\[n_c \]

\[\text{normal fluid} \]

\[\text{superfluid} \]

\[\text{Bose glass} \]

Weichman+Fisher'86

Fisher, Weichman, Grinstein+Fisher '89 → \[z=d \]

Halperin, Lee+ Ma'86

Giamarchi+Schulz '87 (d=1)

Shklovskii+Müller '08

Shklovskii '08

Babichenko² '08

\[\rho_s \approx \rho_0[1 - c_1 \sqrt{n_c/n}] \]

Bogoliubov theory

Huang+Meng '92

Cross-Pitaevskii equation

\[\rho_0 \]

\[c_1 \]
Fermions

- Insulator
- Metal
- Anderson localization
- Disorder

\[n \approx L_c^{-3} \]

Bosons

- Bose glass
- Superfluid
- Disorder
- Collapsed, non-ergodic

Interaction
No Disorder

- Disorder
- Superfluid
- Bose glass

Diagram with axes:
- Disorder
- Interaction

Region labeled "Bose glass" in the diagram.
(a) BEC: Ideal bosons $T=0$

$$\mathcal{H} = -\frac{\hbar^2}{2m} \int d^d x \hat{\Psi}^\dagger(x) \nabla^2 \hat{\Psi}(x), \quad \hat{\Psi} = \sum_q e^{i q x} \hat{a}_q$$

$$N = nV = \int d^d x \langle \hat{\Psi}^\dagger(x) \hat{\Psi}(x) \rangle$$

$$\epsilon_q = \frac{\hbar^2}{2m} q^2$$

$\mu=0$

all particles in ground state
BEC : Interacting bosons

\[\mathcal{H} = \frac{\hbar^2}{2m} \int d^3x \hat{\Psi}^\dagger \left[-\nabla^2 + 4\pi a \hat{\Psi}^\dagger \hat{\Psi} \right] \hat{\Psi} \]

\[\hat{\Psi}^\dagger \hat{\Psi} = \hat{n} \]

Scattering length

Bogoliubov transform \(\Rightarrow \)

\[\epsilon_q^2 = \frac{\hbar^2 q^2}{m} \left(\frac{\hbar^2}{m\xi^2} + \frac{\hbar^2 q^2}{4m} \right) \]

\[\mu = \frac{\hbar^2}{m\xi^2} \left(1 + \frac{c}{n^{1/3}\xi} \right) \]

Lee & Yang '57

healing length \(\xi = \frac{1}{\sqrt{4\pi an}} \)
Weak Disorder

- Bose glass
- superfluid
- collapsed, non-ergodic

disorder

interaction
(d) Weakly repulsive bosons in a weak random potential

\[\mathcal{H} = \int d^3 x \Psi^\dagger \left(-\frac{\hbar^2}{2m} \nabla^2 + U(x) + \frac{2\pi \hbar^2 a}{m} \Psi^\dagger \Psi \right) \Psi, \]

\[\langle U(x)U(x') \rangle = \kappa^2 \delta(x - x') \]

Huang & Meng

\[L_c = \frac{\hbar^4}{m^2 \kappa^2} \]

mean free path

\[\Delta \mu = \Delta \epsilon \approx \int_0^{\xi^{-1}} \frac{d^d q}{\hbar^3} \frac{\kappa^2}{c_s q} \sim \frac{\hbar^2}{m \xi^2} \left(\frac{\xi}{L_c} \right)^{4-d}, \quad d > 1 \]
Strong Disorder, no Interaction

Bose glass

collapsed, non-ergodic

superfluid

disorder

interaction
Ideal 3d Bose gas in random potential

\[\frac{\hbar^2}{2m} \nabla^2 \psi + (E - U(x))\psi = 0 \quad \langle U(x)U(x') \rangle = \kappa^2 \delta(x-x') \]

\[L_c = \frac{\hbar^4}{m^2 \kappa^2} \]

\[E_c = \frac{\hbar^2}{2mL_c^2} \] energy scale of localized states

T=0: All particles in ground state \(E_0 \approx -E_c \ln^2(L_0/L_c) \)
Single particle density of states DOS $E \to -\infty$

$$\nu(E, V) = \frac{1}{V} \int \delta(E - E[U(x)]) dW[U(x), V]$$

Consider potential fluctuation of depth U and width R

probability $W[U] \sim \exp\left[\frac{-U^2 R^d}{2 \kappa^2}\right]$

\to localized state of energy $E \sim \frac{\hbar^2}{2mR^2} + U$

Contribution of DOS at energy $E \sim \max W[E - \frac{\hbar^2}{2mR^2}]$

Maximize W with respect to R \Rightarrow $R = L_c(E_c/|E|)^{1/2}$

\to $\nu \sim \exp\left\{\frac{-|E|}{E_c(4-d)/2}\right\}$
Ideal Bose gas in random potential

DOS for $E \ll -E_c$ dominated by wells of width $R \sim \hbar/\sqrt{m|E|} \ll L_c$

$$\nu(E) = \frac{1}{V} \langle \delta(E - E[U(x)]) \rangle \sim |E|^{3/2} e^{-\sqrt{|E|/E_c}}$$

I.M. Lifshitz '66, Zittartz and Langer '66, Halperin and Lax,'66 Cardy '78
Ideal Bose gas in random potential

Spatial density $n_w(R)$ of wells with radius $R \ll L_c$ ($E \ll \hbar^2/(2mR^2) \ll E_c$):

$$n_w(R) = \int_{-\infty}^{-\frac{\hbar^2}{2mR^2}} dE \, \nu(E) \sim \frac{L_c}{R^4} e^{-L_c/R}$$

Tunneling amplitude $t(R)$ between wells with radius R:

$$t(R) = \exp \left(-\frac{1}{\hbar} \int |p| dl \right)$$

$$\frac{1}{\hbar} \int |p| dl \approx n_w^{-1/3}/R \sim e^{L_c/3R}$$

$$t(R) \sim e^{-\left(\frac{R}{L_c} e^{L_c/R}\right)^{1/3}}$$
Strong Disorder + Interaction

Bose glass

superfluid

collapsed, non-ergodic

disorder

interaction
Weakly repulsive bosons in a random potential

\[\mathcal{H} = \int d^3x \Psi^\dagger \left(-\frac{\hbar^2}{2m} \nabla^2 + U(x) + \frac{2\pi \hbar^2 a}{m} \Psi^\dagger \Psi \right) \Psi \]

Assume that all potential wells with radii up to \(R \) are filled:

\(\Rightarrow \) number of particles per well of size \(R \) : \(N_w(R) = n/n_w(R) \gg 1 \)

\(\Rightarrow \) repulsion energy per particle: \(E_g(R) \approx g N_w/R^3 \sim g n e^{L_c/R} \)

\(\Rightarrow \) total energy per particle: \(\mu(R) = -\hbar^2/(2mR^2) + E_g(R) \)
Weakly repulsive bosons in a random potential

⇒ number of particles per well of size \(R \):
\[N_w(R) = n/n_w(R) \gg 1 \]

⇒ repulsion energy per particle:
\[E_g(R) \approx g N_w/R^3 \sim g n e^{L_c/R} \]

⇒ total energy per particle:
\[\mu(R) = -\hbar^2/(2mR^2) + E_g(R) \]

Minimization over \(R \):
\[R(n)=L_c/\ln(n_c/n), \]

\[n \ll n_c \approx 1/(3L_c^2a) \]

(non-interacting Fermions: Ioffe-Regel \(a \rightarrow L_c \))

\[\mu(n) = -\frac{\hbar^2}{2mR^2(n)} = -\frac{1}{2} E_c(\ln \frac{n_c}{n})^2 \]

\[\frac{n_c}{n} = \frac{\xi^2}{L_c^2} \]
Variable hopping conductivity:

Absence of interaction: probability that two localized states have the same energy is zero.

Switch on interaction: energy levels split by amount $g n_p$. If $n \ll n_c$ wave function is still localized.

$\Rightarrow T=0$ conductivity (response to external force) in Bose-glass is still zero.

Tunneling probability between wells of distance L is $\sim \exp\{-2L/R\}$

\Rightarrow hopping probability $P(T) \sim \exp\{-2L/R-\Delta E/T\}$

$\Delta E \propto (E) L^3 \approx 1$, use relation $R(n)$ and maximize $P(T)$ with respect to hopping distance $L$$\Rightarrow$

$$\sigma(T) \sim e^{-C[E_c n_c/(T n)]^{1/4}}$$
Preliminary conclusions

⇒ At $n \ll n_c$ Bose gas decays into fragments, particle density in fragments each of density $n_c \sim 1/(aL_c^2)$

⇒ tunneling exponentially suppressed: $t(n) \sim e^{-c(n_c/n)^{1/3}}$

⇒ particle number in fragments $N_w = L_c / \left[3a(\ln \frac{n_c}{n})^3 \right]$ well defined

⇒ phase uncertain, no phase coherence ⇒ no superfluidity

⇒ finite compressibility $\frac{n}{E_c} \ln \left(\frac{n_c}{n} \right)$ "Bose glass"

⇒ $\hat{H}_{\text{eff}} = \sum_j C_j (\hat{N}_j - \langle N_j \rangle)^2 - \sum_{i,j} t_{ij} \cos(\hat{\phi}_i - \hat{\phi}_j)$

⇒ charged bosons VRH $\sigma(T) \sim e^{-C[E_c n_c / (Tn)]^{1/4}}$

For $n \approx n_c$ i.e. fragments merge → transition to superfluid
Correlated disorder

\[\langle U(x)U(x') \rangle = \frac{U_0^2}{b^3} e^{-|x-x'|/b} \]

⇒ 2 length scales \(b, B = (\hbar^2/(mU_0))^{1/2} \)

\(b \ll B \Rightarrow \) uncorrelated disorder

\[\nu(E) \sim |E|^3 \exp\left(-E^2/2U_0^2\right) \]

Keldysh & Proshko '63
Kane '63
Shklovskii and Efros '70
John & Stephen '84

\[\mu(b, n) \approx -U_0 \sqrt{2 \ln\left(\frac{n_c}{n}\right)} \]

\[n \ll n_c \sim 1/(B^2a) \]

\[n_w(E) = b^{-3} \exp\{E^2/2U_0^2\} \]
Generalization to $d<3$ dimensions

What is different?

DOS,

$a \rightarrow \alpha_d d^{-2} = a \cdot r^{-d-3}$

ξ, L_c, E_c

$n/n_c \sim n/L_c^2 \alpha_d d^{-2}$
Bose gas in one dimensions

Superfluid

Bose glass

\(K \sim 1/(n a_1) \)

\(K \sim 1-8n a_1 \)

\(K \sim 1/(n a_1) \)

\(K \sim 1/(n a_1) \)

\(k_{\text{LL parameter}} \)

\(U \)

\(\Delta \)

\(\Delta_{\text{max}} \)

Bose glass

Bose glass

superfluid

Mott insulator

Giamarchi & Schulz '87

this work

(Disorder)

free fermions

Lieb '65

(Disorder)
Bosons in traps
Ideal quantum gas in a harmonic trap

- **Oscillator length**: $\ell = (\hbar/m\omega)^{1/2}$ ($\approx 1000\text{nm}$), $\hbar\omega \approx nK$

- **Bosons**: $T=0$: all particles in ground state of size ℓ

- T_c: $\lambda_T^3 n \sim \lambda_T^3 N/R^3 \approx 1$

- $T_{c0} \sim \hbar\omega N^{1/3}$

- $\lambda_T = (\hbar^2 / Tm)^{1/2}$

- $m\omega^2 R^2 \approx T$
 $N \approx 10^3 \ldots 10^8$

- **Fermions**: $\varepsilon_F \sim T_{c0}$

- $R_F \approx r_\omega N^{1/6}$

Diagram Overview

- The diagram illustrates the potential $U(x)$ and the oscillation length ℓ.

- The graph shows the typical behavior of bosons and fermions in a harmonic trap, highlighting the relationship between the oscillation length and the thermal properties of the system.
Bosons in traps (uncorrelated disorder)

oscillator length $\ell = (\hbar/m\omega)^{1/2}$ ($\approx 1000\text{nm}$), $\hbar\omega \approx nK$

$$\mu(R) = -\frac{\hbar^2}{2mR^2} + E_{\text{int}}(R) + \frac{\hbar^2}{2m} \frac{R^2}{\ell^4}$$

$$\Gamma = \frac{\ell^6}{3NaL_c}$$

$$n(r) = n_c \left(\frac{n}{n_c} \right)^{\sqrt{1 + r^2/r_F^2}}$$

interaction

$\ln(Na/\ell)$ $\Gamma = 1$

Thomas-Fermi $R \sim (Na\ell^4)^{1/5}$

fragmented

harmonic $R \approx \ell$

non-ergodic

disorder

$\ln(\ell/L_c)$ $\ln(\ell/L_c)$

$\frac{\ell^2}{L_c} \ln \left(\frac{\ell^6}{NaL_c^5} \right)$

fragmented state
Bosons in traps (correlated disorder, $d=3$)

\[\Gamma = \frac{\ell^6}{N\alpha B^5} \]

\[L \sim \frac{\ell^2}{B} \left(\ln \frac{\ell^2}{\alpha B} \right)^{1/4} \]

\[\ln(N\alpha/\ell) \]

Thomas-Fermi \hspace{1cm} \text{harmonic}

\[R \sim (N\ell^4)^{1/5} \hspace{1cm} R \approx \ell \]

fragmented \hspace{1cm} \text{non-ergodic}
Bose gas in 1 dimensions: parabolic trap

\[\ln(N\ell/a_1) \quad L \sim \frac{\ell^2}{L_1} \left(\ln(\frac{\ell^2 a_1}{NL_1^3}) \right)^{1/3} \]

Uncorrelated disorder
- **Thomas-Fermi**
 \[R \sim (N\ell^2/a_1)^{1/3} \]
- **harmonic**
 \[R \sim \ell \]

\[L \sim \frac{\ell^2}{L_1} \left(\ln(\frac{\ell^2 a_1}{NL_1^3}) \right)^{1/3} \]

Correlated disorder
- **Thomas-Fermi**
 \[R \sim \left(\frac{N\ell^4}{a_1} \right)^{1/3} \]
- **harmonic**
 \[R \approx \ell \]

\[L \sim \frac{\ell^2}{B} \left(\ln\left(\frac{\ell^2 a_1}{NB^3} \right) \right)^{1/4} \]
Prediction which could be tested

1. Cloud size as function of these parameters in fragmented state?

2. Cross-over from non-ergodic to ergodic state at critical $N_c = L_c/3a$, $N_c = b^3/(3aB^2)$, number of particles in fragments?

3. Time of flight spectroscopy, $\Delta p \sim \hbar/R$, fragmented state should be visible.

4. Ground state reachable? According to our estimates ($L_c \approx 1 \mu m$) relaxation time $\approx 0.06s$. Easier in lower dimension.

Changeable parameter: N, ω, a, U_0, b
Conclusions

- Semi-quantitative analysis of the phase states of a weakly interacting strongly diluted Bose gas in a random Gaussian potential.

- The system is characterized by the mean free path L_c and the scattering length a (or a, U_0 and B for correlated disorder).

- At particle density $n \ll n_c \approx 1/(aL_c^2)$ the Bose particles occupy deep potential wells and exponentially weakly tunnel to other wells. The number of particles in each well is defined, but phases are uncertain.

- At average particle density $n \approx n_c$ the transition to the superfluid proceeds.

- In a trap the oscillator length l appears as a new length scale. Four different regimes are found, depending on the mutual strength of L_c, aN and l, respectively.

- All results can be extended to lower dimensions and to correlated disorder.