Weakly interacting Bose gas in disordered environment*

G.M. Falco and <u>T. Nattermann</u> University of Cologne, Germany

V.L. Pokrovsky, TAMU, TX, USA & Landau Institute, Moscow

Acknowledgements: DOE, grant DE-FG02-06ER 46278 , DFG project NA222/5-2 and SFB 608

*PRL 100, 060402 (2008) EPL 85, 30002 (2009) arXiv: 0811.1269 (Phys. Rev. B)

Introduction

Interacting Bose gas in weak random potential

Strong disorder

Bosons in lower dimensions

Bosons in traps

Introduction

- **BEC**: finite part of atoms in the state with minimal energy.
- Examples: Superfluid ⁴He, laser cooled atoms in a trap*
- Disorder: Superfluid He in porous media (J.D. Reppy et al '92) Cold atoms in speckle potential (R.G. Hulet et al. '08)

Breakdown of superfluidity at strong disorder

*Other examples: excitons in semiconductors, BEC of spin waves

Phase Coherence and Superfluid-Insulator Transition in a Disordered Bose-Einstein Condensate

Yong P. Chen,^{1,2,*} J. Hitchcock,¹ D. Dries,¹ M. Junker,¹ C. Welford,¹ and R. G. Hulet¹

 ¹Department of Physics and Astronomy and Rice Quantum Institute, Rice University, 6100 Main St., Houston TX 77005, USA
 ²The Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main St., Houston TX 77005, USA (Dated: October 30, 2007)

Hulet et al

 $t_{TOF} = 0 \text{ ms}$

 $t_{TOF} = 8 \text{ ms}$

Bosons in disordered environment:

No Disorder

(a) BEC: Ideal bosons T=0

$$\mathcal{H} = -\frac{\hbar^2}{2m} \int d^d x \hat{\Psi}^{\dagger}(x) \nabla^2 \hat{\Psi}(x), \quad \hat{\Psi} = \sum_q e^{iqx} \hat{a}_q$$
$$N = nV = \int d^d x \langle \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x) \rangle$$

all particles in ground state

$$\begin{array}{l} \underline{\mathsf{BEC}: \mathbf{Interacting bosons}}\\ \mathcal{H} = \frac{\hbar^2}{2m} \int d^3 x \hat{\Psi}^{\dagger} [-\nabla^2 + 4\pi a \, \hat{\Psi}^{\dagger} \hat{\Psi}] \, \hat{\Psi} & \hat{\Psi}^{\dagger} \hat{\Psi} = \hat{n} \\ & \\ \mathbf{Scattering length} & \hat{\Psi}^{(\dagger)} = \Psi_0 + \delta \hat{\Psi}^{(\dagger)} \\ \end{array}$$

$$\begin{array}{l} \mathbf{Bogoliubov transform} \Rightarrow & \epsilon_q^2 = \frac{\hbar^2 q^2}{m} \left(\frac{\hbar^2}{m\xi^2} + \frac{\hbar^2 q^2}{4m}\right) \\ \mathbf{\mathcal{E}}_q \end{array}$$

$$\mu = \frac{\hbar^2}{m\xi^2} \left(1 + \frac{c}{n^{1/3}\xi}\right)$$

Lee & Yang '57
healing length $\xi = \frac{1}{\sqrt{4\pi an}}$

Ideal 3d Bose gas in random potential

$$\frac{\hbar^2}{2m}\nabla^2\psi + (E - U(\mathbf{x}))\psi = \mathbf{0} \quad \langle U(\mathbf{x})U(\mathbf{x}')\rangle = \kappa^2\delta(\mathbf{x} - \mathbf{x}')$$

<u>Single particle density of states DOS</u> $E \rightarrow -\infty$

$$\nu(E, \mathbf{V}) = \frac{1}{\mathbf{v}} \int \delta(E - E[U(\mathbf{x})]) dW[U(\mathbf{x}), \mathbf{V}]$$

Consider potential fluctuation of depth U and width R W[U]~ exp [-U²R^d/2 κ^2] probability

 \rightarrow localized state of energy $E \sim \hbar^2/(2mR^2) + U$

Contribution of DOS at energy $E \sim \max W[E - \hbar^2/(2mR^2)]$

Maximize W with respect to $R \Rightarrow R = L_c (E_c/|E|)^{1/2}$

 \rightarrow

 $v \sim \exp \{-(|E|/E_c)^{(4-d)/2}\}$

Ideal Bose gas in random potential

DOS for E << - E_c dominated by wells of width $R \sim \hbar/\sqrt{m|E|} \ll L_c$

Ideal Bose gas in random potential

Spatial density $n_W(R)$ of wells with radius < R-(L_c (E - $h^2/(2mR^2)$ - E_c)

$$n_w(R) = \int_{-\infty}^{-\frac{\hbar^2}{2mR^2}} dE \ \nu(E) \sim \frac{L_c}{R^4} e^{-L_c/R}$$

Tunneling amplitude t(R) between wells with radius < R :

$$t(R) = \exp\left(-\frac{1}{\hbar}\int |p|dl\right)$$
$$\frac{1}{\hbar}\int |p|dl \approx n_w^{-1/3}/R \sim e^{L_c/3R}$$

$$t(R) \sim e^{-(\frac{R}{L_c}e^{L_c/R})^{1/3}}$$

Strong Disorder + Interaction

Assume that all potential wells with radii up to R are filled:

- \Rightarrow number of particles per well of size R : N_w(R) = n/n_w(R) > 1
- \Rightarrow repulsion energy per particle: $E_q(R) \approx g N_w/R^3 \sim g n e^{L_c/R}$
- \Rightarrow total energy per particle: $\mu(R) = -\hbar^2/(2mR^2) + E_q(R)$

Weakly repulsive bosons in a random potential

 \Rightarrow number of particles per well of size R : N_w(R) = n/n_w(R) > 1

- \Rightarrow repulsion energy per particle: $E_g(R) \approx g N_w/R^3 \sim g n e^{L_c/R}$
- \Rightarrow total energy per particle: $\mu(R) = -\hbar^2/(2mR^2) + E_q(R)$

Mininization over R: \Rightarrow R(n)=L_c/ln(n_c/n),

 $n \ll n_c \approx 1/(3L_c^2 a)$

(non-interacting Fermions: Ioffe-Regel $a \rightarrow L_c$)

$$\mu(n) = -\frac{\hbar^2}{2mR^2(n)} = -\frac{1}{2}E_c(\ln\frac{n_c}{n})^2$$

$$\frac{n_c}{n} = \frac{\xi^2}{L_c^2}$$

Variable hopping conductivity:

Absence of interaction: probability that two localized states have the same energy is zero.

Switch on interaction: energy levels split by amount gn_p . If $n \ll n_c$ wave function is still localized .

 \rightarrow T=0 conductivity (response to external force) in Bose-glass is still zero.

Tunneling probability between wells of distance L is $\sim exp\{-2L/R\}$

 \rightarrow hopping probability P(T) $\sim \exp\{-2L/R-\Delta E/T\}$

 Δ E v(E) $L^3 {\approx}$ 1 , use relation R(n) and maximize P(T) with respect to hopping distance L \Rightarrow

$$\sigma(T) \sim e^{-C[E_c n_c/(Tn)]^{1/4}}$$

Preliminary conclusions

- \Rightarrow At n << n_c Bose gas decays into fragments, particle density in fragments each of density n_c \sim 1/(aL_c²)
- \Rightarrow tunneling exponentially suppressed: t(n)~ e^{-c(n_c/n)^{1/3}}
- \Rightarrow particle number in fragments $N_w = L_c / \left[3a (\ln \frac{n_c}{n})^3 \right]$ well defined
- \Rightarrow phase uncertain, no phase coherence \Rightarrow no superfluidity
- $\Rightarrow \text{ finite compressibility } \frac{n}{E_c} \ln\left(\frac{n_c}{n}\right) \qquad \text{,Bose glass''}$ $\Rightarrow \qquad \hat{H}_{\text{eff}} = \sum_j C_j (\hat{N}_j \langle N_j \rangle)^2 \sum_{i,j} t_{ij} \cos(\hat{\phi}_i \hat{\phi}_j)$
- \Rightarrow charged bosons VRH $\sigma(T) \sim e^{-C[E_c n_c/(Tn)]^{1/4}}$

For $n \approx n_c$ i.e. fragments merge \rightarrow transition to superfluid

Correlated disorder

 $b \gg B \Rightarrow$ new results

$$\Rightarrow$$
 2 length scales b , B=($\hbar^2/(mU_0)$)^{1/2}

 $\mathsf{b} \mathrel{\checkmark} \mathsf{B} \mathrel{\Rightarrow} \hspace{0.1 in} \mathsf{uncorrelated} \hspace{0.1 in} \mathsf{disorder}$

$$\nu(E) \sim |E|^3 \exp(-E^2/2U_0^2)$$

Keldysh & Proshko '63 Kane '63 Shklovskii and Efros '70 John & Stephen '84

$$\mu(b,n) pprox - U_0 \sqrt{2\ln(rac{n_c}{n})}$$
n << n_c \sim 1/(B²a)

$$n_w(E)=b^{-3}exp\{E^2/2U_0^2\}$$

Generalization to d<3 dimensions

What is different?

DOS,

 $a \rightarrow a_d^{d-2}$ = a r_{\perp}^{d-3}

ξ, L_c, E_c

 $n/n_{c} \sim n/L_{c}^{2} a_{d}^{d-2}$

Bosons in traps

Ideal quantum gas in a harmonic trap

□ oscillator length ℓ =($\hbar/m\omega$)^{1/2} (\approx 1000nm), $\hbar\omega$ \approx nK

 \square <u>Bosons</u>: T=0: all particles in ground state of size ℓ

Bosons in traps (uncorrelated disorder)

Bosons in traps (correlated disorder, d=3)

$$\ln(Na/\ell) \stackrel{\Gamma=1}{\stackrel{\prime}{\underset{L\sim}{\sim}} L \sim \frac{\ell^2}{B} \left(\ln \frac{\ell^6}{NaB^5} \right)^{1/4}}{\Gamma = \frac{\ell^6}{NaB^5}}$$
Thomas-Fermi

$$R \sim (Na\ell^4)^{1/5} \stackrel{\prime}{\underset{L\sim}{\sim}} \frac{\Gamma}{\frac{\ell^2}{B}} \left(\ln \frac{\ell^2}{bB} \right)^{1/4}}{\ln(\ell/B)}$$
harmonic

$$R \approx \ell \qquad L \sim \frac{\ell^2}{B} \left(\ln \frac{\ell^2}{bB} \right)^{1/4}$$

Bose gas in 1 dimensions: parabolic trap

Uncorrelated disorder

Correlated disorder

Prediction which could be tested

- 1. Cloud size as function of these parameters in fragmented state?
- 2. Cross-over from non-ergodic to ergodic state at critical N $N_c=L_c/3a$, $N_c=b^3/(3aB^2)$, number of particles in fragments?
- 3. Time of flight spectroscopy, $\Delta p \sim \hbar/R$, fragmented state should be visible.
- 4. Ground state reachable? According to our estimates (L_c \approx 1 μ m) relaxation time \approx 0.06s. Easier in lower dimension.

Changeable parameter: N, ω , a, U₀, b

Conclusions

- Semi-quantitative analysis of the phase states of a weakly interacting strongly diluted Bose gas in a random Gaussian potential.
- The system is charcterized by the mean free path $\rm L_c$ and the scattering length $\rm a$ (or $\rm a, U_0$ and B for correlated disorder)
- At particle density n << $n_c \approx 1/(aL_c^2)$ the Bose particles occupy deep potential wells and exponentially weakly tunnel to other wells. The number of particles in each well is defined, but phases are uncertain.
- At average particle density $n \approx n_{\rm c}$ the transition to the superfluid proceeds.
- In a trap the oscillator length I appears as a new length scale. Four different regimes are found, depending on the mutual strength of L_c , aN and I, respectively.
- All results can be extended to lower dimensions and to correlated disorder.