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enantiomers, 
optical isomers 
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!
 

Chirality    
!

handedness: object and mirror image do not agree







Examples of chiral substances. (a) Schematic of d and l quartz.  (b) Sodium chlorate crystal, and (c) D (upper) and L (lower) alanine. In (b), d and l 
crystals are differentiated by their color under polarized light.





rE = ⇢

rB = 0

r⇥E =
1

c
Ḃ
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Hund’s Paradox: molecules and 
solids built by Coulomb interaction 



Leipzig (1929 bis 1946)	


Leipzig 1929-1946
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Hund’s explanation    

 ‘’spontaneous symmetry breaking’’    
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2nd paradox:  why  don’t we observe the ground state? 
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Coupling to the environment: photons, gas atoms,...

 



Time evolution: description by density matrix
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film plane perpendicular to helical axis

Motivation

450µm



How do the domain walls look like?

Bloch wall (Bloch 1932)
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Neel wall

Motivation
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Time reveral symmetry 

Time reversal transformation:

T̂ t = �t

T̂ E = E

T̂ B = �B



Chiral Magnets:   time reversal + spatial inversion symmetry  broken

centrosymmetric crystals: 
space group contains  
              inversion center 

simultaneously

non-centrosymmetric 
crystals: 
space group contains no 
inversion center 

separately



Centrosymmetric Crystals

 

both right-handed and left-handed helices appear!

Tb,Dy,Ho

Ho T<19K

TbMnO3



Centrosymmetric Crystals: Model 
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!
!
Toulouse & Kleman (1976) 
Volovik & Mineev    (1977) 
Mermin                   (1979) 
!
Degeneracy space 
!
Consider mapping of a subspace        of       on           
!
Ensemble of equivalent mappings:    homotopy group ⇡d(R)

RR3Vd

R
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Example: Ising domain wall,        
! �0(R) = Z2

Classification of defect structures according to 
                                                        homotopy groups :   



Defects:  vortex line perpendicular and parallel to helix

z

FeGe,  Tokura et al. ‚08

�⇡

nw =
H
C d⇥/2� = �1 R = S1 � S0

degeneracy  space

�⇡

⇡

⇥? ⇡ 2�J
n

q ln
⇣

Lq
�

⌘

+
p
5

16a ln1/2
⇣

�
qa

⌘o

���22

x

x

y



I
d' = 2⇡

Very different from Bloch or Neel walls!

?



Defects:  domain walls 

Hubert walls    
perpendicular to helix 

Vortex domain wall 
parallel to helix

x

x

R = S1 � S0

zz

 
path in degeneracy space

path in real space

CuCrO2
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Electrons moving adiabatically in  exchange field  
of  magnetization experience Berry's magnetic field

Centrosymmetric Crystals: Topological Hall effect*

*Ye,  Kim, Millis, Shraiman,  Majumdar, and Tesanovic

m3=2  : Skyrmeon 

force on vortex line
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Centrosymmetric Crystals: Topological Hall effect*

m3=1  : Meron 

force on vortex line
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 Coupling to electric polarization

Centrosymmetric Crystals: Multiferroics

vortex lines are charged

Wall in  yz-plane similar to 
Neel wall: magnetization 
rotates around axis in the wall 



Centrosymmetric Crystals: Domain



Non-Centrosymmetric Crystals: systems and model

FeGe , MnSi, Fe1-xCoxSi 
!
Heisenberg-spins  + weak cubic anisotropy

Dzyaloshinskii-Moriya interaction gMi ⇥Mj
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R = SO(3)/Z2

�3(R) = Z (non-trivial texture)

�2(R) = 0 (no point defects)

�1(R) = Z4 (stable line defects)
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G.E. Volovik, V.P. Mineev, 1977, "Investigation of singularities in superuid 3He  
and liquid crystals by homotopic topology methods," Sov.Phys. JETP 45 1186 - 1196  

2π#disclina+on- π#disclina+on- #π#disclina+on-



Domain wall bisector to   
wave vectors of adjacent domains

Non-Centrosymmetric Crystals: Hubert walls



Domain wall is not bisector to the wave vectors of the adjacent domains

Numerically calculated vortex domain wall 

Vortex domain walls much heavier than Hubert walls, 
 may decay in zig-zag structure of vortex-free domain walls





FeGe, Uchida et al. 2008
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Weak pinning : Basics 

Pinning by randomly distributed impurities

Pinning force due to impurity i: f
i
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Weak pinning : Basics 

�(x) = �(x0) + ln[cosh(x� x0)]

domain wall has to adopt elastically 
to pinning forces
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Energy of elastic distortion u
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On scales L>                                   
the domain wall decays into 
individually pinned regions



Elasticity of Hubert wall 
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buckling (no vortices)  
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Weak pinning - the real thing:  
Functional renormalization group 
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Bulk pinning of Hubert walls
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weak in plane anisotropy   
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!
!
!
Chiral molecules and solids are the result of spontaneous symmetry 
breaking and/or decoherence effects. 
!
Chiral magnets exhibit broken time and space inversion symmetry. 
These symmetry breakings can appear sequentially or simultaneously. 
!
Topological defects in chiral magnets are vortices, domain walls and 
skyrmion lattices. 
!
Domain walls in helical magnets are always two dimensional textures 
(vortex lines), in contrast to Bloch or Neel walls, with the exception of 
special orientations (Hubert walls). 
!
!
!
!

Conclusions 
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