A new criterion for crack formation in disordered materials*

Thomas Nattermann University of Cologne

* P.F. Arndt and T.N., Phys. Rev. B63, 134204 (2001) 1

Theory of Disorder Dominated Effects

<u>Members:</u>

Christophe Deroulers (→ ENS) Leiming Chen Giovanni Falco Aleksandra Petcovic Zoran Ristivojevic Friedmar Schütze Bernd Rosenow (Heisenberg/Harvard) Andreas Glatz (Argonne) **Research Topics**

Disordered quantum wires Charge density waves Vortex physics Random magnets Friction Crack formation * Localization of Bosons Helium 3 in Aerogels

<u>Outline:</u>

- Elasticity theory
- Griffith criterion
- The new criterion: orders of magnitude estimates
- The 2-dimensional case
- Epilogue

Elasticity theory - a primer:

- elastic displacement $u(r) = r' r \quad u_{ik} = (\partial_k u_i + \partial_i u_k)/2$
- force $K_i(\mathbf{r}) = \partial_k \sigma_{ik}$
- free energy density $F=\lambda u_{ii}^2/2+\mu u_{ik}^2 = \sigma_{ik}=\partial F/\partial u_{ik}$ •simple strain $\sigma_{zz}=p \rightarrow u_{zz}=p/Y = y=\mu(3\lambda+2\mu)/(\lambda+\mu)$
- dislocation $\oint \partial_k u_i dx_k = b_i$

Griffith criterion for critical cracks (1920)

(on times scale of the age of the universe: $\tau \sim \tau_0 e^{E_c/T}$)

 $E_c \sim T_m (L_c/a_0)^{d-1}$ $T_m \sim \gamma_0 a_0^{d-1}$ melting temperature

Here: new criterion in the presence of disorder

Types of disorder:

random bond strength between atoms

randomly distributed frozen impurities and dislocations

<u>goal</u>: condition for the occurence of B

- (i) E(L) < 0
- (ii) dE/dL < 0 7

Qualitative discussion in d - dimension

Disorder \rightarrow reduced bond energy and increased stress may decrease nucleation energy

(i) Fluctuations in atomic bond strength:

 $\gamma_0 \rightarrow \gamma_0 + \delta \gamma(\mathbf{x}), \quad \langle \delta \gamma(\mathbf{x}) \rangle = \mathbf{0}, \quad \langle \delta \gamma(\mathbf{x}) \delta \gamma(\mathbf{x'}) \rangle = \delta \gamma^2 \, \delta(\mathbf{x} - \mathbf{x'}) a_0^{d-1}$

 \rightarrow E(L) gaussian distributed with mean E₀(L) and variance $\delta\gamma^2$ (La₀)^{d-1}

Probability that energy barrier is negative

$$W_{\text{E<0}} \sim \min_{\{L\}} \sqrt[-\infty]{}^0 d\text{E} \ e^{-(\text{E-E}_0)^2/\delta\gamma^2(\text{La}_0)^{d-1}} \sim e^{-\text{E}_c^2/\delta\gamma^2(\text{L}_c a_0)^{d-1}} \sim e^{-\text{E}_c/\text{Teff}}$$

$$T_{eff} = T_{m} (\delta \gamma / \gamma_{0})^{2}$$
 8

(ii) <u>Randomly distributed impurities</u> (d'=0):

single impurity: additional stress $\delta \sigma \sim Y \Omega / L^d$

 $\Omega \sim \delta R \; R^{d\text{--}1}$ change in local volume due to impurity,

 R > = 0

consider $c_i L^d$ impurities in volume $L^d \rightarrow \Delta \sigma_i \sim Y_\Omega (c_i / L^d)^{1/2}$

(iii) <u>Randomly distributed dislocations</u> (d'=d-2)

single dislocation line creates stress $\delta\sigma$ ~ Yb/L
 <br

consider c_{fd}L^2 dislocation of random orientation $\rightarrow \Delta \sigma_{fd} \sim Ybc_{fd}^{1/2}$

 $\mathsf{E}_{0} \rightarrow \mathsf{E}_{0} \text{-} 2\mathsf{L}^{\mathsf{d}} \sigma_{e} (\Delta \sigma_{i} + \Delta \sigma_{\mathsf{fd}}) / \mathsf{Y} \text{+} O(\Delta \sigma^{2})$

Total variance of crack energy:

$$\Delta \mathbf{E}^2 = \delta \gamma^2 (\mathbf{L} \mathbf{a}_0)^{d-1} + \sigma^2 \mathbf{c}_i \Omega^2 \mathbf{L}^d + \sigma^2 \mathbf{c}_{fd} \mathbf{b}^2 \mathbf{L}^{2d}$$

<u>Total variance of crack energy:</u>

So far only necessary condition

• Sufficient condition : force on crack tip always positiv

Crack in a thin plate of thickness h: no disorder

- Lame coefficients $\overline{\lambda}=2\lambda h/(\lambda+2\mu), \quad \overline{\mu}=\mu h$
- crack position -a < x a, y=0 (L \rightarrow 2a!)
- non-zero stress mode I: $\overline{\sigma}_{yy}^{(e)}$ mode II: $\overline{\sigma}_{xy}^{(e)} = \overline{\sigma}_{yx}^{(e)}$
- crack filled by <u>virtual</u> lattice planes \rightarrow no free crack surface

• \rightarrow crack dislocations with Burgers vector $\mathbf{b}^{(c)}(\mathbf{x},0)$

Energy of the crack dislocation in the stress field

$$E^{(e)} = -\epsilon_{xl}\overline{\sigma}_{lm}^{(e)} \sum_{\alpha} x_{\alpha}b_{\alpha,m}^{(c)} = -\overline{\sigma}_{ym}^{(e)} \int_{-a}^{a} dxx b_{m}^{(c)}(x).$$

sum over dislocations

Stress field generated by dislocations

 $\sigma_{ij} = \epsilon_{ik} \epsilon_{jl} \partial_k \partial_l \chi(\mathbf{r})$

$$(\nabla^2)^2 \chi(\mathbf{r}) = \overline{Y} \epsilon_{ji} \partial_j b_i(\mathbf{r})$$

$$\overline{Y} = 4 \,\overline{\mu} (\overline{\lambda} + \overline{\mu}) / (2 \,\overline{\mu} + \overline{\lambda})$$

Solution for Airy stress function

$$\chi(\mathbf{r}) = \overline{Y} \int d^2 \mathbf{r}' g(\mathbf{r} - \mathbf{r}') \epsilon_{ij} \partial'_i b_j(\mathbf{r}')$$
$$g(\mathbf{r}) = \mathbf{r}^2 (\ln|\mathbf{r}| + C) / (8\pi)$$

- crack energy $E^{(c)} = \frac{1}{2} \int d^2 \mathbf{r} \overline{\sigma}_{ij} u_{ij}$ $= -\frac{\overline{Y}}{2} \int d^2 \mathbf{r} \int d^2 \mathbf{r}' \epsilon_{ij} \epsilon_{kl} b_j(\mathbf{r}) b_l(\mathbf{r}') \partial_i \partial_k g(\mathbf{r} - \mathbf{r}')$ • elastic deformation $u_{ik} = \frac{1}{2\overline{\mu}} \overline{\sigma}_{ik} - \frac{\overline{\lambda}}{4\overline{\mu}(\overline{\lambda} + \overline{\mu})} \delta_{ik} \overline{\sigma}_{ll}$ $E^{(c)} = -\frac{\overline{Y}}{8\pi} \int_{-a}^{a} dx \int_{-a}^{a} dx' b^{(c)}(x) b^{(c)}(x') \ln \left| \frac{x - x'}{a_0} \right|$
- total energy $E = E^{(c)} + E^{(e)} + 2\int_{-a}^{a} \gamma(x)$
- minimization $b_0^{(c)}(x,a) = \frac{4\overline{\sigma^{(e)}}}{\overline{Y}} \frac{x}{(a^2 x^2)^{1/2}},$

 \Rightarrow elliptic crack of height $2\overline{\sigma^{(e)}a}/\overline{Y}$.

Crack in a thin plate of thickness h: disorder

- $E^{(s)} = 2 \int_{-a}^{a} dx \overline{\gamma(x)} = 4 \overline{\gamma_0} a + E_1^{(s)}(a)$ random bond strength $\langle [E_1^{(s)}(a) - E_1^{(s)}(a')]^2 \rangle = \Delta_{(s)} |a - a'|$ $\langle ... \rangle$ disorder average
- random impurities and dislocation $E^{(d)} = \int d^2 \mathbf{r} \sigma_{ij}^{(d)} u_{ij}^{(c)}$ • stress field from disorder

strain field from crack

$$E^{(d)} = -\frac{Y}{4\pi} \int_{-a}^{a} dx b^{(c)}(x) V(x)$$

$$V(x) = V^{(fd)}(x) + V^{(i)}(x).$$

$$V^{(fd)}(x) = 4\pi \int d^{2}\mathbf{r}' \boldsymbol{\epsilon}_{ij} [\partial_{k}\partial_{i}g(\mathbf{r}-\mathbf{r}')]_{y=0} b_{j}^{(fd)}(\mathbf{r}')$$

$$b_{j}(\mathbf{r}), \quad \mathbf{c}(\mathbf{r}) \text{ random}$$

$$V^{(i)}(x) = \Omega \int d^{2}\mathbf{r}' c(\mathbf{r}') \left(\partial_{k} \ln \left| \frac{\mathbf{r}-\mathbf{r}'}{a_{0}} \right| \right)_{y=0} 15$$

<u>Crack shape in the presence of disorder</u>

- $E=E^{(e)}+E^{(c)}+E^{(s)}+E^{(d)}$ depends on $b^{(c)}(x)$
- saddle point equation

$$\frac{4\pi}{\overline{Y}}\overline{\sigma^{(e)}} + \int_{-a}^{a} dx' b^{(c)}(x') \frac{1}{x-x'} + V'(x) = 0$$

solution

$$b^{(c)}(x) = \int_{-a}^{a} dx' f(x,x';a) \left(\frac{4\pi}{\overline{Y}}\overline{\sigma^{(e)}} + V'(x')\right)$$

$$f(x,x';a) = -\frac{1}{\pi^2} \left(\frac{a^2 - x'^2}{a^2 - x^2}\right)^{1/2} \frac{1}{x' - x}$$

total energy as a function of crack length 2a

$$E(a) = \frac{\overline{Y}}{8\pi} \int_{-a}^{a} dx \int_{-a}^{a} dx' b^{(c)}(x) b^{(c)}(x') \ln \left| \frac{x - x'}{a_0} \right| + 2 \int_{-a}^{a} dx \,\overline{\gamma}(x)$$
16

- <u>Total energy</u> $E(a) = E_0(a) + E_1^{s} + E_1^{(i)}(a) + E_1^{(fd)}(a)$
- non-random part $E_0(a) = 4\overline{\gamma_0}a \frac{\pi a^2 \sigma_{(e)}^2}{\overline{Y}} = 4\overline{\gamma_0}a \left(1 \frac{a}{2a_c}\right)$

maximum at a=a_c, $E_0(a_c) = 2 \gamma_0 a_c$

• random part $\langle [E_1^{(i)}(a) - E_1^{(i)}(a')]^2 \rangle = \Delta_{(i)} |a^2 - a'^2|$

$$\Delta_{(i)} = (\pi/2)\overline{c}_{(i)}(\Omega\overline{\sigma}_{(e)})^2 = \overline{c}_{(i)}\Omega^2\overline{\gamma}_0\overline{Y}/a_c$$

$$\langle [E_1^{(\mathrm{fd})}(a) - E_1^{(\mathrm{fd})}(a')]^2 \rangle = \Delta_{(\mathrm{fd})}(a^2 - a'^2)^2$$

$$\Delta_{(\mathrm{fd})} = (3/\pi) c_{(\mathrm{fd})} (b_{(\mathrm{fd})} \overline{\sigma^{(\mathrm{e})}})^2 = 6 c_{(\mathrm{fd})} b_{(\mathrm{fd})}^2 \overline{\gamma_0} \overline{Y} / (\pi^2 a_c)$$

 $\bullet \Rightarrow$ complete characterization of the crack

Probability $W_{E<0}(a)$ that crack has negative energy?

$$W_{E<0}(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\phi(a)} dx e^{-x^2/2}$$
$$\phi(a) = \frac{4\overline{\gamma_0}a[1 - a/(2a_c)]}{(\Delta_{(s)}a + \Delta_{(i)}a^2 + \Delta_{(fd)}a^4)^{1/2}}$$

Minimization with respect to a:

$$E_0(a) = 4\overline{\gamma_0}a - \frac{\pi a^2 \overline{\sigma_{(e)}^2}}{\overline{Y}} = 4\overline{\gamma_0}a \left(1 - \frac{a}{2a_c}\right) \qquad \begin{array}{c} \Delta_{(s)} > 0 & : a = 2a_c \\ \Delta_{(i)} > 0 & : a \approx a_0 \\ \Delta_{(fd)} > 0 & : a \approx a_0 \end{array}$$

Probability $W_{f>0}$ (a) that force f(a) on crack tip is always positive?

$$f(a) = -\frac{\partial E(a)}{\partial a} = f_0(a) + f_1(a)$$

$$f_0(a) = 4\frac{-}{\gamma_0}\left(1 - \frac{a}{a_c}\right),$$

$$f_1(a) = f_1^{(s)}(a) + f_1^{(i)}(a) + f_1^{(fd)}(a)$$

$$\begin{split} &\langle f_1^{(\mathrm{s})}(a) f_1^{(\mathrm{s})}(a') \rangle \!=\! \Delta_{(\mathrm{s})} \delta_{a_0}(a \!-\! a'), \\ &\langle f_1^{(\mathrm{i})}(a) f_1^{(\mathrm{i})}(a') \rangle \!=\! 2a \Delta_{(\mathrm{i})} \delta_{a_0}(a \!-\! a'), \\ &\langle f_1^{(\mathrm{fd})}(a) f_1^{(\mathrm{fd})}(a') \rangle \!=\! 4aa' \Delta_{(\mathrm{fd})}. \end{split}$$

$$W_{f>0}(a) = \int_{-\infty}^{-f_0(a)/\langle f_1^2(a) \rangle^{1/2}} dx \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

$$\ln \tilde{W}_{f>0} = \sum_a \ln W_{f>0}(a) \approx -\int_0^{a_c} \frac{da}{2a_0} \left(\frac{f_0^2(a)}{\langle f_1^2(a) \rangle} + \ln \frac{\langle f_1^2(a) \rangle}{2\pi f_0^2(a)} \right).$$

		Glass	SiC
Y	[10 ⁹ Pa]	70	400
γ_0	$[J m^{-2}]$	1.0	4.0
Random surface energy			
Weak disorder: $\delta \gamma / \gamma_0 = 0.1$, $a_0 = 5 \times 10^{-10} \text{ m}$			
$T_{\rm eff}^{\rm (s)}(d=2)$	[K]	1087	4348
$A^{(s)}$	$[Pa^2 m^{-1}]$	5.9×10^{30}	1.36×10^{32}
Strong disorder: $\delta \gamma / \gamma_0 = 0.3$, $a_0 = 10^{-6}$ m			
$T_{\rm eff}^{\rm (s)}(d=2)$	[K]	3.9×10^{10}	1.57×10^{11}
$A^{(s)}$	$[Pa^2 m^{-1}]$	1.65×10^{23}	3.77×10^{24}
Random impurities			
Weak disorder: $\Omega = 2.5 \times 10^{-19} \text{ m}^2$, $c = 8 \times 10^{24} \text{ m}^{-3}$			
$T_{\rm eff}^{\rm (i)}(d=2)$	[K]	158.5	905.8
A ⁽ⁱ⁾	$[Pa^2 m^{-1}]$	4.07×10^{31}	6.5×10^{32}
Strong disorder: $\Omega = 10^{-15} \text{ m}^2$, $c = 10^{17} \text{ m}^{-3}$			
$T_{\rm eff}^{\rm (i)}(d=2)$	[K]	1.26×10^{5}	7.24×10^{5}
A ⁽ⁱ⁾	$[Pa^2 m^{-1}]$	5.09×10^{28}	4.15×10^{29}
Random frozen dislocations			
Weak disorder: $b_{(fd)} =$	$5 \times 10^{-10} \mathrm{m},$	$c_{\rm (fd)} = 10^{14} {\rm m}^{-2},$	$h = 10^{-3} \text{ m}$
$T_{\rm eff}^{\rm (fd)}({\rm plate})$	[K]	(10)	1.83×10^{19}
$a_0 = 5 \times 10^{-9}$ m			
$A^{(\mathrm{fd})}$	$[Pa^2 m^{-1}]$		1.71×10^{30}
Strong disorder: $b_{(fd)}$ =	$=5 \times 10^{-10}$ m,	$c_{(fd)} = 10^{16} \mathrm{m}^{-2}$	$h = 10^{-3} \text{ m}$
$T_{\rm eff}^{\rm (fd)}({\rm plate})$	[K]	()	1.83×10^{21}
$a_0 = 5 \times 10^{-10}$ m			
$A^{(\mathrm{fd})}$	$[Pa^2 m^{-1}]$		1.71×10^{31}

Conclusions

- We considered crack formation by frozen disorder: random atomic bonds, impurities, frozen dislocation
- Disorder can reduce or eliminate energy barrier for the formation of supercritical crack
- We calculated the probability to find supercritical crack in d=2 large but finite volume
- Briefly discussed: extension to higher dimension

Epilogue: PRL 96, 175502 (2006)

Slow Crack Propagation in Heterogeneous Materials

J. Kierfeld¹ and V. M. Vinokur²

¹Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany ²Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA (Received 27 July 2005; published 5 May 2006)

Statistics and thermally activated dynamics of crack nucleation and propagation in a two-dimensional heterogeneous material containing *quenched randomly distributed* defects are studied theoretically. Using the generalized Griffith criterion we derive the equation of motion for the crack tip position accounting for dissipation, thermal noise, and the random forces arising from the defects. We find that aggregations of defects generating long-range interaction forces (e.g., clouds of dislocations) lead to anomalously slow creep of the crack tip or even to its complete arrest. We demonstrate that heterogeneous materials with frozen defects contain a large number of arrested microcracks and that their fracture toughness is enhanced to the experimentally accessible time scales.

