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The upcoming homework assigments will guide you through small projects implementing and
applying some of the numerical methods discussed in the lecture. Light programming experi-
ence in python, C++ or some other programming language will be needed to do these exercises.
While we will leave it up to you which programming language you will use, we somewhat en-
courage the use of python — which beyond its general ease of use allows to very efficiently plot
numerical data in various ways.

This zeroths exercise is intended to make you familiar with the basics of python and to introduce
some of the most important features that will be needed throughout the course.

1. Python warm-up

Python is a scripting language. This means that individual commands of the source code are in-
terpreted line-by-line (instead of compiled as a whole). The python interpreter directly checks
and executes a given command before reading the next command. It is therefore possible to
use python from a system’s command line by calling python and entering commands piece-by-
piece. An example for a linux machine might looks like this (the user input is marked bold):

user@machine:~$ python

Python 2.7.3 (default, Feb 27 2014, 20:00:17)
>>> name="Eve"

>>> print "Hello",name

Hello Eve

>>> a=12

>>> print "The square of",a,"is",ax*2

The square of 12 is 144

Basic commands

You might have noticed python’s basic semantics for the definition of variables and printing in
the above example. In general we will however use source files. They can be run by typing
python basics.py on the command line. The first code example contains several impor-
tant structures of python. Read it carefully and find out what tasks are performed by the script.

#first routine

n=10

prod=1

for i in range(l,n):
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prodx=i
print prod

#second routine
numbers=[36,2,9,45,12,30,4,29]
a=numbers[0]
b=numbers[0]
for i in range(l, len(numbers)) :
if numbers[il<a:
a=numbers [1i]
elif numbers[i]>Db:
b=numbers[i]
print a,b

#third routine
def mysterious_function(p,q):
a,b=(p,q) if p>=qg else (q,p)
while b!=0:
a, b= (b, a%b)
return a

print mysterious_function(12,18)
print mysterious_function (40,20)
print mysterious_function (7, 6)

These examples demonstrate the easy readability of python code and introduced the following
features (check!):

e for loop

e in-place arithmetic operation (*=)

o if-else statement

e while loop

e definition of functions with parameters and return value
o list

e unpacking of lists (what is this?)

e comments in the source code

When you get accustomed to python you will appreciate that it offers extremely extended
capabilities in handling lists. Single commands can join, slice, sum over, iterate, Zip, etc.
n-dimensional lists. If you are interested in these, you may check out https://docs.
python.org/2/tutorial/introduction.html#lists.

NumPy - a very important library

A standard installation of python offers general purpose functions such as min (), max ().
Beyond those additional libraries of more specialized functions can be installed and imported
into the working environment, e.g. usually on the top of a script. Some examples are:

e NumPy — for numerical techniques

e SciPy — a collection of functions used in scientific applications
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e Matplotlib — the most widely used plotting library
e pyMPI - for doing parallel computing

Obviously, the NumPy library will be of major importance for our exercises such that you can
import it per default in the first line of any of your scripts:

import numpy as np

Mathematical constants and functions like np.pi, np.cos (), np.log(), np.sqrt(),
np.floor (), ... aswellasrandom number generation and a more advanced type of lists

— so-called numpy arrays. The following example demonstrates theses capabilities. We want
to implement the Box-Muller method, which generates Gaussian distributed random numbers
from a stream of uniformly distributed random numbers. Carefully study the code skeleton
which you can retrieve here and add the three commands which are missing at the indicated
lines.

import numpy as np

def boxmuller (ul,u2) :
#TODO: uncomment the following lines and type in the formulas of the Box
#Muller transformation using np.log, np.cos, np.sin, np.sqrt, np.pi
#z1=
#z2=
return z1,z2

N=100000

random_numbers=np.zeros (N)

for i in range (N):
random_numbers[i]=np.random.random ()

gaussian_rnl,gaussian_rn2=boxmuller (random_numbers|[::2], random_numbers[l::2])

#TODO: Check that the variances of the uniformly and the gaussian distributed

#random numbers are as expected, i.e. 1/12=0.833 and 1.0
#uniform var=np.var (random_numbers)

#gaussian_varl=

#gaussian_var2=

print uniform_var, gaussian_varl, gaussian_var?2

#TODO: As an evidence for the claim, that gaussian rnl/2 are gaussian

#distributed with sigma=1, calculate the first six moments of the generated

#random numbers

moments=np.zeros (7)

for rn in gaussian_rnl:
#moments [1]+=rnx*x*1
#moments [2] +=
#...

moments/=(N/2)
print moments
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Plotting

Besides the actual computation and simulation of a physical problem the presentation of nu-
merical results — oftentimes in large data sets — is also an important issue. The aforementioned
library Matplotlib is a very powerful tool to accomplish precisely this task. Let us briefly in-
troduce it via the following code snippet. First we plot a simple function on a two-dimensional
canvas.

import matplotlib.pylab as plt
import numpy as np

plt.figure(figsize=(10,6))

X_int = range(10)

Xx_values = np.linspace (0, 9, 1000)

#creates a numpy array with 1000 equally-spaced values between 0 and 9
squares=[i*x*x2 for 1 in x_int]

y_values = x_valuesx**2

plt.plot (x_int, squares,’o’, label="Squares" )

plt.plot (x_values, y_values, label="f (x)=xxx")

plt.xlabel ("x");
plt.ylabel ("y");
plt.legend (loc="upper left")

plt.savefig ("squares.pdf")
plt.show ()

The instructions are probably self-explanatory. As you might see, one needs to pass the two
lists or arrays (of equal size!) to the plt .plot () command.

A nice demonstration of three-dimensional plotting is given by the following lines which you
should append to the boxmuller.py example. Does it look like a Gaussian bell?

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pylab as plt

#The following lines are technical tricks to create the histogram
rounded_gaussl=np.around(gaussian_rnl,decimals=1)
rounded_gauss2=np.around (gaussian_rn2,decimals=1)

gaussian_points=(zip (rounded_gaussl.tolist (), rounded_gauss2.tolist()))
X=np.around (np.arange (-3.0,3.0,0.1),decimals=1)

Y=np.around (np.arange (-3.0,3.0,0.1) ,decimals=1)

Histogram=np.zeros((len(X),len(Y)))
for i,x in enumerate (X): #what does enumerate do?
for j,y in enumerate(Y):
Histogram[i] [j]l=gaussian_points.count ((x,V))

X,Y = np.meshgrid(X,Y) #what is this?

fig = plt.figure()

ax = fig.add_subplot (111, projection=’3d’)

ax.plot_surface (X, Y, Histogram, cmap='coolwarm’, linewidth=0,
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antialiased=True, vmin=0, vmax=300, rstride=1, cstride=1)
plt.show ()

There are many more plotting styles for three dimensional plotting. Feel free to browse a small
collection of Matplotlib’s plotting features:
http://matplotlib.org/1.4.3/users/screenshots.html.

A first application — Central limit theorem

Let us exercise our new python skills by showing an example of the central limit theorem. It
states that the arithmetic mean of a sufficiently large number of arbitrary random variables is a
normal distribution. The distribution we start from is depicted in Fig. 1. We will only use this
distribution and take the arithmetic mean of, say, N = 100 random variables.
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Figure 1: Comb distribution: The high bars are five times as high as the low bars and p(x) =0
anywhere else than 0 <x < 10

Instructions:

1. Find a mathematical function describing the comb distribution and verify it by producing
a plot similar to Fig. 1

2. Write a function that produces random numbers following this distribution. You could
use the rejection-method.

3. Fix areplication number N and determine the arithmetic mean as a set of sampled random
numbers (each random number is the arithmetic mean of N random numbers sampled
according to the comb distribution).

4. Verify that the mean is normally distributed by determining the first moments as above.
How large does N need to be?

5*. Plot a histogram of the arithmetic mean in order to see whether it is Gaussian.
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