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7. Nobody is perfect programming techniques

On the previous sheet, you learned how to perform a binning analysis in order to obtain an error
estimate on your Monte Carlo data. These error bars should of course also be included in your
plots and learning how to do this in python is the focus of this exercise. You will also learn how
to conveniently save data for later processing.

The simplest way to store data is to use the csv format. Its advantage over binary formats (that
would take up less space) is that it is human-readable. We will use the functions savetxt and
loadtxt provided by the numpy module. Let us assume that we want to save data for a plot with
x- and y values as well as errors on the y values. Each of these sets of values is represented as
an array. The first step towards saving it is to merge them into a single array, using the function
vstack and to then save them in a second step:

import numpy.random as npr

# generate random data
x = npr.random(10)
y = npr.random(10)
yerr = npr.random(10)

# join data vertically -v-stack to obtain a data matrix
# also try hstack and see what happens!
data = np.vstack((x, y, yerr)).T

# then save data
np.savetxt(’data.csv’, data, delimiter=’,’)

If you want to load them back into python for plotting, all we have to do is use loadtxt:
data = loadtxt(’data.csv’, delimiter=’,’)

The data is now present in the form of a matrix and we can use the usual slice operations to
access the respective columns. Try it out by printint the matrix and studying its structure!

Just in case you were wondering what the keyword delimiter does: We have to choose a
special character that separates two values. Originally, csv stood for comma separated values
but is now also often refered to character separated values because of the freedom to choose
the precise delimiting character.

In a final step, we would like to display the data including error bars. We can the matplotlib
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module and its function errorbar and supply it with the x and y values as well as the errors
which we pass using the keyword yerr:

plt.errorbar(x, y, yerr=yerr, fmt=’o’)

If your x values also carry an uncertainty, you can also pass another array using xerr to account
for that.

8. Extended Ensemble Simulations 10 points + 10 bonus points

In this third exercise we will employ extended ensemble simulation techniques to (re)investigate
the 2D Ising model, now performing an “all-temperature" calculation allowing us to directly
estimate the density of states g(E). In the second part we will consider a prototypical system
undergoing a first-order phase transition, the Q-state Potts model.

1. Implement the Wang-Landau algorithm for the 2D Ising model on the square lattice
with periodic boundary conditions. (You should be able to simply expand your single
spin-flip Metropolis code.)

2. Calculate estimates for the density of states g(E) from Wang-Landau sampling for sys-
tems of linear size L = 8,16,32 in the energy range Emin =−2N to Emax = 0. Normalize
the calculated density of states such that g(Emin) = 2 and plot lng(E) for the different
system sizes.

3. From the calculated estimate of the density of states calculate the following thermody-
namic observables and plot them in the temperature range T ∈ [0,4] (showing data for all
three system sizes in one plot):

• the energy U(T ) = 1
Z ∑E g(E)E exp(−βE) = 〈E〉T

• the specific heat Cv(T ) = dU/dT =
(
〈E2〉T −〈E〉2T

)
/T 2

• the free energy F(T ) =−T logZ

• the entropy S(T ) = (U(T )−F(T ))/T

where Z is the partition function Z = ∑E g(E) · exp(−βE).
Compare these results to those obtained in the last exercise.

4. Expand the above implementation of the Wang-Landau algorithm to simulate the Potts
model, which for a Q-state Potts spin σi ∈ {1,2, . . . ,Q} we define via the Hamiltonian

H =−∑
〈i j〉

δ
(
σi,σ j

)
,

where the sum again runs over all nearest-neighbor bonds. Consider a periodic square
lattice with N = L2 Potts spins and estimate the density of states g(E) for the 10-state
Potts model (Q = 10) in the energy range Emin = −2N to Emax = 0. This estimate can
now be normalized such that g(Emin) = Q = 10.

5. For systems of linear size L = 8,16,32 again plot thermodynamic averages for the en-
ergy, specific heat, free energy, and entropy as above.

6. Plot the canonical distribution function P(E) = g(E)exp(−βE) in proximity of the
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thermal phase transition, which occurs at temperature

T ∗ =
1

ln(1+
√

Q)

for the infinite system (L = ∞). Can you observe a double-peak structure indicative of a
first-order phase transition?

7. Optional exercise I: From the precise location of the double-peak structure in the canon-
ical distribution function P(E) you can determine estimates of the finite-size transition
temperature T ∗(L) for a given linear system size L. Plot your estimates versus the in-
verse system size 1/L2 and extrapolate your data to the infinite system size limit – can you
recover the analytical estimate above? You might want to calculate a few extra system
sizes L = 8,16,24,32,48,64, . . . for this extrapolation.

8. Optional exercise II: Calculate the local diffusivity D(E) of the random walk in energy
space for the Ising and Potts model simulations above by running simulations with fixed
weights w(E) ≈ 1/g(E), which you have obtained from Wang-Landau sampling. To
obtain an estimate for the local diffusivity

• Record two histograms during the sampling process – the energy histogram h(E),
which is incremented for every step, and the histogram h+(E), which is incremented
only if the last extremal energy you have visited is Emin (and not Emax).

• From these two histograms calculate the fraction f (E) = h+(E)/h(E), which esti-
mates how much time on average the energy random walker spends at a given energy
E diffusing towards higher energies. Plot this fraction f (E).

• Calculate the derivative d f/dE of this fraction (and plot it).

• Plot an estimate of the local diffusivity via

D(E) ∝

(
h(E) · d f

dE

)−1

.

To get started, we have again prepared a skeleton program. All you have to do is implement
the update and measurement routines. Note that the way the lattice is set up, the code is geared
towards the Ising model but the algorithmic structure of the Potts model is really so similar that
you can use the same skeleton with just minor modifications.
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