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In this week’s exercise sheet, you will apply the density matrix renormalization group
(DMRG) to quantum spin models in one spatial dimension. We start with the spin-1 AKLT
model which was discussed analytically in the lecture. In doing so, we will introduce you to the
open-source ITensors software library. Code examples for the tasks we want to perform here
can be found on the official ITensors documentation page. In a second step, we will then turn
to the transverse field Ising model (TFIM), investigate its ground state (GS) phase diagram and
analyze its entanglement properties at the critical point.

Exercise 18: Spin-1 AKLT chain

We start by looking at the ground state of the one-dimensional AKLT model whose Hamiltonian
is a combination of bilinear and biquadratic spin couplings

H =
∑
j,γ

Ŝγj Ŝ
γ
j+1 + Γ

(
Ŝγj Ŝ

γ
j+1

)2
(1)

where the Ŝγj are spin-1 operators and, for now, Γ = 1/3. In the lecture videos you have learned
that the exact ground state of this model is known analytically and can be expressed by an
assembly of two spin-1/2 degrees of freedom per site, connected with their neighbors by singlet
bonds (i.e. a valence bond solid of spin-1/2’s).

We consider a setting with open boundary conditions, such that the two spin-1/2’s on the chain
edges cannot form a singlet state with their neighbors, giving rise to two “dangling spin-1/2”
degrees of freedom at the chain ends, so-called edge states. We will probe the existence of such
gapless edge states in a bulk-gapped state in this exercise.
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Figure 1: The Affleck-Kennedy-Lieb-Tasaki (AKLT) state is built from decomposing local
spin-1 degrees of freedom as two spin-1/2 particles linked between neighboring sites by singlet
bonds. At the chain boundaries, two ”dangling” spin-1/2 degrees of freedom remain unpaired,
giving rise to gapless edge states.
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a) To set the stage, you will need to install the ITensors package. In Julia, this can easily
be done via the package manager using

]add ITensors

b) To begin with, implement the AKLT Hamiltonian in ITensors. To accomplish this,
you can extend the code snippet given below, which implements the DMRG algorithm
for the antiferromagnetic spin-1 Heisenberg chain, i.e. the first bilinear coupling term in
Eq. (1).

Listing 1: Example code for simulating the antiferromagnetic spin-1 chain with ITensors.

using ITensors

let

# create 64 spin -1 degrees of freedom

N = 64

sites = siteinds("S=1", N)

# define Hamiltonian as sum of spin operators

# and convert to matrix product operator (MPO)

ampo = AutoMPO ()

for j = 1 : N-1

ampo += 0.5, "S+", j, "S-", j+1

ampo += 0.5, "S-", j, "S+", j+1

ampo += "Sz", j, "Sz", j+1

end

H = MPO(ampo , sites)

# configure parameters for DMRG simulation:

# number of sweeps is 10

# maximum bond dimension is 10

# truncation treshhold for SVD is 1E-10

sweeps = Sweeps (10)

maxdim !(sweeps , 10)

cutoff !(sweeps , 1E-10)

# create random matrix product state (MPS)

# with bond dimension 2 as initial state for DMRG

psi0 = randomMPS(sites , 2)

# run the DMRG algorithm

# returning the GS energy and optimized MPS

energy , psi = dmrg(H, psi0 , sweeps)

return

end
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c) We now want to run the DMRG algorithm for this model system, playing with some
of the fundamental DMRG parameters detailed here. As a first benchmark, we look at
the convergence of the ground state energy with increasing bond dimension. Before
running the DMRG calculation, try to formulate an expectation of what you would expect
to see, based on your knowledge of the AKLT state. In a second step, plot the ground
state energy per spin as a function of the maximum bond dimension for the optimized
MPS returned by the DMRG algorithm and compare with your initial idea.

d) Following up on the results obtained in c), compute the singular values and entanglement
entropy S1 for a bond in the middle of the chain. To this end, you will have to get
yourself acquainted with the ITensors documentation. Compare your findings with the
results presented in the lecture video.

e) As a next step, we want to probe the dangling spin-1/2 degrees of freedom at the
edges of the chain by measuring the expectation value 〈Szi 〉 for every site i along the chain.
You can do this either by defining and passing an additional DMRGObserver object to the
dmrg function or by applying the Szi operator to the optimized MPS wave function. Plot
〈Szi 〉 along the chain. What do you observe?

f) As a final exercise, we want to vary the prefactor of the biquadratic term in Eq. (1).
Consider, for example, the cases Γ = 0 (i.e. the pure spin-1 Heisenberg chain which is also
referred to as the Haldane chain) and Γ = 1 (which is a point of special interest as
you will see).

Repeat your DMRG simulations for these modified couplings and plot 〈Szi 〉 along
the chain. In both cases, plot the spectrum of singular values log(sn) for a bond in the
middle of the chain using a large maximum bond dimension for the DMRG. Discuss
your results with respect to the appearance of edge states and the energetics, i.e. is the
spectrum gapped or gapless?

Exercise 19: Revisiting the Transverse Field Ising Model with DMRG

In this exercise, we want to return to the one-dimensional transverse field Ising model (TFIM)

H = −
∑
j

Ŝzj Ŝ
z
j+1 − hŜxj Ŝxj+1 , (2)

where Sµi are now spin-1/2 Pauli matrices and h > 0. Our focus lies on the critical point and
its entanglement properties. More precisely, we want to use the DMRG algorithm to show that
the system is gapless right at the critical field strength and that the entanglement entropy does
not obey a one-dimensional boundary law (i.e. it is not constant).

a) To begin our analysis, you need to implement the TFIM Hamiltonian for a chain of
length L using your results from the previous exercise. Augment your DMRG algorithm
by measurements of 〈Sz〉 and 〈Sx〉, where 〈Sµ〉 = 1

L

∑
j〈S

µ
j 〉.

b) With the DMRG set up, you can now scan the phase diagram of the TFIM in the range
h ∈ [0, 2] and plot the expectation values 〈Sz〉 and 〈Sx〉 as a function of h. Determine
the critical value hc, where the system undergoes a phase transition between a disordered
phase at high fields and an ordered, ferromagnetic phase at small values of h.
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c) In the thermodynamic limit L→∞, the exact ground state energy of the TFIM is

E0

L
= −h

π

∫ π

0
ηq dq , (3)

with the dispersion ηq =
√

1 + 1/h2 + 2cos(q)/h.

Compute the numerical value of E0/L with DMRG at the critical point determined in b)
for increasing system sizes L ∈ {32, 64, 128, 256, 512, 1024} and plot E0/L as a function
of 1/L to perform a finite-size scaling. Choose an appropriate fitting function and
extrapolate E0/L to the thermodynamic limit 1/L→ 0. Compute the exact ground state
energy with an integration library of your choice and compare with the DMRG result.

d) We now want to analyze the critical point in more detail. Firstly, we want to extract
the excitation gap ∆, defined as the difference in energy between ground (E0) and first
excited state (E1), i.e. ∆ = E1−E0. To this end, we need to perform DMRG simulations
with an additional constraint on the overlap of the excited MPS with the ground state
MPS. Given the wave function |ψ0〉 for the ground state, we want to find that state |ψ1〉
with the lowest energy that also minimizes the inner product 〈ψ1|ψ0〉. In ITensors we can
simply do this, by adding an additional penalty state to the dmrg function. Implement
the computation of the first excited state in your DMRG algorithm and determine the
excitation gap for h ∈ [1.0, 2.0]. Compare your result with the exact values ∆ = 2|h− 1|.
For more detail and helpful hints on how to choose DMRG parameters in this case, see
the ITensors documentation.

e) As a last step, we want to look at the Renyi entropy Sn(L) at the critical point. In the
previous exercise you have already learned how to extract it from the DMRG-optimized
MPS wave function. Here, we want to study the scaling of the entropy with system size.
To this end, compute and plot the first few Renyi entropies Sn(L) (e.g. for a set of values
n = 1, 2, 3, . . .) as a function of log(L) for large values of L (e.g. L = 32, 64, 128, . . . , 1024),
by considering a bipartition that cuts the chain in two equal parts of length L/2. Do
so both for the critical point and deep in the ordered and disordered phase. Evaluate
your results in light of the boundary law, which has been derived in the lecture. Another
important property of the critical point is the corresponding conformal field theory (CFT),
which can be identified via its central charge c. For open boundary conditions, the latter
is connected to the entanglement entropy by

Sn(L) =
c

12

(
1 +

1

n

)
log(L) + kn , (4)

for L � 1. Here, kn is a constant. Compute the central charge by performing a linear
regression for Sn as a function of log(L) and compare to the exact value c = 1/2.

Finally, shift the bond chosen for the bipartition of the system, i.e. start cutting
the first, second, third bond and so forth and plot the entanglement entropies along the
bonds in the chain in both phases and at the critical point.
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