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Exercise 3: Extended Ensemble Simulations

In this third exercise we will employ extended ensemble simulation techniques to (re)inves-
tigate the 2D Ising model, now performing an “all-temperature” calculation allowing us
to directly estimate the density of states g(E). In the second part we will consider a
prototypical system undergoing a first-order phase transition, the Q-state Potts model.

1. Implement the Wang-Landau algorithm for the 2D Ising model on the square
lattice with periodic boundary conditions. (You should be able to simply expand
your single spin-flip Metropolis code.)

2. Calculate estimates for the density of states g(E) from Wang-Landau sampling
for systems of linear size L = 8, 16, 32 in the energy range Emin = −2N to Emax = 0.
Normalize the calculated density of states such that g(Emin) = 2 and plot ln g(E)
for the different system sizes.

3. From the calculated estimate of the density of states calculate the following ther-
modynamic observables and plot them in the temperature range T ∈ [0, 4] (showing
data for all three system sizes in one plot):

• the energy U(T ) = 1
Z

∑
E g(E)E exp(−βE) = 〈E〉T

• the specific heat Cv(T ) = dU/dT = (〈E2〉T − 〈E〉2T ) /T 2

• the free energy F (T ) = −T logZ

• the entropy S(T ) = (U(T )− F (T )) /T

where Z is the partition function Z =
∑

E g(E) · exp(−βE).
Compare these results to those obtained in the last exercise.

4. Expand the above implementation of the Wang-Landau algorithm to simulate the
Potts model, which for a Q-state Potts spin σi ∈ {1, 2, . . . , Q} we define via the
Hamiltonian

H = −
∑
〈ij〉

δ (σi, σj) ,

where the sum again runs over all nearest-neighbor bonds. Consider a periodic
square lattice with N = L2 Potts spins and estimate the density of states g(E) for
the 10-state Potts model (Q = 10) in the energy range Emin = −2N to Emax = 0.
This estimate can now be normalized such that g(Emin) = Q = 10.

5. For systems of linear size L = 8, 16, 32 again plot thermodynamic averages for
the energy, specific heat, free energy, and entropy as above.
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6. Plot the canonical distribution function P (E) = g(E) exp(−βE) in proximity
of the thermal phase transition, which occurs at temperature

T ∗ =
1

ln(1 +
√
Q)

for the infinite system (L =∞). Can you observe a double-peak structure indicative
of a first-order phase transition?

7. Optional exercise I: From the precise location of the double-peak structure in the
canonical distribution function P (E) you can determine estimates of the finite-
size transition temperature T ∗(L) for a given linear system size L. Plot your
estimates versus the inverse system size 1/L2 and extrapolate your data to the
infinite system size limit – can you recover the analytical estimate above? You
might want to calculate a few extra system sizes L = 8, 16, 24, 32, 48, 64, . . . for this
extrapolation.

8. Optional exercise II: Calculate the local diffusivity D(E) of the random walk in
energy space for the Ising and Potts model simulations above by running simulations
with fixed weights w(E) ≈ 1/g(E), which you have obtained from Wang-Landau
sampling. To obtain an estimate for the local diffusivity

• Record two histograms during the sampling process – the energy histogram
h(E), which is incremented for every step, and the histogram h+(E), which is
incremented only if the last extremal energy you have visited is Emin (and not
Emax).

• From these two histograms calculate the fraction f(E) = h+(E)/h(E), which
estimates how much time on average the energy random walker spends at a
given energy E diffusing towards higher energies. Plot this fraction f(E).

• Calculate the derivative df/dE of this fraction (and plot it).

• Plot an estimate of the local diffusivity via

D(E) ∝
(
h(E) · df

dE

)−1
.
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