Advanced Quantum Mechanics Exercise sheet 6

Winter term 2014/15

Homepage: http://www.thp.uni-koeln.de/trebst/Lectures/2014-QM2.shtml Due date: Monday, November 17th, 2014 (10 am, i.e. before the lecture starts)

15. Dynamics of field operators (8 points)

a) In the Heisenberg picture, we can introduce a time-dependent operator $A^{H}(t)$ by

$$A^H(t) = U_t^{\dagger} A U_t,$$

where U_t denotes the unitary time-evolution operator. Show that for a time-independent Hamiltonian the time evolution of $A^H(t)$ is given by

$$i\hbar\partial_t A^H(t) = \left[A^H(t), H\right].$$

b) Let us now consider the Hamiltonian

$$\begin{split} H &= \int d^3r \; - \frac{\hbar^2}{2m} \hat{\psi}^{\dagger}(\mathbf{r},t) \nabla^2 \hat{\psi}(\mathbf{r},t) + U(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r},t) \hat{\psi}(\mathbf{r},t) \\ &+ \frac{1}{2} \int d^3r \, d^3r' \, V(\mathbf{r}-\mathbf{r}') \hat{\psi}^{\dagger}(\mathbf{r},t) \hat{\psi}^{\dagger}(\mathbf{r}',t) \hat{\psi}(\mathbf{r}',t) \hat{\psi}(\mathbf{r},t), \end{split}$$

where $\hat{\psi}^{\dagger}(\mathbf{r}, t)$ and $\hat{\psi}(\mathbf{r}, t)$ are fermionic creation and annihilation operators. Show that the full time-evolution of the fermionic annihilation operator is given by

$$\begin{split} i\hbar\partial_t \hat{\psi}(\mathbf{r},t) &= \left[\hat{\psi}(\mathbf{r},t),H\right] \\ &= -\frac{\hbar^2 \nabla^2}{2m} \hat{\psi}(\mathbf{r},t) + U(\mathbf{r})\hat{\psi}(\mathbf{r},t) + \int d^3r' \,\hat{\psi}^{\dagger}(\mathbf{r}',t)\hat{\psi}(\mathbf{r}',t)V(\mathbf{r}'-\mathbf{r})\hat{\psi}(\mathbf{r},t). \end{split}$$

Argue why you obtain the same end result also for bosonic operators.

16. Quantization of the electrodynamic fields (12 points)

In the lecture, the electrodynamic fields were quantized using bosonic creation and annihilation operators, $\mathbf{a}_{\mathbf{k}\lambda}$ and $\mathbf{a}_{\mathbf{k}\lambda}^{\dagger}$:

$$\begin{split} \vec{A}(\mathbf{r}) &= \sqrt{\frac{2\pi\hbar c^2}{V}} \sum_{\mathbf{k}\lambda} \frac{\hat{e}_{\mathbf{k}\lambda}}{\sqrt{c|\mathbf{k}|}} \left(e^{i\mathbf{k}\mathbf{r}} \mathbf{a}_{\mathbf{k}\lambda}^{\dagger} + e^{-i\mathbf{k}\mathbf{r}} \mathbf{a}_{\mathbf{k}\lambda} \right), \\ \vec{E}(\mathbf{r}) &= \sqrt{\frac{2\pi\hbar}{V}} \sum_{\mathbf{k}\lambda} i\sqrt{c|\mathbf{k}|} \hat{e}_{\mathbf{k}\lambda} \left(e^{i\mathbf{k}\mathbf{r}} \mathbf{a}_{\mathbf{k}\lambda}^{\dagger} - e^{-i\mathbf{k}\mathbf{r}} \mathbf{a}_{\mathbf{k}\lambda} \right), \\ \vec{B}(\mathbf{r}) &= \sqrt{\frac{2\pi\hbar c^2}{V}} \sum_{\mathbf{k}\lambda} \frac{i\mathbf{k} \times \hat{e}_{\mathbf{k}\lambda}}{\sqrt{c|\mathbf{k}|}} \left(e^{i\mathbf{k}\mathbf{r}} \mathbf{a}_{\mathbf{k}\lambda}^{\dagger} - e^{-i\mathbf{k}\mathbf{r}} \mathbf{a}_{\mathbf{k}\lambda} \right), \end{split}$$

where $\lambda = 1, 2$ labels the two polarizations, $\hat{e}_{\mathbf{k},\lambda}$ is the polarization vector, and V is the volume of the system

a) The momentum \vec{P} of the electric and magnetic fields, \vec{E} and \vec{B} , respectively, is given by

$$\vec{P} = \frac{1}{4\pi c} \int d^3 r \, \vec{E}(\mathbf{r}) \times \vec{B}(\mathbf{r}).$$

Express it in terms of creation and annihilation operators.

b) Compute the commutators $[B_i(\mathbf{r}), B_j(\mathbf{r}')]$, $[E_i(\mathbf{r}), E_j(\mathbf{r}')]$, and $[B_i(\mathbf{r}), E_j(\mathbf{r}')]$, where $B_i(\mathbf{r})$ and $E_i(\mathbf{r})$ are the i = x, y, z component of the magnetic and electric field operator, respectively.

Hint: For the last commutator, you can use the following identity

$$\sum_{\lambda} \left(\hat{e}_{\mathbf{k},\lambda} \right)_i \left(\hat{e}_{\mathbf{k},\lambda} \right)_j = \delta_{ij} - \frac{k_i k_j}{|\mathbf{k}|^2},$$

where $(\hat{e}_{\mathbf{k},\lambda})_i$ denotes the i = x, y, z component of the polarization vector $\hat{e}_{\mathbf{k},\lambda}$. You are not required to prove this identity.