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17. Coherent states of the electromagnetic field (6 points)

In this exercise we consider coherent states of the electromagnetic field and derive some of their
important properties. Coherent states are eigenstates of the annihilation operator ak,λ for fixed
k and λ:

ak,λ|φ〉 = φ|φ〉

for an arbitrary complex number φ.

a) Show that |φ〉 is a coherent state:

|φ〉 = c exp
(
φa†k,λ

)
|Ω〉,

where |Ω〉 is the photon vacuum. Determine the normalization constant c by requiring
the coherent state to be normalized. Compute the overlap of two different coherent
states 〈θ|φ〉.

b) Show that the action of the creation operator on a coherent state |φ〉 is given by

a†k,λ|φ〉 = (∂φ + φ?/2)|φ〉.

c) Show that coherent states form a complete set, i.e. show that

1

π

∫
dφ

∫
dφ̄ |φ〉〈φ| = 1,

where
∫
dφ
∫
dφ̄ denotes the integration over the complex plane and 1 is the identity

operator.
Hint: One possible (though not the most elegant) way of proofing this identity is to show
that the left-hand-side acts as the identity operator on the eigenbasis of the number
operator.

d) One important property of coherent states is that they are the closest possible analog
to classical states. Compute the expectation values 〈φ|E(r, t)|φ〉 and 〈φ|B(r, t)|φ〉 and
compare to the behavior of classical electromagnetic fields.
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18. Casimir effect (14 points)

In the lectures, you found that the quantization of the electromagnetic field leads to an infinite
zero-point energy E0 = 1

2

∑
k,λ ~ωk, which is usually discarded as being unphysical. While

the zero-point energy itself cannot be measured, differences in the zero-point energy can be
measured and have physical consequences. One important example is the Casimir effect, which
is the attractive force between two uncharged, parallel metallic plates in vacuum. In this exercise,
we reproduce Casimir’s original calculation of this effect.

a) We consider a cavity of dimension Lx × Ly × Lz with metallic walls. From classical
electrodynamics we know that the allowed modes in the cavity have wave vectors ki =
n π
Li

for i = x, y, z and n ∈ N0. For each k there are two possible polarizations, except
when one (or two) of the momentum components is zero, in which case there is only
one allowed polarization. Show that the zero-point energy for such a cavity can for
Lx � Ly, Lz (Ly, Lz are considered very large) be approximated by:

WLx =
∑
k

1

2
~ωk = ~c

LyLz
π2

∫ ∞

0
dkx

∫ ∞

0
dky

1

2

√
k2y + k2z +

∞∑
n=1

√(
nπ

Lx

)2

+ k2y + k2z

 .

b) Consider now a cubic cavity of dimensions L×L×L. We want to compute the difference
in the zero-point energy for placing an additional conducting wall of dimensions L× L
at position x = R � L versus placing it at position x = L/2. Using the results of a)
show that the difference δE can be written as:

δE = ~c
L2

π2

∫ ∞

0
dky

∫ ∞

0
dkz

(
1

2

√
k2y + k2z +

∞∑
n=1

√(nπ
R

)2
+ k2y + k2z

)

− ~c
L2R

π3

∫ ∞

0
dkx

∫ ∞

0
dky

∫ ∞

0
dkz

√
k2x + k2y + k2z .

This expression is still divergent. In order to regularize it we multiply the integrand
with a smooth function f(|k|/kc) such that f(0) = 1 and f(|k|/kc) → 0 for |k| �
kc, where kc is a (large) momentum cutoff. This is more than just a mathematical
artifact: the conducting plate does not affect the electromagnetic fields for sufficiently
high frequencies, thus large momenta do not contribute to the energy difference. The
exact form of the function f is not important for this calculation. In particular, the
end result will not depend on f itself, but only the limiting behavior at |k| � kc and
|k| � kc.
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c) You can simplify the expression of δE by introducing polar coordinates, ky = κ cos(α)
and kz = κ sin(α) and performing the integral over α. Proceed by substituting u = n2 +(
Rκ
π

)2
in order to move the n dependence from the integrand to the domain boundary

of the integral. A similar substitution should be done for the kx integration. The energy
difference can then be written in the form δE ∼ 1

2F (0) +
∑∞

n=1 F (n) −
∫∞
0 dnF (n),

which can be approximated using the Euler-Maclaurin Formula:

1

2
F (0) +

∞∑
n=1

F (n)−
∫ ∞

0
dnF (n) = − 1

6 · 2!
F ′(0) +

1

30 · 4!
F (3)(0)− 1

42 · 6!
F (5)(0) + . . . ,

where we assumed that the function F as well as all its derivatives F (n) vanish at infinity.
Neglect the terms F (n) with n ≥ 5 (argue under which conditions this approximation

is valid) to obtain the final result δE = −~c π2

720
L2

R3 . Why does this imply an attractive
force between two parallel conducting plates?
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