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27. Dirac fermions (10 points)

The Dirac equation is usually associated with high-energy physics. However, in recent years more
and more examples of condensed matter systems have emerged that are described by (variants)
of the Dirac equation for sufficiently low energies. The most prominent example is Graphene – a
single sheet of graphite – whose experimental realization was awarded the Nobel prize in 2010.
The band structure of Graphene is obtained by considering electrons hopping on a honeycomb
lattice, where each site (at position ~r) has three nearest neighbors located at ~r + ~δj , j = 1, 2, 3
with
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3,−1) ~δ3 = a(0, 1).

where a denotes the lattice constant. The translation vectors are given by ~t1 = ~δ3 − ~δ1 and
~t2 = ~δ3 − ~δ2.
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For simplicity, we consider spinless fermions and an isotropic hopping amplitude t:

Ĥ = −t
∑
~r

3∑
j=1

c†(~r)c(~r + δj). (1)

a) With the use of Fourier transformations, compute the energy spectrum of the Hamilto-
nian (1) and determine the ground state.

Comment: Note that there are two sites per unit cell for the honeycomb lattice, denoted
by 1 and 2. The fermionic creation and annihilation operators can thus be labeled by
the unit cell position ~R = n1~t1+n2~t2 as well as the sublattice index 1 and 2. The Fourier
transform of these operators is then given by

cj(~R) =

∫
d2k

(2π)2
e−i

~k·~Rcj(~k) c†j(
~R) =

∫
d2k

(2π)2
ei
~k·~Rc†j(

~k)

Why can you ignore the separation of the sites 1 and 2 within the unit cell in the Fourier
transformation?
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b) The energy spectrum of a) is gapless at two points ~K = 1
3~q1 + 2

3~q2 and ~K ′ = 2
3~q1 + 1

3~q2,

with ~qj denoting the reciprocal lattice vectors defined by ~qi · ~tj = 2πδi,j . Expand the

Hamiltonian around these gapless points in small momentum deviations ~q = ~k − ~K
(respectively ~q = ~k − ~K ′) and show that in the low-energy approximation, Ĥ reduces
to the sum of two two-dimensional Dirac Hamiltonians, i.e. the terms are of the form

vF (qxσx + qyσy)

with the velocity of light replaced by the Fermi velocity.

c) The two-dimensional Dirac equation in the previous part describes a massless particle
with a linear dispersion. What additional term in the Hamiltonian would make this
particle massive, i.e. induce a gap in the energy dispersion?

28. Weyl fermions (6 points)

The second species of fermions we want to look at are Weyl fermions – chiral fermions that arise
quite naturally in the chiral representation of the γ-matrices

γ0 =

(
0 1
1 0

)
, and γn =

(
0 −σn
σn 0

)
where σn are Pauli matrices for n = 1, 2, 3.

a) Assume that Ψ(x) is a solution of the Dirac equation with the γ-matrices in the Weyl
representation. Under which conditions is Ψ̂(x) = exp[iαγ5]Ψ(x) also a solution of the
Dirac equation?

b) Write the Dirac equation for the two-component spinors Ψ1(x) and Ψ2(x) with Ψ(x) =
(Ψ1(x),Ψ2(x)). Show that the massless Dirac equation decomposes into two independent
equations for Ψ1(x) and Ψ2(x).

c) Using Fourier transformation show that

ΨR(x) =
1

2

(
1 + γ5

)
Ψ(x) = (Ψ1(x), 0)T

ΨL(x) =
1

2

(
1− γ5

)
Ψ(x) = (0,Ψ2(x))T

are eigenstates to the helicity operator

hk =
σ · k
|k|

,

i.e. they carry a momentum k that is either parallel or antiparallel to their spin
orientation.

Weyl fermions have recently attracted a wave of interest in condensed matter systems. A ped-
agogical review of this phenomenon can be found at http://physics.aps.org/articles/v4/36.
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29. Majorana fermions (4 points)

Majorana fermions are probably the most exotic species of fermions – they describe (chargeless)
fermions that are their own antiparticle. In high-energy physics they are used to discuss the
nature of the neutrino, which is speculated to be its own antiparticle. You have already seen a
condensed matter realization as well in exercise 14 – the Majorana chain. Majorana fermions are
the simplest particles that allow for ‘topologically protected quantum computing’ – a quantum
computing scheme that relies on the entangled nature of such Majorana fermions to keep the
Qbits coherent. A pedagogical review of the quest for quantum computers can be found at
http://www.nature.com/news/physics-quantum-computer-quest-1.16457.
Let us consider the Majorana representation of the γ-matrices

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0
0 iσ3

)
, γ2 =

(
0 −σ2
σ2 0

)
, and γ3 =

(
−iσ1 0

0 −iσ1
)
.

a) Assume that Ψ(x) is a solution of the Dirac equation with the γ-matrices in the Majo-
rana representation. Show that the complex conjugate Ψ?(x) is then also a solution of
the Dirac equation.

b) Show that in the Majorana representation, we can write the complex spinor in terms
of two real components Ψ(x) = Ψ1 + iΨ2 with Ψ?

j = Ψj , such that the Dirac equation
decomposes into two separate equations for Ψ1 and Ψ2, respectively.

c) Part b) implies that if the γ matrices are in the Majorana representation it is sufficient
to consider real solutions of the Dirac equation, so-called Majorana fermions. Show that
the condition Ψ? = Ψ implies that Ψ̄Ψ = 0.
Remark: This property is no longer valid for anti-commuting Ψ̄ and Ψ.
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