Advanced Quantum Mechanics Exercise sheet 2

Winter term 2015/16

Homepage: http://www.thp.uni-koeln.de/trebst/Lectures/2015-QM2.shtml Due date: Monday, November 2nd, 2015 (10 am, i.e. before the lecture starts)

5. Fock-space (5 points)

A four dimensional single-particle Hilbert space is given by the four states: $\{|\Psi_1\rangle, |\Psi_2\rangle, |\Psi_3\rangle, |\Psi_4\rangle\}$. A general normalized wavefunction in Fock-space is denoted by $|n_1, n_2, n_3, n_4\rangle$ where n_i with i = 1, 2, 3, 4 denote the number of particles occupying state $|\Psi_i\rangle$.

- a) What is the dimension of the Hilbert space for N bosons? Hint: $\sum_{n=0}^{N} n = N(N+1)/2$ and $\sum_{n=0}^{N} n^2 = N(N+1)(2N+1)/6$.
- b) What is the dimension of the Hilbert space for N = 0, 1, 2, 3, 4 fermions, respectively?
- c) Consider the bosonic wavefunction $|1, 2, 1, 0\rangle$ in Fock representation. Write this wavefunction explicitly in terms of the single-particle eigenfunctions $|\Psi_i\rangle$ and also in real-space using $\Psi_i(x) = \langle x | \Psi_i \rangle$.
- d) Consider the fermionic wavefunction $|1, 1, 0, 1\rangle$ in Fock representation. Write this wavefunction explicitly in terms of single-particle ket-wavefunctions as well as in the real-space representation.

6. Two spinful fermions (7 points)

Two fermionic annihilation operators, \mathbf{f}_{σ} , with $\sigma = \uparrow, \downarrow$, and the corresponding creation operators, $\mathbf{f}_{\sigma}^{\dagger}$, are given, i.e., $\{\mathbf{f}_{\mu}, \mathbf{f}_{\nu}\} = 0$, $\{\mathbf{f}_{\mu}^{\dagger}, \mathbf{f}_{\nu}^{\dagger}\} = 0$ and $\{\mathbf{f}_{\mu}^{\dagger}, \mathbf{f}_{\nu}\} = \delta_{\mu\nu}$. Consider the total number operator $\mathbf{n} = \mathbf{n}_{\uparrow} + \mathbf{n}_{\downarrow}$, with $\mathbf{n}_{\sigma} = \mathbf{f}_{\sigma}^{\dagger}\mathbf{f}_{\sigma}$, and the vector operator $\mathbf{\vec{S}} = \frac{\hbar}{2}\mathbf{f}_{\mu}^{\dagger}\vec{\sigma}_{\mu\nu}\mathbf{f}_{\nu}$ where $\vec{\sigma}$ is the vector of Pauli matrices. The wavefunction in Fock-space is denoted as $|n_{\uparrow}, n_{\downarrow}\rangle$.

- a) What is the dimension of this Fock space? Compute $\mathbf{n}|n_{\uparrow},n_{\downarrow}\rangle$ for all states.
- **b)** Show that $\vec{\mathbf{S}}$ obeys the angular momentum algebra, i.e., $[\mathbf{S}^i, \mathbf{S}^j] = i\hbar\epsilon_{ijk}\mathbf{S}^k$.
- c) Show that the operators, **n** and \vec{S} , commute, i.e., $[n, \vec{S}^i] = 0$ for all i = 1, 2, 3.
- d) As the operator $\vec{\mathbf{S}}$ commutes with \mathbf{n} we can consider its properties within the subspaces with total number of particles, N = 0, 1 and 2, separately. Show that within the subspaces with N = 0 and N = 2, the operator $\vec{\mathbf{S}}$ reduces to zero, i.e., $\vec{\mathbf{S}}|0,0\rangle = 0$ and $\vec{\mathbf{S}}|1,1\rangle = 0$. Show that within the N = 1 subspace, the operator $\vec{\mathbf{S}}$ corresponds to a spin- $\frac{1}{2}$, i.e., $\vec{\mathbf{S}}^2|\Psi\rangle = \hbar^2 3/4|\Psi\rangle$ with $|\Psi\rangle = \alpha|1,0\rangle + \beta|0,1\rangle$.

7. Two particles (8 points)

Consider creation and annihilation operators in real space, $\Psi^{\dagger}(x)$ and $\Psi(x)$, respectively. A specific Fock state containing two particles is given by

$$|1,1\rangle = \int dx dy \varphi_1(x) \varphi_2(y) \Psi^{\dagger}(x) \Psi^{\dagger}(y) |\text{vac}\rangle,$$

where $\varphi_i(x)$ are orthonormal wavefunctions for states labeled by the quantum number *i*. The state $|\text{vac}\rangle$ is the normalized vacuum state that contains no particles, i.e., $\Psi(x)|\text{vac}\rangle = 0$ for all *x*. In the case of bosons the operators satisfy $[\Psi(x), \Psi^{\dagger}(y)] = \delta(x - y)$ and $[\Psi(x), \Psi(y)] = [\Psi^{\dagger}(x), \Psi^{\dagger}(y)] = 0$. In the case of fermions we have instead $\{\Psi(x), \Psi^{\dagger}(y)\} = \delta(x - y)$ and $\{\Psi(x), \Psi(y)\} = \{\Psi^{\dagger}(x), \Psi^{\dagger}(y)\} = 0$. It is convenient to combine the two cases using $\Psi(x)\Psi^{\dagger}(y) = \delta(x-y) + \sigma\Psi^{\dagger}(y)\Psi(x)$ and $\Psi(x)\Psi(y) = \sigma\Psi(y)\Psi(x)$ and $\Psi^{\dagger}(x)\Psi^{\dagger}(y) = \sigma\Psi^{\dagger}(y)\Psi^{\dagger}(x)$ with $\sigma = 1$ for bosons and $\sigma = -1$ for fermions.

- a) Evaluate $\Psi(x)\Psi(y)|1,1\rangle$ for bosons and fermions by first commuting the annihilation operators with the creation operators and then applying them to the vacuum.
- **b)** Consider the wavefunction $|x', y'\rangle = \Psi^{\dagger}(x')\Psi^{\dagger}(y')|\text{vac}\rangle$. Evaluate the overlap $\langle x', y'|1, 1\rangle$ for the case of bosons and fermions using the result of part (a).
- c) Evaluate the expectation value for the density $\langle 1, 1 | \Psi^{\dagger}(x) \Psi(x) | 1, 1 \rangle$ for bosons and fermions.