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Introduction

In 1980, Klaus von Klitzing discoverd that[1], the Hall con-
ductance is quantized (ΣH = νe2/h), where ν is an integer.
Subsequently, 2 years later, Tsui, Strömer and Gossard[2]
discovered that there exists some rational values of ν around
which Hall plateaus can be centered. In 1983, Lauglhin[3]
came along and gave a theoretical explanation for the exis-
tence of Fractional values. In this talk, we will discuss the
phenomena of FQHE and some fascinating properties due
to existence of FQHE.

Laughlin’s Wave Function

As we know, Integer Quantum Hall Effect (IQHE) can be
understood in the independent electron picture. In this
framework, its not possible to explain FQHE, since the ex-
istence of peaks at fractional fillings indicate that extended
states be only partially filled which would immediately lead
to non-zero value of Σxx. Thus, understanding the FQHE
requires for the account of electron-electron interactions.

Laughlin guessed a variational ansatz [3] for the ground
state wave function of the FQHE state based on general-
ization of numerical solutions to small number of electrons.
In the Landau gauge (Ax = −By), the wave function for
the lowest Landau level can be written as,

ψ(z1, z2, ...zN ) =
∏
j<k

(zj − zk)qexp−(|zi|2/4l2M ) ; q odd

(1)

where z ≡ x+ iy, l2M ≡ ~/eB

Note:
1. Here, ν = 1

q is the filling fraction of the states.
2. For case q = 1, the Laughlin wave function just repre-
sents the GSWF for non-interacting electons that we had
seen in the case of IQHE

Fractional Quantization

[4] Now let us try to derive the fractional quantization of
Hall conductance using gauge arguments given beautifully

by Laughlin himself.
Consider a Corbino-disk geometry as shown in the figure
below (disk with a circular hole in its center) with an uni-
form magnetic field B perpendicular to its surface, plus a
Aharonov-Bohm (AB) ΦAB(t) flux through its centre. Now
we slowly vary ΦAB over a time t

′
by an amount q flux

quanta. Due to this change, q orbits will have moved out
through the outer edge of the disk and q in through the
inner edge. Since the filling factor is 1/q, in the end a single
electron would have moved across the edges of the disk.
Hence,

current, I = e/t′ voltage, V = qΦ0/T

Hall conductance, ΣH = I/V = e2/hq

Thus the Hall conductance is fractionally quantized, as
observed experimentally.

Fractional Charge

As discussed in the previous section, now let us change the
AB flux not by by q flux quantum, but by one flux quanta
in the one of area of the disk. We know that, this change
leads to increase of l-value of outermost Landau orbit by
one. Physically, we can interpret this as electron from each
orbit has moved to next orbit creating a ”quasi hole” at
the origin1 ! It can be shown that, the effective charge of
this quasi-hole is given by,

e∗ = −e/q (2)

Intuitively , we can think that, by decreasing the flux by
one quanta, we would create a ”quasi-electron” of charge

1Origin corresponds to the point the disk where the flux is changed
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e∗ = +e/q.
These fractionally charged excitations has been experimen-
tally observed. It is important here to note that, these
fractional charge (say 1/3, q = 3) doesn’t mean that, we
have split electron into 3 pieces. Instead, these fractional
charges are observed with respect to a background. Here,
the Laughlin’s Fractional Quantum hall states form the
background.

Fractional Statistics

[5] Fractional statistics, perhaps most fundamentally re-
flects the two-dimensionality of the physical system under
consideration. The statistics of the identical-particles is
defined by the phase change of the wavefunction when two
particles interchange their positions.
In 3-D, the space is doubly connected, i.e, when the par-
ticles are interchanged twice, they return to initial state.
Thus the phase change eiα is equal to one, which implies
α = 0 or π corresponding to fermions or bosons respectively.
In 2-D, the space is infinitely connected, or the twice in-
terchange of position of 2 particles do not give us back
the original wavefunction. As a consequence, α is arbi-

trary (anyons). It can be shown that, for the Laughlin
quasi-particles,

α = qπ (3)

where, q is the filling fraction.

Thus a Lauglihn quasi-particles is indeed an ”anyon”
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