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1. Specific heat of phonons

The goal of this exercise is to study the contribution of phonons to the specific heat of a crystal.
To this end, let us consider the phonon Hamiltonian in the harmonic approximation

Hph = ∑
k∈1.BZ;n=1,2,...,d r

}ωn(k)(b†
k,nbk,n +

1
2
) (1)

with b†
k,n and bk,n being bosonic creation and annihilation operators, respectively, n= 1,2, ...,d r

labels the phonon branches for r ions per unit cell in d dimensions, and ωn(k) denote the energy
dispersions.

The average occupation number of a phonon mode at temperature T ≥ 0 is given by the Bose-
Einstein distribution function ( β = 1

kBT )

nB(h̄ωn(k))≡ 〈b†
k,nbk,n〉=

1
eβ h̄ωn(k)−1

.

The thermal average is defined via 〈Ô〉 =
Tr
(

e−β Ĥ Ô
)

Z , where Z = Tr
(

e−β Ĥ
)

is the partition
function. The quantity of interest is the specific heat C given by

C(T ) =
∂ 〈Ĥ〉
∂T

.

• Show that

C(T ) =
〈Ĥ2〉−〈Ĥ〉2

kB T 2 .

• High-temperature limit: The phonon dispersions are bounded from above with a maxi-
mum value ωmax ≡max

n,k
{ωn(k)}. Show that for temperatures T � h̄ωmax/kB, the specific

heat follows the law of Dulong-Petit and is given by the constant value

C (T � h̄ωmax/kB) = d r kB N,
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where N is the number of unit cells.

• Phonon density of states: It is convenient to write the specific heat in the form

C(T ) = d r kB N
∞∫

0

dε g(ε)
(βε)2eβε

(eβε −1)2 , (2)

where g(ε) is the phonon density of states:

g(ε) =
1

drN ∑
k∈1.BZ;n=1,2,...d r

δ (ε− h̄ωn(k)). (3)

Evaluate the integral
∫

∞

0 dεg(ε).

• Low-temperature limit: The energy of the optical branches is also bounded from below
with a minimum value ω

opt
min ≡min

n,k
{ωn(k)|ωn optical}.

At low temperatures kBT � h̄ω
opt
min, the phonon density of states is solely determined by

the d acoustic phonon branches. Their dispersions assume the form ω j(k) = vs, j(k̂)|k|
with j = 1, ...,d. The sound velocities vs, j(k̂) only depend on k̂ = k/|k|. Evaluate the
phonon specific heat, Eq. (2), at low temperatures to show that

C
(

T � h̄ω
opt
min/kB

)
∼ T d. (4)

Hint: Show that g(ε � h̄ω
opt
min)∼ εd−1 and subsitute ε = kBT x in Eq. (2).

Calculate the prefactor in d = 3 dimensions for constant sound velocities vs, j(k̂)≡ vs.
Hint:

∫
∞

0 dx x4 ex

(ex−1)2 =
4π4
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2. Debye model

In order to describe the crossover between the low- and high-temperature limits, one often uses
the Debye model. Here, the phonon density of states is assumed to have the form

gD(ε) =
d εd−1

εd
D

Θ(εD− ε), (5)

where εD is the Debye energy, which also defines the Debye temperature TD = εD/kB.

• Show that this density of state is correctly normalized by evaluating the integral
∫

∞

0 dεgD(ε).

• Comfirm that the expression (2) for the specific heat with the Debye density of states (5)
indeed recovers the Dulong-Petit law at high temperatures and the behavior C ∼ T d at
low temperatures.

• Compare the result in the low-temperature regime for d = 3 with the result obtained in
222.d) to derive an explicit formula for εD.
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