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1. The Kronig-Penney model revisited

In this exercise, we will once again turn to the famous Kronig-Penney model. Ultimately, our
aim is to show that it is possible to choose a basis whose states are actually localized around
the lattice sites instead of being delocalized over the entire solid. This will be referred as the
Wannier basis. You can download an accompanying IPython notebook.

1.1. Numerical solution

On a previous sheet, we already showed you how to analytically solve this model. In this
exercise, we will tackle the problem using a technique called exact diagonalization. The basic
idea that we take the Hamiltonian operator in its matrix form and diagonalize this matrix to find
the eigenvalues and eigenvectors. As a reminder, the Hamiltonian is given as follows:
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To solve this Schrodinger equation and obtain the wavefunctions y, we simply discretize space
with a step size h and rewrite the Hamiltonian as
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Diagonalizing this matrix, we find the energies and the statevectors of the Kronig-Penney model
for a fixed number of potential wells.

e Study the accompanying [Python notebook and use it to calculate the wavefunctions.
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e How are the boundary conditions take care of in the simulation?

An alternative route is to make use of Bloch’s theorem. It states that the wavefunction in such a
system with discrete translational invariance is given as

V(x) = exp (ikx)uy , (x), )

where the functions u are periodic in the lattice. We now insert this result for y(x) into our
original equation and discretize that one as well.

e Insert the wavefunction in Bloch form into the Hamiltonian and derive the discretized
version of the Hamiltonian just like above.

e Using the supplied notebook, perform this calculation for various strengths of the inter-
action on your own.

1.2. The Wannier basis

In a final step, we now use the results we obtained in the previous part of this exercise to
perform a basis change to one where the eigenfunctions are almost perfectly localized around
the respective atomic centers. This basis is called the Wannier basis. Its formal definition is as
follows:
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It is, however, not always guaranteed that the resulting functions are localized around the centers
of the potentials. In particular, each of the Bloch function carries a phase that might interfere or
be influenced by other devices. In a worst case scenario, this phase may cause the wavefunctions
to be superposed in such a way that does concentrate most of the weight around one city. One
possible way to gauge the phases and to get rid of the problem is to define a phase ¢ for the
reciprocal lattice vector k as
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The underlying idea of this choice of gauge is to choose the gauge such that the wavefunctions
become real at the same point in time.

e Read through the source code to understand how Bloch functions are created from the
simple wave function.

e Choose a different band for which to calculate the Wannier basis.

e Check for orthogonality, i.e. verify that you have a set of orthonormal basis vectors



2. Tight binding in second quantization

Solving a tight binding model becomes particularly easy if the formulation of second quantiza-
tion is used. We will do this for a variety of lattices in this exercise. Setting up the Hamiltonian
matrix becomes rather tedious when the lattice has a large number of atoms in the unit cell,
which is why we provide you with an IPython notebook that contains routines to solve the tight
binding problem for arbitrary lattices.

We start by recapitulating the essentials of the tight binding technique and solve a few simple
models.

Isotropic chain

Consider a one-dimensional chain described by a Hamiltonian
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whose dispersion we know to be E (k) = —2¢cos(k).

1. Show that each term of the form cch f contributes chkeik(’ i),

2. Use this information to solve for the energy spectrum of the tight binding chain above.

Square lattice

This method is applicable regardless of the dimensionality of the problem. Only the phase factor

chk ek (ri=rj) changes such that each term is now determined by a scalar product c,tckeik (ri—r;),

Our first example is easily extended to two dimensions.
_ f i
i,j

where the sum runs over all nearest neighbors i, j.

3. Proceed as previously to determine the energy spectrum of the square lattice.

Diatomic chain

The number of bands that we find for a given Hamiltonian depends on the number of atoms per
unit cell. If we change the hopping parameters to be alternating
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we are dealing with two atoms A and B, per unit cell which will be described by two types of
annihilation and creation operators that we may call a,a’ and b, b7, respectively.

5. Rewrite the Hamiltonian using these new operators.
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6. Continue by transforming the Hamiltonian into Fourier space and rewrite the result in the
form of a vector-matrix-vector product.

7. Solve for the energy spectrum by diagonalizing this matrix.

Honeycomb lattice

To facilitate solving such models, we provide you with an [Python notebook. Let us discuss
graphene as one final example. The basis vectors are given by

035 =4

The two atoms A and B in same the unit cell are connected by a vector
o1 = (1,0). (11)

Connecting one atom of species A to its remaining two neighbors in surrounding unit cells is

achieved by the
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8. Draw a quick sketch of one unit cell as defined above and its neighboring unit cells. Label
the connecting vectors between atoms in the unit cell and its neighbors with 6y, 6, and

03.
9. Set up the Hamiltonian matrix and solve for the dispersion relation as a function of k.

10. Now switch to the notebook and compute the dispersion along the following path in the
Brillouin zone:
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Do you observe any special features along this path?

bcc lattice

We now move on to add one more spatial dimension and study the bcc lattice. Its basis vectors
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Every atom has 8 nearest neighbors, which are located at all combinations of v = (j:%, i%, i%) .

11. Proceed as previously to calculate the dispersion relation for the bcc lattice.


http://www.thp.uni-koeln.de/trebst/Lectures/SolidState-2016/dispersions_tight_binding.ipynb

	The Kronig-Penney model revisited
	Numerical solution
	The Wannier basis

	Tight binding in second quantization

