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1 Fourier transformation

Consider a periodic function f with period L, i. e. a function that satisfies the condition
f(x) = f(x+ L). The Fourier transform f̃(q) of f(x) is defined via

f(x) =
1

L

∑
q

f̃(q)eiqx . (1)

Show that the allowed values for q are q = 2πn/L, with n integer. The inverse transformation is

f̃(q) =

L̂

0

dx f(x)e−iqx . (2)

(Note that definitions are not unique since there is a freedom to choose the prefactors.)

a) Calculate the Fourier transform of f1(x) = cos(2πx/L) according to Eq. (2). Check your
result using Eq. (1).

b) Consider a function g, which is defined only at discrete points xn = na (n = 0, . . . , N), and
which is periodic: g(x0) = g(xN ). We define its Fourier transform via

g(xn) =
1

Na

∑
q

g̃(q)eiqxn . (3)

Then, the inverse transformation reads

g̃(q) = a

N∑
n=1

g(xn)e−iqxn . (4)

Show that g̃(q) = g̃(q + 2πm/a) (m integer). Therefore it is sufficient to restrict the q values
to the interval −π/a < q ≤ π/a. What are the allowed values of q in this interval? How many
different q-values do we need?

c) Show that (Hint: Geometric series)

N∑
n=1

e−i(q−q
′)xn =

{
N, q = q′

0, q 6= q′

}
= Nδq,q′ , (5)
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and that ∑
q∈1.BZ

eiq(xn−xm) =

{
N, n = m
0, n 6= m

}
= Nδn,m , (6)

where the first Brillouin zone (1. BZ) is the set of allowed q-values in the interval (−π/a, π/a]:
1.BZ = {q| − π/a < q ≤ π/a and eiqN = 1}.

d) Show that we recover Eqs. (1) and (2) from Eqs. (3) and (4) in the limit N →∞, a→ 0, with
Na = L = const.

e) Now consider the limit L→∞ (thermodynamic limit).
Show that Eq. (1) becomes

f(x) =

∞̂

−∞

dq

2π
f̃(q) eiqx , (7)

and that Eq. (3) becomes (L = Na, a =const.)

g(xn) =

π/aˆ

−π/a

dq

2π
g̃(q) eiqxn . (8)

2 Fourier representation of the δ-function

a) Show that
∞̂

−∞

dω

2π
e−iωt = δ(t). (9)

b) What is
´∞
−∞

dω
2π e
−iω(t−t0)?

c) Check your result by calculating the inverse transformation
´∞
−∞ dt e

iωt δ(t− t0).
Hints:

• Calculate
´∞
0

dω
2π e
−iωt−εω and

´ 0
−∞

dω
2π e
−iωt+εω for ε > 0

• Use that lim
ε→0+

ε
ε2+(x−x0)2 = πδ(x− x0).

3 Covalent bonds (F)

In the context of atomic physics, the wave function is referred to as an atomic orbital. When two
atoms are brought together, their orbitals begin to overlap which may lead to the formation of a
chemical bond. Let us consider the situation where each atom has an orbital that is occupied by
a single electron and these orbitals are brought in contact such that they overlap. The picture
of orbitals belonging separately to their respective atoms is now no longer valid. Instead, new
orbitals are formed that can come in a variety of forms: If the orbital is concentrated around
one of the atoms, then the bond it forms is referred to as an ionic bond. In the case when the
electron pair is shared between the two atoms, the bond is said to form a covalent bond. A
special case of this bond is the metallic bond, where many atoms are brought into contact and
the orbitals themselves span and interact over multiple atoms. In this exercise, we will explore
why the scenario of sharing electrons between atoms is energetically favorable.
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Figure 1: The setup considered in this exercise: Two nuclei depicted in red are separated by a
distance R. They interact with a freely moving electron (blue) via an interaction Vi, indicated
by the grey lines.

Let us consider the simplified scenario of two nuclei separated by a distance R and one electron,
see Fig. 1. Applying the Born-Oppenheimer approximation, we will treat the nuclei as resting.
The Hamiltonian of the system is given by

H = P + V1 + V2, (10)

where P is the kinetic term of the electron and the Vis represent the Coulomb interaction of
the electron with the nucleus. The problem of the electron traveling around each of the nuclei
without the presence of the other is easily solved. In fact, even the problem of the electron
moving the presence of the two nuclei is possible to solve exactly, although more tedious. For a
more general solution, we will use a variational approach.
In this approach, we construct a variational wave function |ψ〉 = φ1 |1〉 + φ2 |2〉 where the φi
are complex coefficients, and the wavefunctions |1〉 and |2〉 are chosen to be the lowest energy
solutions to the one electron, one nucleus problem described above, i.e.

(P + Vi) |i〉 = εi |i〉 . (11)

This ansatz is called the Linear Combination of Atomic Orbitals (LCAO), and in general,
more than one orbital from each atom is chosen.
Our goal is to minimize the energy E, given as

E =
〈ψ|H |ψ〉
〈ψ|ψ〉

. (12)

a) Evaluate the inner products 〈ψ|H |ψ〉 and 〈ψ|ψ〉.
In doing so, you will come across the following terms:

• 〈i| (P + Vi) |i〉 = εi is simply the eigenvalue problem of the simpler system with only nucleus
i present.

• 〈1|V2 |1〉 = V is the potential energy the electron in orbital 1 feels from the nucleus 2.

• 〈1|V2 |2〉 = −t is called the hopping amplitude that lets the electron move between the
nuclei, mediated by their mutual interaction.

• 〈1|2〉 = S is the overlap of the two orbitals.

b) Now calculate the partial derivatives of the energy E with respect to φ∗i , ∂φ∗iE.
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c) For the energy to be minimal, these derivatives have to be zero. Enforce this constraint and
rewrite the result set of equations as a system of equations that has the form of a generalized
eigenvalue problem

Hφ = ESφ , (13)

where S is a matrix of the form

S =

(
1 S
S∗ 1

)
. (14)

d) Continue by solving for the eigenvalues and eigenvectors.

Hint: In this case, the finite overlap S can be neglected to simplify the calculation to a regular
eigenvalue problem wihout affecting the key qualitative features.

e) Now imagine filling the resulting energy levels with a spin up and spin down electron and
compare the overall energy of the system with that of the individual systems where each nuclei
is surrounded by one electron. How does the probability density depend on the difference of
ε1 and ε2 in comparison to the hopping strength t?
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