Solid State Theory Exercise sheet 3

This exercise sheet will be discussed on Friday, November 23rd 2018. You should hand in your solution of the exercise marked with (★) in the mail box by 16:00 on Thursday November 22nd 2018.

Exercise sheets online at www.thp.uni-koeln.de/trebst/Lectures/2018-SolidState.shtml

1 Specific heat of phonons (\bigstar)

The goal of this exercise is to study the contribution of phonons to the specific heat of a crystal. To this end, let us consider the phonon Hamiltonian in the harmonic approximation

$$H_{ph} = \sum_{\mathbf{k} \in 1.BZ; n=1,2,\dots,d\,r} \hbar \omega_n(\mathbf{k}) \left(b_{\mathbf{k},n}^{\dagger} b_{\mathbf{k},n} + \frac{1}{2} \right)$$
(1)

with $b_{\mathbf{k},n}^{\dagger}$ and $b_{\mathbf{k},n}$ being bosonic creation and annihilation operators, respectively, n=1,2,...,dr labels the phonon branches for r ions per unit cell in d dimensions, and $\omega_n(\mathbf{k})$ denote the energy dispersions.

The average occupation number of a phonon mode at temperature $T \ge 0$ is given by the Bose-Einstein distribution function $(\beta = \frac{1}{k_B T})$

$$n_B(\hbar\omega_n(\mathbf{k})) \equiv \langle b_{\mathbf{k},n}^{\dagger} b_{\mathbf{k},n} \rangle = \frac{1}{e^{\beta\hbar\omega_n(\mathbf{k})} - 1}.$$

The thermal average is defined via $\langle \hat{O} \rangle = \frac{\text{Tr}\left(e^{-\beta \hat{H}} \hat{O}\right)}{Z}$, where $Z = \text{Tr}\left(e^{-\beta \hat{H}}\right)$ is the partition function. We want to calculate the specific heat C given by

$$C(T) = \frac{\partial \langle \hat{H} \rangle}{\partial T}.$$

a) Show that

$$C(T) = \frac{\langle \hat{H}^2 \rangle - \langle \hat{H} \rangle^2}{k_B T^2},$$

i.e. that the specific heat is a measure of variations in energy

High-temperature limit:

The phonon dispersions are bounded from above with a maximum value $\omega_{\max} \equiv \max_{n,k} \{\omega_n(k)\}.$

b) Show that for high temperatures $T \gg \hbar \omega_{\text{max}}/k_B$, the specific heat follows the law of Dulong-Petit and is given by the constant value

$$C(T \gg \hbar\omega_{\text{max}}/k_B) = dr k_B N,$$

where N is the number of unit cells.

Phonon density of states:

It is convenient to write the specific heat in the form

$$C(T) = dr k_B N \int_{0}^{\infty} d\varepsilon g(\varepsilon) \frac{(\beta \varepsilon)^2 e^{\beta \varepsilon}}{(e^{\beta \varepsilon} - 1)^2},$$
 (2)

where $g(\varepsilon)$ is the phonon density of states:

$$g(\varepsilon) = \frac{1}{drN} \sum_{\mathbf{k} \in 1.BZ: n=1,2,...dr} \delta(\varepsilon - \hbar\omega_n(\mathbf{k})).$$
 (3)

c) Evaluate the integral $\int_0^\infty d\varepsilon g(\varepsilon)$ to show the density of states in normalised.

Low-temperature limit:

The energy of the optical branches is also bounded from below with a minimum value $\omega_{\min}^{\text{opt}} \equiv \min_{n,k} \{\omega_n(k) | \omega_n \text{ optical}\}.$

At low temperatures $k_BT \ll \hbar \omega_{\min}^{\text{opt}}$, the phonon density of states is solely determined by the d acoustic phonon branches. Their dispersions assume the form $\omega_j(\mathbf{k}) = v_{s,j}(\hat{\mathbf{k}})|\mathbf{k}|$ with j = 1, ..., d. In general these sound velocities $v_{s,j}(\hat{\mathbf{k}})$ depend on $\hat{\mathbf{k}} = \mathbf{k}/|\mathbf{k}|$, for simplicity in the following calculation assume the velocites are isotropic $v_{s,j}(\hat{\mathbf{k}}) = v$ for all s, j. d) Evaluate the phonon specific heat, Eq. (2), at low temperatures to show that

$$C\left(T \ll \hbar\omega_{\min}^{\text{opt}}/k_B\right) \sim T^d.$$
 (4)

Hint: Show that $g(\varepsilon \ll \hbar\omega_{\min}^{\text{opt}}) \sim \varepsilon^{d-1}$ and substitute $\varepsilon = k_B T x$ in Eq. (2).

e) Calculate the prefactor in d=3 dimensions. $Hint: \int_0^\infty dx \, \frac{x^4 \, e^x}{(e^x-1)^2} = \frac{4\pi^4}{15}$

2 Debye model

In order to describe the crossover between the low- and high-temperature limits, one often uses the Debye model. Here, the phonon density of states is assumed to have the form

$$g_D(\varepsilon) = \frac{d\,\varepsilon^{d-1}}{\varepsilon_D^d} \Theta(\varepsilon_D - \varepsilon),\tag{5}$$

where ε_D is the *Debye energy*, which also defines the *Debye temperature* $T_D = \varepsilon_D/k_B$.

- a) Show that this density of state is correctly normalised by evaluating the integral $\int_0^\infty d\varepsilon g_D(\varepsilon)$.
- b) Confirm that the expression Eq. (2) for the specific heat with the Debye density of states Eq. (5) indeed recovers the Dulong-Petit law at high temperatures and the behavior $C \sim T^d$ at low temperatures.
- c) Compare the result in the low-temperature regime for d=3 with the result obtained in the final task of the previous exercise and use this to derive an explicit formula for ε_D .