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1 Theory

1.1 Teaser video

1.2 Introduction

Statistical physics aims to derive observable quantities from a microscopic sys-
tem. For instance, the Ising model is defined by interactions between elementary
magnets (spins), and the goal is to derive, among others, the magnetisations and
correlations of the spins from the parameters of the model (interactions and ex-
ternal fields).

In an inverse statistical problem, this direction is reversed: given observed
data, like spin magnetisations and correlations, we aim to infer the underlying
model parameters.

In the last two decades a number of applications of the inverse Ising problem
have arisen in different fields, ranging from the inference of neural and gene
regulatory networks, to the inference of protein structures and the structure of
complex quantum phase transitions. The inverse Ising problem has also turned
out to be an algorithmically challenging problem (we will see why) and a wide
range of different approaches has been developed. See Ref. [1] for a review arti-
cle.

1.3 Boltzmann machine learning

In the problem that we are going to consider in the following we are given ob-
served data in the form of vectors of binary variables, s = (s1, . . . , sN) with
si = ±1. These can, for example, correspond to Ising spin configurations or
represent the brain activity of a salamander. The question we want to answer
is what is the probability distribution that best describes the observed data. For
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this purpose, we choose a model, i.e., a specific parametrized function Pθ(s) with
parameters θ. The objective is then to find the optimal parameters θ∗ in the sense
that Pθ∗(s) is the best choice to explain the given data.

This problem of statistically inferring a good model for the given observations
is today often framed as a machine learning problem. Therefore, we will in the
following talk about “learning” the model or a “learning algorithm”. In this
section, we will discuss the three central components of this approach, namely
the choice of a model, the formulation of a learning objective, and a possible
learning algorithm.

1.3.1 Ising model

We consider a system of N binary variables (Ising spins) {si}, i = 1, . . . , N with
si = ±1. These spins are coupled by pairwise interactions and are subject to
external magnetic fields.

P{hi,Jij}(s) =
1

Z
exp

[∑
i

hisi +
∑
i<j

Jijsisj

]
(1)

denotes the corresponding Boltzmann equilibrium distribution
P ({si}) = e−H({si})/Z, where we have set the (inverse) temperature to 1 by sub-
suming it into the interactions Jij and fields hi: The interaction Jij hence denotes
β = 1/(kBT ) times the energy difference associated with parallel and antiparal-
lel spin configurations. Interactions and fields are unknown, and many of them
may be zero.

The Hamiltonian

H({si}) = −
∑
i

hisi −
∑
i<j

Jijsisj (2)

specifies the energy of the spin system as a function of the spin variables and
the parameters of the Ising model: the local fields and pairwise interactions. The
inverse Ising problem is the determination of the couplings Jij and local fields
hi given a set of pairwise correlations between spins and magnetisations.

The factor Z in Eq. (1) denotes the partition sum, i.e., the normalization that
guarantees that all probabilities sum up to one,

Z =
∑
s

exp

[∑
i

hisi +
∑
i<j

Jijsisj

]
. (3)

1.3.2 Learning objective

Now that we chose a model for the probability distribution, we have to formalize
what we mean by “inferring the optimal parameters”. This means, in particular,
that we need a quantitative approach to evaluate how “good” a chosen set of
parameters θ is.
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For this purpose, we assume that there exists a true underlying probability
distribution of the data P0(s) – the ground truth. Our goal is then that Pθ∗(s)
is as close as possible to the ground truth. The similarity of probability distri-
butions can be quantified by the Kullback-Leibler divergence, which is for two
distributions P (x) and Q(x) given as

DKL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)
. (4)

This quantity informs us about the similarity of both distributions, because
DKL(P ||Q) ≥ 0 and it vanishes if and only if the two distributions are equal.
Notice, however, that it is not a distance, because the function is not symmetric
under exchange of P and Q.

Based on the Kullback-Leibler divergence, inferring the optimal parameters
means to minimize DKL(P0||Pθ). Clearly, this objective needs further thought,
because we do not know the ground truth P0(s), meaning that it is not immedi-
ately possible for us to evaluate Eq. (4). All that we know is the training data,
which we view as a finite sample from the distribution, s(k) ∼ P0, k = 1, . . . ,M .
Using this finite sample, we can approximate the Kullback-Leibler divergence as

DKL(P0||Pθ) =
∑
s

P0(s) log
P0(s)

Pθ(s)

≈ 1

M

∑
k

log
P0(s

(k))

Pθ(s(k))

= − 1

M

∑
k

logPθ(s
(k)) +

1

M

∑
k

logP0(s
(k)) . (5)

In the last expression we deliberately split the logarithm of the ratio into the
difference of the logarithms. Thereby, we separate the remaining occurrence of
the ground truth P0(s) to underline that this is a constant contribution to the
expression. This additive term is not affected by changes of the parameters θ,
and, therefore, the minimization of DKL(P0||Pθ) is reduced to the minimization
of

L(θ) = − 1

M

∑
k

logPθ(s
(k)) . (6)

This quantity is called the (empirical) negative log-likelihood.
Notice that by discarding the constant term in the last line of Eq. (5) we lost

the property of the Kullback-Leibler divergence, that the absolute minimum is
zero. This means that the absolute minimum of the negative log-likelihood (6)
is unknown and it’s bare value is not informative about the distance between
model and ground truth. It is nonetheless useful to monitor the negative log-
likelihood during the process of the training algorithm discussed in the next
section in order to determine whether learning continues and when convergence
is achieved.
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1.3.3 Learning algorithm

As a last ingredient, we need an algorithm that allows us to minimize the neg-
ative log-likelihood. Since L(θ) is a differentiable function of the continuous
parameters θ, we can use a gradient descent approach to find the optimum. This
means that after choosing an initial guess of the parameters θ(0) we follow an
iterative procedure with the update step

θ(n+1) = θ(n) − η∇L(Pθ) . (7)

Here, η is the learning rate.

Figure 1 – Schematic of gradient descent optimization in an exemplary cost landscape.
The white arrows indicate paths that a gradient descent algorithm would follow during
optimization. Notice that in the presence of multiple extrema convergence to the global
minimum is not guaranteed and the outcome can depend on the initial condition as
indicated by the two exemplary paths.

Plugging the Ising model (1) into the log-likelihood (6), we obtain the prescrip-
tion

h
(n+1)
i = h

(n)
i + η

(
⟨si⟩D − ⟨si⟩θ

)
J
(n+1)
ij = J

(n)
ij + η

(
⟨sisj⟩D − ⟨sisj⟩θ

)
. (8)

for the parameters of the Ising Hamiltonian. In these expressions, ⟨·⟩D denotes
the mean obtained from the training data D and

⟨·⟩θ =
∑
s

Pθ(s)
(
·
)

(9)

denotes the expectation value with respect to Pθ. This particular way to find
the optimal parameters θ model parameters is called Boltzmann machine learn-
ing, because it relies on the fact that the model function Pθ takes the form of a
Boltzmann factor as in Eq. (1).

In order to calculate the expectation values ⟨si⟩ and ⟨sisj⟩ on the right-hand
side of these equations, one needs to perform thermal averages over all 2N con-
figurations, which is generally infeasible for all but the smallest system sizes.
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To proceed, we will set up a Monte-Carlo Markov chain (MCMC, described in
the following section) to estimate the expectation values ⟨si⟩ and ⟨sisj⟩ under
the Boltzmann equilibrium distribution (1) for a given set of model parameters.
These then enter the Boltzmann machine learning algorithm (8).

1.4 Non-equilibrium reconstruction

The Boltzmann equilibrium distribution in Eq. (1) relies on the assumption that
the spin degrees of freedom of the model are coupled symmetrically, i.e., Jij =
Jji. This assumption is, however, not necessarily a good match for the given
data. In this project you will analyze the brain activity of a Salamander, where
the the spin variables correspond to the activity of individual neurons. The con-
nections between these neurons are directed and therefore their mutual influence
is not necessarily identical.

The stochastic dynamics of systems with asymmetric couplings breaks detailed
balance. Therefore, the steady states reached at late times do not necessarily cor-
respond to the Boltzmann distribution. One way to incorporate the breaking of
detailed balance in the inverse Ising problem is to consider a stochastic Glauber
dynamics. For this purpose, we assume discrete time steps and a probabilistic
update rule for the new spin configuration conditioned on the current configu-
ration,

P
(
s(t+ 1)|s(t)

)
=

exp
[∑

i si(t+ 1)Θi(t)
]∏

i 2 cosh
(
Θi(t)

) . (10)

Here, we introduced the effective local field

Θi(t) =
∑
j

Jijsj(t) + hi . (11)

Notice that the joint probability (10) factorizes and one can write

P
(
s(t+ 1)|s(t)

)
=

∏
i

exp
[
si(t+ 1)Θi(t)

]
2 cosh

(
Θi(t)

) ≡
∏
i

pi
(
si(t+ 1)|s(t)

)
(12)

with normalized marginal distributions for the individual spins, pi
(
si(t+1)|s(t)

)
.

This means that in a simulation the update step can be implemented by individ-
ually drawing the new configuration for each spin from the respective Bernoulli
distribution.

1.4.1 Learning from time series data

The objective is now to infer couplings Jij and local fields hi such that the result-
ing Glauber dynamics matches given time series data D = {s(t = 1), . . . , s(t =
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M)}. For this purpose we consider a modified negative log-likelihood

L(θ) = 1

M

M−1∑
t=1

lnP
(
s(t+ 1)|s(t)

)
=

1

M

M−1∑
t=1

∑
i

[
si(t+ 1)Θi(t)− ln 2 cosh

(
Θi(t)

)]
. (13)

On this basis, the optimal parameters can again be obtained using the gradient
descent approach. Notice that the non-equilibrium negative log-likelihood (13)
is tractable, because it can be evaluated in MN2 computational steps.

1.5 Markov chain Monte Carlo

For the Boltzmann machine learning algorithm we need to be able to evaluate
expectation values of the form

⟨O⟩θ =
∑
s

Pθ(s)O(s) , (14)

where O(s) is some function of the microscopic configuration s. Assume that we
have a means to obtain a finite sample SM = {s1, . . . , sM} such that in the limit
of large N the relative frequency of a configuration s in SM is proportional to its
probability pβ(s). Then, according to the law of large numbers, the sample mean
converges to the expectation value with increasing sample size,

⟨⟨O⟩⟩N ≡ 1

N

∑
s∈SM

O(s)
M→∞−→ ⟨O⟩θ . (15)

1.5.1 Metropolis-Hastings algorithm

The idea of the Metropolis-Hastings algorithm is to realize a Markov process
whose stationary distribution is the probability distribution π(s) that we are in-
terested in. Once the process reached the stationary state, the states si visited can
be used as a sample SM and therefore to estimate expectation values.

In a Markov process the system is described by a state s and in each time step it
transitions into a new state s′ according to a transition probability pMC(s → s′) ≡
pMC(s

′|s) that only depends on the current state of the system. In the Metropolis-
Hastings algorithm the Markov transition probabilities are constructed in two
steps, given the current state s. First, a new configuration s′ is proposed follow-
ing a proposal probability pP (s

′|s) that can be conditioned on the current state.
Given the proposed configuration s′ the update is accepted with a probability

pA(s, s
′) = min

(
1,

π(s′)

π(s)

pP (s|s′)
pP (s′|s)

)
(16)
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Hence, the probability to move from state s to state s′ in the resulting Markov
process is

pMC(s → s′) = pP (s
′|s)pA(s, s′) . (17)

This form of the transition probability is chosen to satisfy the detailed balance
condition

π(s)pMC(s → s′) = π(s′)pMC(s
′ → s) , (18)

which is a sufficient condition for the Markov process to have π(s) as stationary
distribution. Uniqueness of the stationary distribution is guaranteed if the pro-
cess is ergodic, i.e., if it is possible for the process to go from any state s to any
other state s′ in a finite number of steps. Clearly, the latter condition has to be
kept in mind when designing the proposal probability pP (s

′|s).
For Ising spin systems single spin flip updates are often sufficient. This means

that from the given configuration s one flips the sign of a single degree of free-
dom, s′i = −si, and the proposal probability pP (s

′|s) is a uniform distribution
over all configurations s′ that differ from s by a single spin flip. To reduce the
cost of estimating expectation values and to mitigate the effect of autocorrela-
tion discussed in the following section, one typically performs sweeps of local
updates between subsequent configurations that are added to the sample SMC

M .
One sweep consists of one Markov update step per degree of freedom, which
means that the configuration obtained after the update sweep can globally differ
from the initial configuration.

1.6 The Salamander’s brain activity

We now turn to an empirical dataset, a neural recording taken from the retina
of a salamander. The retina is an extension of the brain. It consists of neural
tissue, which has been isolated and placed on a 2D square array of electrodes at
a distance of about 60µm. In this case, there are 160 electrodes connected to the
neurons (there will be some crosstalk between electrodes).

The measurements of neural signals are used to specify the state of different
neurons (active or inactive, si(t) = 1 or −1) at different times while a movie is
projected on the retina (19s of movie are repeated 297 times). Specifically, neural
spikes are binned in intervals of 20ms, and a neural spike during an interval
leads to the neuron being labelled ‘active’ in that interval.

If two cells tend to fire simultaneously, they will frequently exhibit 1 in the
same bin, corresponding to pairwise spin correlations.

The data is available at https://research-explorer.app.ist.ac.at/
download/5562/5623/IST-2017-61-v1%2B2_bint_fishmovie32_100.
zip in the form of a matrix whose rows correspond to different electrodes and
columns describe the different time bins.
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2 Preparation

2.1 Theory

While you familiarize yourself with the theoretical background, find answers to
the following questions:

Q1 How is the Boltzmann machine learning algorithm (8) obtained from the
objective to maximize the log-likelihood (6)?

Q2 The model (1) involves the partition sum Z with an exponential number
of terms. Why does this exponential sum not affect the efficiency of the
learning algorithm?

Q3 Derive the derivatives of the non-equilibrium likelihood (13), which you
need to implement the corresponding gradient descent optimization.

3 Tasks

3.1 Warm-up: learning thermal distributions

Clearly, there are several problems nested within each other, and we proceed
step-by-step. To begin with, pick a small system size, say N = 5.

1. Generate fields and interactions that you will later infer (“target param-
eters”). Generally, they can be anything, but a vector of (0, 1)-Gaussian
distributed numbers for fields and a symmetric matrix with zero diagonal
of (0, 1/N)-Gaussian distributed numbers is a good starting point.

2. Set up a MCMC algorithm based on flipping individual spins. Make sure
you compute the change in the energy (2) efficiently, because this will be
what the algorithm will spend most of its time doing1.

3. After running the chain for a sufficient number of steps to reach equilib-
rium, record the average values of spins si and spin pairs sisj to compute
magnetisations and correlations2.

4. Now suppose we do not know what the couplings and fields are, but need
to infer them from the magnetisations and correlations you just computed.
Set the initial couplings J0

ij and fields h0
i to some (randomly chosen, see

above) values, and change them according to (8) until convergence. Mon-
itor the negative log-likelihood (6) during the training procedure. Is the

1Hint: it should take only O(N) steps.
2To figure out what sufficient means here, try halving that number of steps. If that changes the

outcome significantly the number of steps was too small. If ever you are unsure how to pick
some quantity in your work or your life, remember this principle. You are welcome.
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value being reduced systematically? How does this depend on the learn-
ing rate?

5. Check how well the inference works by plotting the inferred model param-
eters against the target parameters. How does the quality of the inference
depend on the number of training data?

3.2 The brain of the salamander

3.2.1 Inferring an equilibrium model

Use your experience with Boltzmann machines to explore this data

1. Calculate the “magnetisations"’ and “two-spin correlations” of the data

2. Infer couplings and fields which describe this data

3. To probe how well your model describes the data, pretend for a moment
you are missing some individual entries of the data. How well does the
distribution of that spin conditioned on the others describe the missing data?

4. To further test the model, calculate the correlations between triplets of
spins both in the data and from your model and plot them against each
other.

5. Devise other tests and try them out!

3.2.2 Inferring a non-equilibrium model

Now, we turn to non-equilibrium reconstruction as discussed in Section 1.4. We
again start with the reconstruction of a known model and subsequently turn to
the Salamander’s brain activity.

1. Generate a set of couplings and fields that you will later infer. Implement
the Glauber dynamics and generate a time series as training data.

2. Infer the couplings and fields used to generate the training data. How
accurately are the parameters recovered?

3. Infer symmetric couplings Jij = Jji and fields that best describe the Sala-
mander’s brain activity. How well does the inferred model describe tem-
poral correlations of the data?

4. Infer couplings Jij that are not necessarily symmetric and fields that best
describe the Salamander’s brain activity. By comparing the resulting likeli-
hoods, does the model with asymmetric couplings lead to a better descrip-
tion of the data?
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