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1 Theory

1.1 Teaser video

1.2 Introduction

When studying the thermodynamic

Figure 1 – Schematic phase diagram [from
[1]].

properties of many microscopic par-
ticles that can move freely in space,
the simplistic model of the ideal gas
yields many insights allowing us to
understand the gaseous state of mat-
ter. However, this model clearly reaches
its limitations once interactions between
the particles become relevant at high
enough densities ρ and low enough
temperatures T . In the presence of in-
teractions the characteristics of the sys-
tem can change and it can transition
into a liquid or solid state of matter. A
schematic phase diagram in the ρ−T -
plane is shown in Fig. 1. At temper-
atures below the critical temperature
Tc it indicates a gaseous phase (V) at
low densities and a liquid phase (L)
at intermediate densities. In between lies a coexistence region, where both states
are stable and at temperatures T > Tc both transition into a fluid state, through
which gas and liquid can be continuously connected. The solid state (S), in which
particles arrange on a regular lattice, is reached at high densities.
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For the microscopic description of these states of matter we can assume a clas-
sical Hamilton function for N identical particles with mass m of the form

H(p, r) = K(p) + V(r) =
N∑
i=1

p2i
2m

+
∑
i

∑
j>i

V2(|ri − rj|) . (1)

Here, r,p ∈ R3N denote the positions and momenta of the particles, respectively.
K is the kinetic energy and V denotes the potential energy contributions due to
the interactions between the particles. In the second equality, we introduce the
pair potential V2(r) indicating that the relevant interactions are pair-wise inter-
actions that only depend on the distance between the particles. With ri ∈ R3 we
denote the coordinate vector of particle i.

The separation of the Hamilton function into the momentum-dependent ki-
netic part and the position-dependent potential part implies that the partition
sum of the system factorizes accordingly. This means, that all thermodynamic
properties of the system can be cast as a sum of these two contributions. In par-
ticular, the three different states of matter can be characterized by the relation of
the magnitudes of the two energy contributions. In the dilute gas, ⟨K⟩ ≫ ⟨V⟩,
while in the solid state the potential part dominates, ⟨K⟩ ≪ ⟨V⟩. The liquid state
is characterized by comparable magnitude of both contributions, ⟨K⟩ ≈ ⟨V⟩.

Here, the brackets ⟨·⟩ denote the thermodynamic expectation value in the equi-
librium state, i.e., for some observable O(p, r),

⟨O(p, r)⟩ = 1

Z

∑
p,r

P(p, r)O(p, r) , (2)

where P(p, r) denotes the probability of the microscopic state in the thermody-
namic ensemble, and Z =

∑
p,r P(p,q) is the partition sum. In order to compute

such expectation values numerically, we will rely in this project on the ergodic
property of interacting many-body systems, which means that the equilibrium
expectation values are equal to long time averages when following the dynamics
of the system,

⟨O(p, r)⟩ = lim
τ→∞

1

τ

∫ t0+τ

t0

dt O(p(t), r(t)) . (3)

The underlying trajectories (p(t), r(t)) follow the Hamiltonian equations derived
from Eq. (1),

ṙk =
∂H
∂pk

=
pk
m

, ṗk = −∂H
∂rk

, (4)

or, equivalently, Netwon’s equation of motion

mr̈k = Fk(r) = − ∂

∂rk
V(r) . (5)
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1.3 Lennard-Jones potential

In this project we will focus on a system composed of atoms (not molecules). In
particular, we will consider Argon atoms, for which the pair potential is shown
with a dashed line in Fig. 2a). The key features of the potential are a strong re-
pulsion at short distances, an attractive minimum at intermediate distance, and a
decay towards zero at large distance. The repulsion at short distances originates
in overlapping electron orbitals. The attractive component corresponds to a van-
der-Waals force that arises due to the interaction of mutually induced dipoles; as
such it decays with the sixth power of distance.

The solid line shows the so-called Lennard-Jones potential

VLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(6)

and we can see that the suitably chosen parameters ϵ and σ give a good agree-
ment with the actual potential. This is the functional form of the potential that
you will consider for the purpose of this project. In simulations the potential is
typically cut off at a suitably chosen cutoff-distance rc, i.e.,

VLJ(r) =

4ϵ

[(
σ
r

)12

−
(

σ
r

)6
]

if r ≤ rc

0 if r > rc

. (7)

The phase diagram of the Lennard-Jones model in the ρ−T plane has been in-
vestigated by numerical simulations and an exemplary result is shown in Fig. 2b).
The diagram exhibits the same features as the schematic diagram in Fig. 1. All
quantitative values are given in the natural Lennard-Jones units, which will be
discussed in the following subsection.

1.3.1 Reduced units

The Lennard-Jones potential (6) provides us with a natural choice for the unit of
length and the unit of energy to use in our computer simulation, namely σ and ϵ.
This means, that the simulations are performed with dimensionless parameters
ϵLJ = 1 and σLJ = 1. Here, we added the subscript LJ to indicate that these
quantities are given in dimensionless Lennard-Jones units or reduced units. When
a simulation is performed in these units, the result is applicable to any physical
system that can be modeled using the Lennard-Jones potential by translating the
units.

For example, the dimension of pressure is [energy/volme], and, therefore the
pressure of Argon would be obtained from the simulation in Lennard-Jones units
as

PAr

ϵAr/σ3
Ar

= PLJ (8)
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Similarly, kBTLJ,c is an energy and the Boltzmann constant kB can indepen-
dently be chosen dimensionless to be kB,LR = 1. From this, the critical tempera-
ture of Argon is obtained by rescaling with the Argon unit of energy ϵAr,

kBTAr,c

ϵAr

= TLJ,c (9)

By inspecting Eq. (1) we find m as another independent simulation parameter,
which has dimension [mass]. The choice mLJ = 1 defines the Lennard-Jones
unit of mass. Now that we defined the units of energy, length, and mass, we can
derive the Lennard-Jones unit of time

τLJ =

√
mLJσ2

LJ

ϵLJ
, (10)

for example, because we know that the dimension of kinetic energy corresponds
to [mass×length2/time].

1.4 Observables of interest

In this section we summarize various quantities of interest for the characteriza-
tion of the Lennard-Jones fluid. Further details and derivations can be found,
e.g., in [1]. All relations are given in dimensionless units, especially the Boltz-
mann constant kB = 1 and mass m = 1.

a) b)

Figure 2 – a) Pair potential of Argon (dashed line) compared to the Lennard-Jones poten-
tial with ϵ/kB = 120K and σ = 3.4Å(from [1]). b) Phase diagram of the Lennard-Jones
model (from [2])
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1.4.1 Thermodynamic and statistical properties

A central quantity of interest is the temperature T . In equilibrium the tempera-
ture is related to the kinetic energy via the equipartition theorem for point-like
particles as

T =
2

3(N − 1)
⟨K⟩ . (11)

To compute the pressure from given phase space coordinates, we can resort
to Clausius’ virial theorem. The virial is defined as W = ⟨

∑
k rkṗk⟩, i.e., the sum

of each spatial coordinate multiplied by the force acting on the corresponding
degree of freedom. According to the virial theorem, W = −3NT . Hence, for an
ideal gas with equation of state PV = NT , we immediately obtain W = −3PV ,
and the forces are solely due to the interaction with the container.

In an interacting system we have to add to the ideal gas part the forces induced
by the interaction potential V(r), yielding

W = −3PV +
〈∑

k

rk
∂V(r)
∂rk

〉
= −3NT

⇔ P =
1

V

(
NT − 1

3

〈∑
k

rkFk

〉)
. (12)

Finally, in equilibrium, the distribution of individual particle velocities follows
the Maxwell-Boltzmann distribution

PT (v) = 4π

(
1

2πT

) 3
2

v2e−
v2

2T . (13)

1.4.2 Correlations in space and time

An important correlation function that characterizes the spatial distribution of
particles is the two-particle distribution function g(2)(r) that indicates the prob-
ability of finding another particle at distance r from a fixed one. g(2)(r) is nor-
malized to the volume element, i.e., it is related to the plain distribution function
n(r) via

n(r) dr = 4πr2ρg(2)(r) dr (14)

An interesting correlation function that characterizes spatio-temporal fluctua-
tions is the squared distance travelled by a fixed particle in a given time,

∆2(t) =
〈
|ri(t)− ri(0)|2

〉
. (15)

Due to the interactions, the motion of the particles is expected to be diffusive on
long time scales, meaning that ∆2(t) grows linearly at large t with a slope given
by the self-diffusion coefficient

D = lim
t→∞

1

6t
∆2(t) . (16)
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On the other hand, ∆2(t) can be reformulated as a velocity correlation function.
By inserting ri(t)− ri(0) =

∫ t

0
vi(t

′) dt′ in Eq. (15) one can derive that

D =

∫ ∞

0

Z(t) dt (17)

with the velocity autocorrelation

Z(t) =
1

3
⟨vi(t) · vi(0)⟩ . (18)

Notice that according to the equipartition theorem Z(0) = T .
Since the two-particle distribution function allows us to compute observables

that depend only on the distance of particles, we can derive a relation between
g(2)(r) and the velocity autocorrelation. Short-time expansion of Eq. (18) leads to

Z(t) = T
(
1− Ω2

0

t2

2
+ . . .

)
(19)

with

Ω2
0 =

1

3T
⟨v̇i · v̇i⟩ =

1

3T
⟨|Fi|2⟩ =

4πρ

3T

∫ ∞

0

|∇riV2(r)|2g(2)(r)r2 dr . (20)

1.5 Molecular dynamics simulations

1.5.1 Velocity Verlet algorithm

The core of a molecular dynamics simulation is the numerical integration of the
equations of motion (4). A suited algorithm for this purpose is the velocity Verlet
algorithm that gives the following prescription to update the phase space coor-
dinates with a time step ∆t:

rk(t+∆t) = rk(t) + ∆t pk(t) +
∆t2

2
Fk(r(t))

pk(t+∆t) = pk(t) +
∆t

2

[
Fk(r(t)) + Fk(r(t+∆t))

]
(21)

This means that one first computes the update of the positions according to the
first line. After that, one computes the forces Fk(r(t + ∆t)) with the updated
positions in order to then obtain the update for the momenta.

The local integration error of this scheme is O(∆t4). A sufficiently small time
step ∆t has to be chosen for accurate simulations. A good figure of merit for
this purpose is energy conservation. In the absence of integration errors, the en-
ergy is an integral of motion of Hamiltonian dynamics. Deviations from energy
conservation in the numerical simulation indicate too large time steps. For the
Lennard-Jones problem a suited time steps lie around ∆t ≈ 0.01τLJ .

8



1.5.2 Estimating ensemble averages

Due to the ergodicity of interacting many-body systems, the trajectories (p(t), r(t))
computed in a molecular dynamics simulation enable us to estimate thermody-
namic ensemble averages (Eq. (2)) through long time averages (Eq. (3)).

We will now denote by (p(n), r(n)) ≡ (p(n∆t), r(n∆t)) the phase space coor-
dinates at the n-th of NT discrete time steps. Then, we select from the whole
sequence a sample S = {(p(n), r(n))|n > NT − M} with the sample size M cho-
sen such that the initial transient dynamics of the system is excluded and we
only consider the system in the equilibrated state. Then, we can estimate the
thermodynamic expectation value of any observable O(p, r) as

⟨O(p, r)⟩ = O ≡ 1

M

∑
(p,r)∈S

O(p, r) . (22)

Similarly, variances can be estimated as

σ2
O =

〈(
O(p, r)− ⟨O(p, r)⟩

)2〉
= O2 −O

2
. (23)

If O(p(n), r(n)) were uncorrelated random variables, the central limit theorem
would tell us that the deviation of the estimate from the true mean is less than
∆M

O = σO/
√
M . However, in our sample subsequent phase space points are

clearly correlated, because they correspond to a continuous dynamics. The char-
acteristic number of steps required for the decay of the autocorrelation is called
the autocorrelation time τ .

If the autocorrelation time of the data is known, it can be used to define an
effective number of uncorrelated samples, Meff = M/(1 + 2τ) [3]. With this, the error
estimate becomes

∆M
O =

σO√
Meff

=
σO√
M

√
1 + 2τac . (24)

For this purpose, it is required to estimate the autocorrelation time. A viable
approach for this purpose is the binning analysis that is explained as part of the
general purpose toolbox on the lab course website [4].

1.5.3 Boundary conditions

To avoid dealing with particles that collide with the walls of the container, it
is useful to implement the simulation with periodic boundary conditions. This
means that we define a simulation cube with linear extend L and volume V = L3,
and we assume that beyond the boundaries of this cube the system configura-
tion is repeated periodically. This situation is shown schematically in Fig. 3 for
a two-dimensional case. Of all the particles shown only a small number corre-
sponds to real particles in the simulation, namely those drawn in red. The other
symbols correspond to fictitious copies of the simulated particles due to the pe-
riodic boundary condition. One typically initializes the particles such that they
all reside in the same simulation cube as shown in Fig. 3a). However, during the
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a)

rc

L

L

b)

rc

L

L

Figure 3 – Schematic illustration of a simulation with periodic boundary conditions.

time evolution the particles can cross the simulation cube boundaries, such that
the simulated particles are scattered across different cubes as shown in Fig. 3b).

The orange circle surrounding the red circular particle o indicates the cutoff
range of the interaction potential. This means, that the forces acting on o depend
only on the positions of particles included in this radius. The finite size of the
simulation cube becomes relevant when one particle is affected by the presence
of multiple copies of another particle. Therefore, the simulation cube size has to
be chosen substantially larger than the interaction range, L ≫ rc.

To compute the forces acting on one particle, one has to identify all periodi-
cally translated fictitious copies of the other particles that lie within the interac-
tion range. In the shown example for o, this corresponds to the fictitious particles
∗ and +. A practical way to achieve this is to define the coordinate differences as

r̂αij = rαi − rαj − L · round
(
rαi − rαj

L

)
, (25)

where α = x, y, z labels the coordinates and round(·) means rounding to the next
integer. Then, the periodic boundary condition is implemented by consistently
using the difference vectors

r̂ij =

r̂xij
r̂yij
r̂zij

 . (26)

This is called the minimum image distance.

1.5.4 Adding a thermostat

When setting up a molecular dynamics simulation it is easy to control the ther-
modynamic variables of particle number N and volume V , because they are ex-
plicit parameters of the simulation. Thereby, also particle density ρ = N/V is
under direct control. By contrast, the total energy E = H(p, r) and, thereby, the

10



temperature T of the equilibrium state can only be controlled indirectly. The to-
tal energy is set by the chosen initial condition (p(0), r(0)) and depends on the
distribution of particles in space and their initial velocities.

To target a specific temperature T ∗, we can include the coupling to a ficticious
heat bath at that temperature during the initial equilibration of the simulation.
We assume, that the heat flux JQ due to the coupling to the bath only changes
the kinetic energy of the system. Considering a small time step ∆t and by intro-
ducing λ(t) = |pi(t+∆t)|/|pi(t)|, we can write

JQ =
∆Q

∆t
=

1

∆t

N∑
i=1

|pi(t)|2

2

(
λ(t)2 − 1

)
=

1

∆t

3

2
(N − 1)T (t)

(
λ(t)2 − 1

)
. (27)

Here, we introduced the instantaneous temperature T (t) in analogy to the equipar-
tition relation in Eq. (11) as

T (t) =
2

3(N − 1)
K(p(t), r(t)) . (28)

Assuming furthermore, that the heat

Figure 4 – Exemplary evolution of the in-
stantaneous temperature of a system cou-
pled to a bath at T ∗ = 0.5 modeled by the
heat flux approach.

flux to the bath depends linearly on
the difference between the instantaneous
system temperature T (t) and the bath
temperature T ∗, JQ ∝ T ∗ − T (t), we
can derive from Eq. (27) that the cor-
responding velocity rescaling coefficient
is

λ(t) =

√
1 +

2∆t

τT

(
T ∗

T (t)
− 1

)
. (29)

Here, the rate τT indicates the strength
of the coupling to the heat bath and
it sets the time scale for the approach
of the system temperature to the tar-
get temperature T ∗. The ratio ∆t/τT
should be chosen small enough to en-
sure a gradual approach to the desired temperature.

This idea defines the head flux method to control the system’s temperature. In
a simulation, the prescription for one time step is modified to

1. update positions and momenta according to the equation of motion,

2. compute the instantaneous temperature T (t) via Eq. (11),

3. rescale all velocities by the factor λ(t) given in Eq. (29).

This procedure is carried out until the energy content of the system is adjusted to
the desired temperature. An exemplary evolution of the instantaneous tempera-
ture of a system coupled to a bath at T ∗ = 0.5 modeled by the heat flux approach
is shown in Fig. 4.
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1.5.5 Link-cell trick

The computationally costly part of molecular dynamics simulations is determin-
ing the forces acting on the particles, because the positions of all other particles
have to be considered to compute Fi(r(t)). The complexity of this task is in gen-
eral O(N2), meaning that the compute time grows quadratically with increasing
number of particles. However, physical potentials typically decay with increas-
ing distance and often allow to introduce a cutoff radius rc, as we did above for
the Lennard-Jones potential. This means, that in those cases a particle does not
interact with all other particles, but just with those that are close enough. This
fact is exploited by the link-cell trick in order to reduce the cost of computing
forces.

The idea of the link-cell trick is to identify

l ≳ rc

rc

Figure 5 – Illustration of the idea of
the link-cell trick.

particles that can interact with each other by
dividing the simulation cube into smaller cells
with a linear dimension ℓ that is just slightly
larger than rc, l ≳ rc. This is shown schemat-
ically in Fig. 5, where this time all particles
are marked in red, because for this purpose
we have to “project” all real particles into the
same simulation cube. Now, we can create
for each cell a list of all particles that are con-
tained in it. The fact that interactions are re-
stricted to distances smaller than rc means that
the forces of each particle are determined only
by the other particles in the same cell and those
in the eight neighboring cells, as indicated in
Fig. 5. This means for the algorithm that we
do not have to inspect all possible pairs of par-
ticles, but only those particles contained in neighboring boxes. This way, the
link-cell trick allows us with a fixed particle density to increase the volume V of
the simulation cube at a cost that is linear in V instead of the quadratic scaling
that would result from the naive approach to compute the forces.

2 Preparation

2.1 Theory

While you familiarize yourself with the theoretical background, find answers to
the following questions:

Q1 What could be a good cutoff distance rc for the Lennard-Jones potential?

Q2 Derive the explicit formula to compute Fk(r).

Q3 What are possible tests to verify the correct implementation of the compu-
tation of the forces and of the time integration?
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2.2 Coding

For this project you will create your own implementation of a molecular dynam-
ics simulation of the Lennard-Jones liquid.

When composing the simulation from scratch, the central building blocks that
you need to implement are the following:

1. Write a function that computes the minimum image distance defined in
Eq. (26) from given positions of two simulation particles.

2. Write a function that computes the force vector F(r) from the given particle
positions r.

3. Write a function that performs the velocity Verlet integration step.

4. Write functions to compute all observables of interest from the phase space
coordinates (p, r).

5. Write a function that performs a binning analysis for a given sequence of
observables Oi = O(s(i)) following the instructions given on the toolbox
page [3].

6. Optional: Consider implementing the link-cell trick described in Section
1.5.5 to be able to reach larger system sizes.

Before proceeding to the actual simulations, verify the correctness of your im-
plementation with suited tests.

3 Tasks

1. Verify with a few examples that the heat flux approach leads to equili-
bration of the system at the target temperature. Can you verify that the
parameters τT determines the time scale for the approach to the desired
temperature?

Perform the following tasks at two distinct points of the Lennard-Jones phase
diagram, where you expect a gas or a liquid, respectively:

2. Confirm the equilibration of the system by comparing the observed veloc-
ities with the Maxwell-Boltzmann distribution.

3. Plot the two-particle distribution function g(2)(r) and discuss its main fea-
tures and differences between the two points. How does the finite volume
of the simulation cube affect the results?

4. Compute the velocity autocorrelation function and confirm that its short-
time dynamics can be obtained from g(2)(r).

5. Compare the self-diffusion coefficient obtained from the velocity autocor-
relation function with the one resulting from the squared distance.
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Perform one simulation close to the Lennard-Jones critical point (ρc, Tc) ≈ (0.31, 1.26)
in order to

6. determine the pressure at the critical point of the Argon liquid. Compare
your result to a value given in the literature, e.g. https://webbook.
nist.gov/cgi/inchi?ID=C7440371&Mask=4#Thermo-Phase.
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