
M-LAB
computational physics

Quantum Circuits
Quantum Dynamics and Circut Emulator

Markus Schmitt Institute for Theoretical Physics
Cologne

v1.0

Contents

1 Theory 3
1.1 Teaser video . 3
1.2 Introduction . 3
1.3 Recap: Quantum mechanics of composite systems 4
1.4 Qubits and quantum circuits . 5

1.4.1 Single qubit operations . 5
1.4.2 Two-qubit operations . 7
1.4.3 Measurement . 7

1.5 Digital quantum simulation . 8
1.5.1 Full basis simulations of many-body quantum systems . . 9
1.5.2 A circuit model of quantum dynamics 10

1.6 Random circuit sampling – optional 13
1.6.1 Random quantum circuits 13
1.6.2 Random circuit sampling 14

1.7 Efficient implementation of one- and two-qubit gates 15
1.7.1 Sparse operators . 16
1.7.2 Tensor formalism . 17
1.7.3 Operator exponentiation . 17
1.7.4 Computing entanglement entropy 18

2 Preparation 19
2.1 Theory . 19
2.2 Coding . 20

3 Tasks 20
3.1 Digital quantum simulation of time evolution 20
3.2 Emulation of a test for quantum advantage – optional 21

2

1 Theory

1.1 Teaser video

1.2 Introduction

The construction of a practically useful quantum computer is a long standing
scientific quest. Although the underlying idea to build a computer based on the
principles of quantum mechanics dates back to the early 1980s, building and pro-
gramming quantum computers is a significant challenge due to the fragile nature
of qubits and the difficulty in controlling them. Nevertheless, recent advances
in hardware and software have led to the development of small-scale quantum
computers with which solving proof-of-principle problems has become feasible
despite the remaining imperfections. Notably, it has been claimed that some of
the experiments already prove “quantum advantage”, meaning that the problem
solved would be unfeasible on a classical computer.

The substantial interest that quantum computing currently draws from aca-
demics, politics, and industry is rooted in the fact that a universal fault-tolerant
quantum computer – should it become available in the future – could revolu-
tionize the fields of cryptography, chemistry, and materials science, among oth-
ers. Most popular is the example of Shor’s algorithm that would allow us to
factor primes in polylogarithmic time on a quantum computer, thereby break-
ing the foundation of modern cryptographic schemes that rely on the classi-
cally unfeasible complexity of the problem. While Shor’s algorithm would re-
quire a genuinely fault-tolerant quantum computer, applications in chemistry
and physics that exploit the fact that a quantum computer follows precisely the
laws of physics that one aims to study to speed up simulations. This was, in
fact, Richard Feynmans early vision for the quantum computer, expressed in his
famous quote “Nature isn’t classical, dammit, and if you want to make a simu-
lation of nature, you’d better make it quantum mechanical, . . . ”.

3

https://vimeo.com/812804047

Quantum circuits are at the heart of a universal model of quantum compu-
tation. But they are also of interest from viewpoints beyond the pure quan-
tum information perspective. The central objective of this lab course project is
to implement a quantum circuit emulator on your classical computer. Follow-
ing Feynman’s proposal, you will use your emulator to explore a cirquit-based
simulation of quantum many-body dynamics, which is, in fact, simultaneously
among the most efficient ways to numerically simulate quantum dynamics. But
your emulator will not be restricted to this single use case. As an optional part
of the project, you can for example continue to investigate the limits of classi-
cal computation by mimicking Google’s toy problem for the demonstration of
“quantum advantage”.

1.3 Recap: Quantum mechanics of composite systems

In the following, we briefly review some basics of quantum mechanics. For a
more comprehensive presentation you can refer to any quantum mechanics text
book; one resource that could be particularly useful in the context of this project
is Ref. [1].

The simplest possible quantum system is a two-level system whose Hilbert
space of states is spanned by two orthogonal basis states |0⟩ and |1⟩,
H = span{|0⟩ , |1⟩} = C2. Let us consider a quantum system that is composed
of two such two-level systems A and B. The composite Hilbert space is the
tensor product of the two elementary Hilbert spaces, HAB = HA ⊗ HB, mean-
ing a possible choice for an orthogonal basis is {|0⟩A ⊗ |0⟩B , |0⟩A ⊗ |1⟩B , |1⟩A ⊗
|0⟩B , |1⟩A ⊗ |1⟩B}. In the following, we will abbreviate this notation via the con-
vention |ab⟩ ≡ |a⟩A⊗ |b⟩B. This construction immediately generalizes to systems
that are composed of more than two parts and from the combinatorial construc-
tion of the canonical orthogonal basis it is clear that the dimension of the total
Hilbert space grows exponentially with the number of components.

The matrices

1 =

(
1 0
0 1

)
, X̂ =

(
0 1
1 0

)
, Ŷ =

(
0 −i
i 0

)
, Ẑ =

(
1 0
0 −1

)
(1)

form a basis of the space of Hermitian operators acting on the two level Hilbert
space C2, meaning that any physical observable can be constructed as a linear
combination of the four. Arbitrary operators acting on Hilbert spaces of com-
posite systems are obtained from these as tensor products, for example the X̂-
operator acting on the first factor and the Ẑ-operator acting on the second factor,

X̂ ⊗ Ẑ =

X00Z00 X00Z01 X01Z00 X01Z01

X00Z10 X00Z11 X01Z10 X01Z11

X10Z00 X10Z01 X11Z00 X11Z01

X10Z10 X10Z11 X11Z10 X11Z11

 =

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 . (2)

In the expression above Xij = ⟨i|X̂|j⟩ and Zij = ⟨i|Ẑ|j⟩ denote the matrix ele-
ments of the Pauli operators and you can see that the tensor product corresponds
to a block structure in the matrix representation.

4

A distinct physical phenomenon of composite quantum systems is the en-
tanglement between different parts. Entangled systems can exhibit quantum
correlations that violate bounds for correlation functions derived under the as-
sumption of “local realism”, which demonstrates that classical theories cannot
describe these phenomena. How strongly two parts A and B of a composite sys-
tem are entangled for a given state |ψ⟩ is quantified by the entanglement entropy

SA = −tr
(
ρA ln ρA

)
= −tr

(
ρB ln ρB

)
= SB . (3)

Here, tr(·) denotes the trace and ρA is the reduced density matrix of subsystem
A, which is defined as

ρA = trB
(
|ψ⟩ ⟨ψ|

)
=

dim(HB)∑
b=1

(
1A ⊗ ⟨b|B

)
|ψ⟩ ⟨ψ|

(
1A ⊗ |b⟩B

)
. (4)

This expression defines the partial trace over subsystem B, trB(·), and the re-
duced density matrix ρB is defined analogously. The entanglement entropy van-
ishes for product states |ψ⟩ = |ψA⟩ ⊗ |ψB⟩, where both subsystems are uncor-
related. For maximally entangled states, the entanglement entropy reaches the
maximal possible value SA = ln(dim(HA)).

1.4 Qubits and quantum circuits

In classical computation the minimal unit of information is a bit, i.e., a binary
variable. The central idea of quantum computing is to replace the bit by a qubit,
i.e., a normalized vector in C2, which is the mathematical description of the phys-
ical state of a quantum mechanical two-level system. According to the rules of
quantum mechanics, the state of a quantum register holding N qubits is then
described by a normalized vector in C2N .

The physical implementation of a quantum register that is well isolated from
its environment will evolve according to the Schrödinger equation governed by a
Hamiltonian operator that describes the mutual interactions between the qubits
and, additionally, external control fields. This means that the time evolution of
the register from time t1 to time t2 is fully determined by a unitary time evolu-
tion operator Û(t2, t1). Therefore, it is most natural and, in fact, most general to
assume that quantum information processing means applying unitary transfor-
mations to the state of the quantum register. Since the unitary operations include
the logical operations of classical reversible computation, it is standing in reason
to consider their generalization as starting points for quantum computation. Be-
low, we will exemplarily introduce the quantum versions of some elementary
classical one- and two-bit gates. Moreover, we will introduce a graphical nota-
tion for unitary transformations that will allow us to visualize the composition
of quantum algorithms in the form of quantum circuits.

1.4.1 Single qubit operations

A first example of a single-qubit operation is the generalization of the classical
negation, which for b′ = NOT(b) follows the truth table

5

b b’
0 1
1 0

The generalization to the quantum case is the unitary that maps |0⟩ 7→ |1⟩ and
|1⟩ 7→ |0⟩, i.e. the Pauli-X operator

X̂ =

(
0 1
1 0

)
. (5)

When considering a register of N qubits, we have to specify in addition which
qubit the operator acts on and we introduce the short notation

X̂(i) = 11 ⊗ . . .⊗ 1i−1 ⊗ X̂ ⊗ 1i+1 ⊗ . . .⊗ 1N . (6)

More generally, the model of quantum circuits allows us to act with arbitrary
unitary operations on a single qubit. One possible parameterization of general
single qubit unitaries is given by

Û(α, β, γ, δ) = eiα

(
e−i

β+δ
2 cos γ

2
e−i

β−δ
2 sin γ

2

−eiβ−δ2 sin γ
2

ei
β+δ
2 cos γ

2

)
= eiαR̂ẑ(β)R̂ŷ(γ)R̂ẑ(δ) , (7)

where

R̂n̂(θ) = exp
[
− i

θ

2

(
nxX̂ + nyŶ + nzẐ

)]
(8)

denotes a rotation around the axis n̂ = (nx, ny, nz) by an angle θ.
For the following, it will be useful to introduce a graphical notation for the

action of unitary operations on qubits. An X-gate acting on a single qubit that is
initially in state |0⟩ is represented as

In this diagram the horizontal line represents the time line of the qubit, and time
progresses from left to right. The box that is placed on this line represents the
X-gate acting on the qubit.

If we have multiple qubits in the register, say N = 4 for concreteness, the
single qubit operation acting on qubit i = 2 is represented by

For fault tolerant general purpose quantum computing it is essential that ar-
bitrary unitary operations on a register of qubits can be composed using only
a small set of elementary gates. A first step in this direction is to realize that
arbitrary single-qubit

6

1.4.2 Two-qubit operations

One example of a two bit operation is the controlled-not gate (CNOT), which
flips the target bit t if the control bit c is in state 1. The generalization to the
quantum version is obtained by translating the classical truth table to the action
of the operation on the quantum computational basis states:

The graphical notation of the ĈX gate is given by

Here, the small empty circle is placed on time line of the control qubit, whereas
the box with the X̂ operator is placed on the target qubit line. The connection
between the two indicates that this is an operation that involves both qubits at
the same time. This notation is, however, specific for the ĈX gate. General two
qubit unitaries Û are denoted by boxes that connect to both involved qubit lines:

In analogy to classical computation, where arbitrary algorithms can be com-
posed from a set of elementary logical gates that act on one or two bits at a time,
arbitrary quantum algorithms can be composed from sequences of unitary op-
erations that act non-trivially only on one or two qubits at a time. In fact, one
can prove that any unitary operation on a set of qubits can be decomposed into
a suited sequence of single qubit rotations (Eq. (8)) and CNOT operations [1]. In
Section 1.7 we will discuss how one- and two-qubit gates can be implemented
for numerical simulations, which will be the basis for your efficient quantum
circuit emulator.

1.4.3 Measurement

Through the application of a quantum circuit, the register of qubits is prepared
in a specific superposition of the computational basis states, |ψ⟩ =

∑
b ψ(b) |b⟩.

In order for an algorithm to be useful, one has to be able to extract information
from these quantum many-body states. This is achieved via projective measure-
ments in the computational basis. Consider the projector P̂b = |b⟩⟨b| onto the

7

computational basis state |b⟩. Then, the probability of finding the measurement
outcome b is given by

P(b) = ⟨ψ|P̂b|ψ⟩ = |ψ(b)|2 . (9)

According to the rules of quantum mechanics, the observation of the measure-
ment outcome b updates our knowledge about the state of the system and as a
consequence we have to project the wave function onto the respective basis state,

|ψ′⟩ = 1√
P(b)

P̂b |ψ⟩ . (10)

The information encoded in |ψ⟩ will, however, typically be more than what we
learn by drawing a single sample from P(b). The usual approach is to draw
a finite sample M|ψ⟩ = {b(n)} with b(n) ∼ P(b). To obtain such a sample, the
circuit has to be executed once for each element b(n). Each run means to initialize
the register to

⊗
i |0⟩, apply the unitary circuit, and finally obtain one projective

measurement outcome b(n) that can be added to the sample.
The sample M|ψ⟩ can then be used to compute all kinds of statistics one is

interested in. For example, the expectation value of operators can be estimated
via empirical means. Consider, for example, the Pauli-Ẑ operator acting on qubit
i. Since Ẑ is diagonal in the computational basis, we get

⟨ψ|Ẑ(i)|ψ⟩ =
∑
b

⟨b|Ẑ(i)|b⟩ =
∑
b

P(b)(1 + 2bi) ≈
1

|M|ψ⟩|
∑

b∈M|ψ⟩

(1 + 2bi) . (11)

In order to compute expectation values of operators that are not diagonal in the
computational basis, one has to relate them to the Pauli-Ẑ operator via rotations.
For example

⟨ψ|X̂(i)|ψ⟩ = ⟨ψ|R̂(i)
ŷ (π/2)†Ẑ(i)R̂

(i)
ŷ (π/2)|ψ⟩ . (12)

The rotation can formally be absorbed into the quantum circuit as one additional
layer of gates.

A significant error source on current quantum computers are faulty measure-
ment outcomes – so-called readout errors. Due to the technical implementation,
there is often a tendency to mis-interpret the actual measurement outcome 1 as 0
for individual qubits. This means that in collecting observations for the sample
M|ψ⟩, a configuration b̃ is registered instead of b, where b̃i = bi except for some
bj = 1 where one gets b̃j = 0. This mis-interpretation happens independently for
each qubit with a probability perr.

1.5 Digital quantum simulation

As already mentioned in Section 1.2, the simulation of many-body quantum sys-
tems is one of the potential use cases of quantum computing. We will for our
discussion consider physical systems that are composed of spin-1/2 degrees of

8

freedom, because the two states of the spin-1/2 can immediately be mapped to
the two states of a qubit. But this is by no means a general restriction of quantum
simulation.

In this section we will first discuss a general approach to simulate quantum
many-body systems on a classical computer, before turning to a cirquit model
of quantum dynamics that is applicable on digital quantum computers and si-
multaneously constitutes the basis for one of the most efficient numerical time
evolution methods for classical computers.

1.5.1 Full basis simulations of many-body quantum systems

The straightforward starting point to classically simulate a system of N spin-1/2
degrees of freedom is to store all coefficients of the state vector |ψ⟩ ∈ C2N in mem-
ory. For this purpose one has to select a computational basis, and a typical choice
is the basis of mutual eigenstates of all Ẑ(i) operators. The basis states are de-
noted as |b1 . . . bN⟩, where bi ∈ {0, 1} such that Ẑ(i) |b1 . . . bN⟩ = (1−2bi) |b1 . . . bN⟩.
The object stored in memory is then an array of the form

Ψ =
[
⟨0 . . . 00|ψ⟩ , ⟨0 . . . 01|ψ⟩ , ⟨0 . . . 10|ψ⟩ , . . . , ⟨1 . . . 11|ψ⟩

]
(13)

and, clearly, the amount of memory required is proportional to the Hilbert space
dimension dim(H) = 2N , which is equal to the number of different bit-strings of
length N .

Notice that the basis state labels simultaneously enumerate the wave function
coefficients. When regarding the bit strings as binary numbers, we can use the
integer n = decimal(b1 . . . bN) to enumerate Ψn – the entries of the array of
wave function coefficients Ψ. Alternatively, we can view Ψ as a tensor of rank N
with entries ψb1,...,bN . In the latter case (b1, . . . , bN) is the multi-index of the stored
coefficients and it can be obtained for a given n as b1 . . . bN = binary(n). We
will in the following use n or (b1, . . . , bN) exchangeably as indices of the basis
states, for example, |n⟩ ≡ |b1 . . . bN⟩ or Ψn ≡ Ψb1,...,bN .

As we are considering discrete degrees of freedom, the action of a physical
operator Ô on the quantum state |ψ⟩ corresponds to a matrix-vector product:

Ô |ψ⟩ =
2N−1∑
n=0

2N−1∑
n′=0

On,n′ ⟨n′|ψ⟩ |n⟩ (14)

Here, we introduced the matrix elements of Ô,

On,n′ ≡ O(b1,...,bN),(b′1,...,b
′
N) = ⟨b1, . . . , bN |Ô|b′1, . . . , b′N⟩ . (15)

Consider, for example, the operator X̂(i). Due to the tensor product structure in
Eq. (6), its matrix elements are given by

X
(i)

(b1,...,bN),(b′1,...,b
′
N) = δbi,1−b′i

∏
j ̸=i

δbj ,b′j , (16)

9

where δi,j denotes the Kronecker-Delta. As another example, consider the CNOT
gate defined in Section 1.4.2, acting on qubits i and j. The matrix elements are[

C
(i,j)
X

]
(b1,...,bN),(b′1,...,b

′
N)

=
(
δbi,0δbj ,b′j + δbi,1δbj ,1−b′j

) ∏
k ̸=i,j

δbk,b′k . (17)

A naive approach to represent such operators for the purpose of a simulation
would be to store the corresponding matrices in memory. The size of the re-
quired memory would be O(22N), i.e., scaling quadratically with the Hilbert
space dimension. However, the two examples above already reveal a typical fea-
ture of physical operators, namely sparseness in the computational basis: Only
a tiny fraction of the 22N matrix elements is non-vanishing. This structure can be
exploited for more efficient simulations, as we will discuss below.

Let us for now assume that for an operator Ô we can implement a representa-
tion Ō in our simulation that allows us to compute |ϕ⟩ = Ô |ψ⟩ as

Φ = ŌΨ (18)

such that

Φb1,...,bN =
∑

(b′1,...,b
′
N)∈{0,1}N

O(b1,...,bN),(b′1,...,b
′
N)Ψb′1,...,b

′
N

(19)

as prescribed by Eq. (14). This does not only allow us to evaluate the action
of the operator on a quantum state; we can also use the result to compute the
expectation value of the operator,

⟨ψ|Ô|ψ⟩ = Φ ·Ψ =
∑
n

Φ∗
nΨn , (20)

a typical quantity of interest.
The limitation of the approach outlined in this section is clearly the exponen-

tial growth of the Hilbert space dimension with the number of degrees of free-
dom – the quantum curse of dimensionality. When no additional structure can
be exploited to reduce the dimensionality the largest feasible system sizes on
today’s most powerful supercomputers are about N ≈ 50. The central idea of
digital quantum simulation is to exploit the fact that the state space of a qubit
register is already quantum mechanical. In the following, we discuss how to
formulate the solution of the time-dependent Schrödinger equation in terms of
a quantum circuit. This would allow us to use a quantum computer for the sim-
ulation, but it also reveals that in a classical simulation the largest objects that
have to be stored in memory have size of O(2N) instead of O(22N) that could be
naively expected for example for operators, cf. Eq. (15).

1.5.2 A circuit model of quantum dynamics

Within this project you will simulate the dynamics of a quantum many-body
system that is well isolated from its environment. This means that its evolution

10

is prescribed by the time-dependent Schrödinger equation

i
d

dt
|ψ⟩ = Ĥ |ψ⟩ , (21)

where the Hamiltonian operator Ĥ describes the interactions within the system
and the effect of external fields applied to it. The model that we will be inter-
ested in is the quantum Ising chain of spin-1/2 particles, subject to an external
magnetic field. It is described by

Ĥ = −J
L∑
i=1

Ẑ(i)Ẑ(i+1) − hz

L∑
i=1

Ẑ(i) − hx

L∑
i=1

X̂(i) (22)

Here, hx/z are the x- and z-components of the magnetic field and J is the strength
of the Ising coupling. Moreover, we assume periodic boundary conditions, i.e.,
Ẑ(L+1) ≡ Ẑ(1).

For a given initial state |ψ0⟩ the formal solution of the Schrödinger equation is
given by

|ψ(t)⟩ = e−iĤt |ψ0⟩ ≡ Û(t) |ψ0⟩ . (23)

Here, we introduced the time evolution operator Û(t) = e−iĤt, which is a uni-
tary operator. Since we learned above that arbitrary unitaries can be composed
as circuits of elementary few-qubit unitaries, our aim is now to decompose Û(t)
accordingly. This decomposition will be the basis for the efficient implementa-
tion of a numerical simulation, and it is at the same time a viable route for the
envisioned simulation of quantum dynamics on an actual quantum computer.
For this purpose, we employ a Suzuki-Trotter decomposition of the time evolu-
tion operator.

A straightforward approach to simulate this time evolution would be to work
with an explicit matrix representation of Û(t). This, however, requires the expo-
nentiation of the Hamiltonian matrix, which has a cost cubic in the Hilbert space
dimension (cf. Section 1.7.3), which, in turn, grows exponentially with the num-
ber of degrees of freedom. Since we learned above that a quantum computer
allows us to compose arbitrary unitaries as circuits of elementary few-qubit uni-
taries, our aim is now to decompose Û(t) accordingly.

Consider two non-commuting operators Â and B̂. Then, the their exponenti-
ated sum for a small time step δ can be approximately decomposed as

e−iδ(Â+B̂) = e−iδÂe−iδB̂ +O(δ2) , (24)

which can be checked by expanding the exponentials. Approximating e−iδ(Â+B̂) ≈
e−iδÂe−iδB̂ is called a first order Suzuki-Trotter decomposition. In fact, one can
easily obtain a higher accuracy through a small modification,

e−iδ(Â+B̂) = e−i
δ
2
B̂e−iδÂe−i

δ
2
B̂ +O(δ3) , (25)

11

which yields the second order Suzuki-Trotter decomposition.
To apply the Suzuki-Trotter decomposition to our concrete problem, we can

split the Hamiltonian (22) into

Â = −J
∑
i

Ẑ(i)Ẑ(i+1) − hz
∑
i

Ẑ(i) (26)

and

B̂ = −hx
∑
i

X̂(i) . (27)

Then, both Â and B̂ consist only of sums of mutually commuting operators.
This is important for our goal to rewrite Û(t) as a circuit of few-qubit unitaries,
because it means that

e−i∆tÂ = e−i∆t(−J
∑
i Ẑ

(i)Ẑ(i+1)−hz
∑
i Ẑ

(i)) =
∏
i

e−i∆t(−JẐ
(i)Ẑ(i+1)−hzẐ(i)) (28)

and

e−i∆tB̂ = e−i∆t(−hx
∑
i X̂

(i)) =
∏
i

e−i∆t(−hxX̂
(i)) . (29)

Thereby, we further decomposed the two Suzuki-Trotter factors into sequences
of gates that act on no more than two qubits at a time. In the graphical notation,
we can write

This means, that we can use circuits of the form given above to approximate, for
a small enough time step ∆t = t

n
, the time evolution operator

Û(t) =
(
e−iĤ∆t

)n
(30)

for the quantum Ising model.

12

A straightforward approach to simulate this time evolution on a classical com-
puter would be to work with an explicit matrix representation of Û(t). This,
however, requires the exponentiation of the Hamiltonian matrix, which has a
cost of O(23N), i.e., cubic in the Hilbert space dimension (cf. Section 1.7.3). In
Section 1.7.1 we will discuss that using the Suzuki-Trotter circuit model reduces
the cost to O(2N), which – although still exponential in the system size – is a
substantial improvement. The cost of performing a Trotter-Suzuki time step on
a quantum computer is linear in the number of degrees of freedom. Therefore,
this circuit-based quantum time evolution would be of substantial interest if a
quantum computer with more than 50 qubits and sufficiently long coherence
times became available. The same principle can be applied to systems with more
practical relevance, for example in quantum chemistry.

Since the presently available qubit numbers and coherence times are, however,
limited, one needs to consider even better tailored problems in order to demon-
strate “quantum advantage”, i.e., the ability of existing quantum computers to
solve a classically unfeasible task. In the following section we will discuss an
experiment that was recently conducted by Google on their superconducting
quantum processor as a first demonstration of “quantum advantage”.

1.6 Random circuit sampling – optional

Thanks to remarkable progress over the past two decades, various forms of
quantum processors are available today across the world. The qubit numbers
and coherence times are still clearly limited, but the exploration of these plat-
forms for a large variety of use cases is an active research direction. Nonetheless,
all tasks of practical relevance that a quantum computer could be useful for re-
mained so far out of reach. In order to still demonstrate that quantum computers
can solve tasks that are virtually impossible for any conceivable classical com-
puter with current quantum devices, one therefore has to resort to tailored prob-
lems that suit the presently available capabilities. One example of such a tailored
problem is random circuit sampling, which we will discuss in this section. This
problem has been devised by researchers at Google to demonstrate that their su-
perconducting quantum processor already achieves “quantum supremacy” over
classical computers [2].

1.6.1 Random quantum circuits

A random quantum circuit is composed from randomly chosen quantum gates.
The circuit used in the “quantum supremacy” experiment has the following
form: The random component in this circuit is the placement of single qubit
gates, which are randomly drawn from the set {

√
Ŵ ,
√
X̂,
√
Ŷ }. These gates

are defined by√
Ŵ =

1√
2

(
1 −

√
i√

i 1

)
,
√
X̂ =

1√
2

(
1 −i
−i 1

)
,
√
Ŷ =

1√
2

(
1 −1
1 1

)
(31)

13

The layers of randomly selected single qubit gates is interleaved by layers of two
qubit gates. The qubit gate used is

Ĉ =

1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 e−iπ/6

 . (32)

The placement of the two-qubit gates will in a real experiment depend on the
layout of the quantum chip. On a superconducting quantum computer entan-
gling operations can only be applied to neighboring qubits that are connected
through some resonator. This means that any two qubit gate that acts on non-
neighboring qubits have to be implemented by swapping the states of physical
qubits until the computational qubit states of interest are located in neighbor-
ing physical qubits. This quickly renders the circuits very deep and impedes
performance on current devices. Therefore, the circuits considered to demon-
strate “quantum advantage” only work with entangling gates between physi-
cally neighboring quibts. Here, we are assuming a linear arrangement of the
qubits. The Ĉ gates are applied in an alternating fashion on the even and odd
links between the qubits.

1.6.2 Random circuit sampling

As already mentioned in Section 1.4.3, information is extracted from a quantum
computer by performing projective measurements of the individual qubits in the
computational basis. By repeated execution of the quantum circuit a sample of
bitstrings encoding the measurement outcomes is collected, for example,

M = {0111001, 10110011, . . .} (33)

In the limit of large sample sizes the relative frequency of bitstring s to appear in
M is given by the Born probability |ψ(s)|2. Now, one could expect, that |ψ(s)|2
becomes a featureless uniform distribution for a random circuit. This is, how-
ever, not the case. Due to quantum interference within the given realization of
the circuit, some bitstrings obtain a much larger probability than others. This
fact is reflected in a theoretical result regarding the distribution of Born proba-
bilities: At the end of a random circuit, the probability for a bitstring s to have

14

the Born probability |ψ(s)|2 = p is

Pr(p) = κe−κp . (34)

Therefore, it is not trivial to sample bitstrings that follow the Born distribution
generated by a given realization of a random circuit. In fact, the best known
way of doing this on a classical computer is to simulate the circuit in order to ob-
tain the wave function coefficients, the cost of which grows exponentially in the
number of bits. By contrast, sampling this distribution on a quantum computer
means executing the circuit and collecting the projective measurement outcomes.
This requires linear resources in the bit-string length.

Clearly, the challenge remains to verify that the sampled bit-strings corre-
spond to the desired distribution. If the wave function coefficients ψ(b) and the
corresponding Born probabilities P(b) are know, cross-entropy benchmarking
(XEB) is one way of testing the obtained sample. For this purpose, one computes
the linear XEB fidelity

FXEB = 2N
〈
P
(
b
)〉

M − 1 , (35)

where N is the number of qubits and ⟨P
(
b
)
⟩M = 1

M
∑

b∈M P
(
b
)

denotes the
empirical mean over the sampled bit-strings. If the distribution that the bit-
strings are sampled from equals P

(
b
)
, FXEB = 1. If, however, the sampled bit-

strings come from a uniform distribution, FXEB = 0. Any value between zero
and one indicates that the distribution that has been sampled from has at least
some similarity with the expected Porter-Thomas distribution.

The requirement of knowing the Born probabilities of course means that one
needs to be able to compute them, for which one has to rely on a classical simu-
lation of the circuit. In order to go beyond classically simulable qubit numbers,
Google relied on a careful extrapolation of the XEB [2]. The aim of this project
will not be to demonstrate quantum supremacy. Instead, you will explore the
limitations of the classical emulation of quantum circuits and the effect of a typ-
ical imperfection of today’s devices, namely readout errors.

1.7 Efficient implementation of one- and two-qubit gates

The main objective of this project will be to implement a full basis simulator of
quantum circuits based on the principles introduced in Section 1.5.1. Clearly, the
exponential growth of the Hilbert space dimension imposes severe limitations
on this approach, but for general quantum algorithms there are no known ways
to circumvent this.1 In this section we will discuss an approach to at least ren-
der the treatment of quantum operators linear in the Hilbert space dimension
instead of the naively quadratic or even cubic cost.

1See the project Tensor Networks to learn about a systematically reduced state space that is
sufficient for many other physical situations of interest.

15

The starting point is the generalization of the examples given in Section 1.4 to
arbitrary one- and two-qubit operations. Let us consider a single qubit operator

Ô =

(
O0,0 O0,1

O1,0 O1,1

)
. (36)

Then, it is straightforward to write the matrix elements of Ô(i) acting on the N -
qubit Hilbert space:

O
(i)

(b1,...,bN),(b′1,...,b
′
N) = Obi,b′i

∏
j ̸=i

δbj ,b′j (37)

Similarly, for a two-qubit operator

Ô =

O(00),(00) O(00),(01) O(00),(10) O(00),(11)

O(01),(00) O(01),(01) O(01),(10) O(01),(11)

O(10),(00) O(10),(01) O(10),(10) O(10),(11)

O(11),(00) O(11),(01) O(11),(10) O(11),(11)

 . (38)

when acting on qubits i and j,

O
(i,j)

(b1,...,bN),(b′1,...,b
′
N) = O(bi,bj),(b′i,b

′
j)

∏
k ̸=i,j

δbk,b′k . (39)

This structure can be exploited in two different ways, which we will explain in
the following subsections. The third subsection below explains how to deal with
the exponentiated operators resulting from the Suzuki-Trotter decomposition in
Section 1.5.2.

1.7.1 Sparse operators

The matrices defined by Eqs. (37) and (39) are extremely sparse. For a given
(b1, . . . , bN) there are at most two different multi-indices (b′1, . . . , b

′
N) with non-

zero matrix element in the case of a single-qubit operator, and four of them for
a two-qubit operator. This means that for the given matrix elements Ob,b′ (or
O(b1,b2),(b′1,b

′
2)

) the operator action defined in Eqs. (18) and (19) can be implemented
as an on-the-fly operation. For example, one can implement a function that takes
the matrix elements Ob,b′ (or O(b1,b2),(b′1,b

′
2)

), the qubit index i (or indices i, j), and a
multi-index (b1, . . . , bN) as input and returns a list of “connected” multi-indices
(b′1, . . . , b

′
N) and corresponding non-vanishing matrix elements O(i,j)

(b1,...,bN),(b′1,...,b
′
N).

This allows one to sum up only the non-zero contributions in Eq. (19), rendering
the computational cost linear in the Hilbert space dimension.

16

1.7.2 Tensor formalism

Let us consider the single qubit operation, from which the two-qubit case follows
immediately. Inserting Eq. (39) into Eq. (19) yields

Φb1,...,bN =
∑

(b′1,...,b
′
N)∈{0,1}N

O
(i,j)

(b1,...,bN),(b′1,...,b
′
N)Ψb′1,...,b

′
N

=
∑

bi∈{0,1}

Obi,b′i
Ψb1,...,bi−1,b′i,bi+1,...,bN . (40)

If we view Ψb1,...,bi−1,b′i,bi+1,...,bN as a rank-N tensor andObi,b′i
as a rank-2 tensor (i.e.,

a matrix), the operation in the last row corresponds to a tensor contraction along
the second axis of O and the i-th axis of Ψ. Such operations are implemented in
the Julia and Python programming languages under the keyword “einstein sum-
mation” [3]. Therefore, an alternative approach to implement the operator action
for a given operator Ô acting non-trivially just on few qubits is the following:

1. Reshape the array Ψn of length 2N into a multi-dimensional array of shape
2× 2× . . .× 2 corresponding to Ψb1,...,bN .

2. Perform the tensor contraction (= Einstein summation) along the required
axes to obtain the resulting state Φb1,...,bN .

3. Reshape the multi-dimensional array Φb1,...,bN into a one dimensional array
Φn, if required.

For this purpose, the graphical notation of the quantum circuit can again be use-
ful. Considering, for example,

we can view the lines as the four indices of the matrix elements of the two-qubit
operator. The qubit lines in a larger diagram can then be viewed as the individ-
ual qubit indices of the quantum state viewed as a rank-N tensor. And whenever
the qubit lines are linked to an operator, it means that we have to perform a con-
traction along the corresponding axes.

1.7.3 Operator exponentiation

The few qubit gates resulting from the Suzuki-Trotter decomposition introduced
in Section 1.5.2 are defined as the exponential of some given few qubit gates. Let
us consider the gate

Ĝ(i) = e−i∆tX̂
(i)

(41)

17

as an example. The first step to perform the exponentiation is to find an eigende-
composition of the single qubit matrix X , i.e., a unitary V̂ and a diagonal matrix
Λ containing the eigenvalues λ1, λ2 such that

X̂ = V̂ ΛV̂ † . (42)

Then, the exponentiated operator acting on the single qubit Hilbert space is

Ĝ = V̂

(
e−i∆tλ1 0

0 e−i∆tλ2

)
V̂ † (43)

and the operator Ĝ(i) acting on the many-qubit Hilbert space can directly be
constructed using Eq. (37), because the eigendecomposition factorizes for tensor
product operators. The same holds for the exponentiation of two-qubit opera-
tors. Matrix exponentiation is conveniently implemented as part of the linear
algebra packages of Python (scipy.linalg.expm) and Julia (exp).

1.7.4 Computing entanglement entropy

To derive a practical procedure to compute the entanglement entropy for a par-
titioning of the system into subsystems A and B defined in Eq. (3), we start by
rewriting the given state as

|ψ⟩ =
dim(H)∑
n=1

Ψn |n⟩ =
dim(HA)∑
nA=1

dim(HB)∑
nB=1

ΨnA,nB |nA⟩ ⊗ |nB⟩ . (44)

Notice, that here we use the single-index convention for Ψn instead of the multi-
indices used in the previous sections, cf. Section 1.5.1. For the second equality,
the single index is split into a double index according to the partitioning we are
interested in, n = (nA, nB). This allows us to interpret ΨnA,nB as a matrix, of
which we can perform a singular value decomposition to obtain

ΨnA,nB =
R∑

m=1

UnA,mΛmV
∗
m,nB

(45)

with R = min
(
dim(HA),dim(HB)

)
and isometric matrices U and V (i.e., U †U =

1 and V †V = 1). With this, we can rewrite Eq. (44) as

|ψ⟩ =
R∑

m=1

Λm

(dim(HA)∑
nA=1

UnA,m |nA⟩

)
︸ ︷︷ ︸

=|m⟩A

⊗

(dim(HB)∑
nB=1

V ∗
m,nB

⊗ |nB⟩

)
︸ ︷︷ ︸

=|m⟩B

. (46)

Due to the isometric property of U and V , the resulting |m⟩A and |m⟩B are mu-
tually orthonormal. Due to this property, we can deduce from the normalization

18

condition ⟨ψ|ψ⟩ = 1 that
∑

m Λ2
m = 1. Moreover, the reduced density matrix of

subsystem A can be brought into the simple form

ρA =
R∑

m=1

Λ2
m |m⟩A ⟨m|A , (47)

which allows us to straightforwardly obtain the entanglement entropy as

SA = −
R∑

m=1

Λ2
m ln

(
Λ2
m

)
. (48)

Therefore, a viable procedure to compute the entanglement entropy for a given
state Ψ is

1. Reshape the array Ψn of length 2N to a matrix ΨnA,nB of dimensions 2NA ×
2NB .

2. Compute the singular value decomposition of ΨnA,nB to obtain the singular
values Λm.

3. Compute the entanglement entropy using Eq. (48).

2 Preparation

2.1 Theory

While you familiarize yourself with the theoretical background, find answers to
the following questions:

Q1 What is the matrix representation of the single qubit operator −hxX̂ acting
on a single qubit Hilbert space?

Q2 What is the matrix representation of the two qubit operator −JẐ(1)Ẑ(2) −
hz
2

(
Ẑ(1) + Ẑ(2)

)
acting on a two qubit Hilbert space?

Q3 What are possible tests to verify the correct implementation of the few-
qubit operators acting on the many-qubit Hilbert space? Consider the cases
of (products of) Pauli operators and more general unitary operators.

Q4 How can you verify for a Suzuki-Trotter time evolution that the chosen
time step ∆t is small enough?

Q5 Read Ref. [4]. Can you explain Fig. 1 of that paper? What is a meson in this
picture?

Q6 (Optional) How would you implement the readout errors discussed in Sec-
tion 1.4.3 in a classical emulation of the sampling process?

19

2.2 Coding

For this project you will create your own implementation of a quantum circuit
simulator. You can then use your code for efficient simulations of quantum dy-
namics, or, more generally, as a quantum computing emulator. As a first step
you should choose either to use the sparse operator approach outlined in Sec-
tion 1.7.1 or the tensor formalism outlined in Section 1.7.2.

When composing the simulation from scratch, the central building blocks that
you need to implement are the following:

1. Write a function that applies a given arbitrary single qubit gate to a given
state Ψ.

2. Write a function that applies a given arbitrary two qubit gate to a given
state Ψ.

3. Write a function that applies the sequence of gates corresponding to one
Suzuki-Trotter step for given parameters J , hx, hz, and ∆t to a given state
Ψ.

4. Write functions that evaluate the expectation value of a given one- or two-
qubit operator in a given state Ψ.

Before proceeding to the actual simulations, verify the correctness of your im-
plementation with suited tests.

3 Tasks

3.1 Digital quantum simulation of time evolution

In this part of the project you will investigate the phenomenon of “confinement”
in the quantum Ising model, which has first been described in Ref. [4].

To investigate signatures of confinement, you should consider the ground
state of the model with hx = 0 and hz > 0 as the initial state for your time
evolution, i.e. |ψ(t = 0)⟩ = |11 . . . 1⟩. The most relevant observables are the ex-
pectation values of the magnetization

M (i)(t) = ⟨ψ(t)|Ẑ(i)|ψ(t)⟩ (49)

and of the correlation function

C(i,j)(t) = ⟨ψ(t)|Ẑ(i)Ẑ(j)|ψ(t)⟩ −M (i)(t)M (j)(t) . (50)

1. Perform a single Suzuki-Trotter step for a range of system sizes and mea-
sure the execution time. Plot the time versus the system size. Do you ob-
serve the expected behavior? Use these initial timings to estimate for the
following tasks which system sizes and maximal times are feasible.

20

2. Perform a time evolution with hz = 0 and hx = 0.5 for different time steps
∆t in order to determine the largest time step with which the results are
accurate.

3. Perform the time evolution with hz = 0 and a few values of 0 < hx < 1. (a)
Plot the evolution of the magnetization as a function of time. What do you
observe? (b) Produce heatmap plots of C(x, t) = 1

L

∑
iC

(i,i+x)(t) to explore
the spatio-temporal build-up of correlations. What do you observe?

4. Perform the time evolution with hx = 0.2 and a few values of 0 < hz < 0.5.
(a) Plot the evolution of the magnetization as a function of time. What do
you observe? (b) Produce heatmap plots of C(x, t) to explore the spatio-
temporal build-up of correlations. What do you observe? Compare your
findings to the outcomes of task 3.

5. Compute the time evolution of the entanglement entropy for an equal bi-
partition of the system for the cases you simulated in 3. and 4. Describe the
characteristics of both cases and their difference.

6. Compute the Fourier transform of M (i)(t) with hz ̸= 0. Can you identify
the contributions of different meson states? What are their masses?

7. Perform the time evolution of the magnetization with hx = 0.2 and a few
values of 0 < hz < 0.5, but replace the expectation value by the sample
mean that you would have to use instead on a real quantum computer.
How many samples would you need to obtain an accurate result? Optional:
Add measurement errors as discussed in Section 1.4.3 to your model. What
is the largest tolerable readout error rate?

3.2 Emulation of a test for quantum advantage – optional

In this part of the project, you can use your quantum circuit simulator to emu-
late the toy problem that Google chose to for their demonstration of quantum
advantage [2]. In order to address the following tasks, you need to implement
the application of a random circuit as defined in Section 1.6.1.

1. Create a histogram of the Born probabilities |ψ(b)|2 for the wave function
obtained by applying the random circuit. Can you confirm Eq. (34)?

2. Draw finite samples M|ψ⟩ from the wave function obtained by applying
one realization of the random circuit. How does the XEB fidelity (35) de-
pend on the sample size?

3. Add measurement errors as discussed in Section 1.4.3 to your emulation of
the sampling process. How does the XEB fidelity (35) depend on the error
probability perr?

4. What is the largest number of qubits for which you can perform the XEB
with the resources available to you?

21

References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition (Cambridge University Press, 2011).

[2] F. Arute et al., Nature 574, 505–510 (2019), https://arxiv.org/abs/
1910.11333v1.

[3] See NumPy’s numpy.einsum for the implementation in Python and
Julia’s Einsum.jl package. The documentation is available under
https://numpy.org/doc/stable/reference/generated/numpy.
einsum.html and https://github.com/ahwillia/Einsum.jl,
respectively.

[4] M. Kormos, M. Collura, G. Takacs, and P. Calabrese, Nat. Phys. 13, 246 (2017),
https://arxiv.org/abs/1604.03571.

22

http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf
http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/1910.11333v1
https://arxiv.org/abs/1910.11333v1
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://github.com/ahwillia/Einsum.jl
https://www.nature.com/articles/nphys3934
https://arxiv.org/abs/1604.03571

	Theory
	Teaser video
	Introduction
	Recap: Quantum mechanics of composite systems
	Qubits and quantum circuits
	Single qubit operations
	Two-qubit operations
	Measurement

	Digital quantum simulation
	Full basis simulations of many-body quantum systems
	A circuit model of quantum dynamics

	Random circuit sampling – optional
	Random quantum circuits
	Random circuit sampling

	Efficient implementation of one- and two-qubit gates
	Sparse operators
	Tensor formalism
	Operator exponentiation
	Computing entanglement entropy

	Preparation
	Theory
	Coding

	Tasks
	Digital quantum simulation of time evolution
	Emulation of a test for quantum advantage – optional

