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1 Theory

1.1 Teaser video

residual entropy

competition between energy & entropy

1.2 Microscopic model of a magnet

In introductory courses to statistical physics, classical magnets — systems whose
microscopic degrees of freedom are classical spins — are often considered as
paradigmatic models for thermal phase transitions. In a minimal scenario, such
a phase transition originates from the competition between energy and entropy
in a many-body system: to minimize the energy of the system the interaction
between the microscopic magnets favor ordered states while maximizing the
entropy at finite temperature favors disordered configurations. Notably, this
competition typically results is a sharp transition point, at a critical temperature
T*, below which the magnet exhibits order, e.g., in the form of a spontaneous
magnetization, while it is a paramagnet at higher temperatures. This leads to
the question whether any system of interacting microscopic spins orders at low
temperatures or whether there are mechanisms that prevent a phase transition.

In this lab course project you will investigate the effect of geometric frustration
on the low-temperature behavior of a magnet and contrast it with the frustration-
free situation. The model system will be the (anti-)ferromagnetic Ising model
on a triangular lattice as shown in Fig. [Ta), which is described by the Hamilton
function

Hyp(s)=J) sis;— B> s 1)

Here, s; = £1 represents a microscopic Ising magnet with two possible orien-
tations (“up” or “down”). We will in the following refer to these degrees of
freedom as spins. The vector s = (sy, ..., sy) constitutes the microscopic state of


https://vimeo.com/752590056

the system composed of N spins, J is the interaction energy and B denotes the
strength of an applied external magnetic field. In the following we fix |J| = 1 as
the unit of energy and we call J = —1 the ferromagnetic coupling and J = +1
the antiferromagnetic coupling. The first sum is over pairs of neighboring lattice
sites (7, j) in the triangular lattice and we generally consider periodic boundary
conditions.

a) b)

Figure 1 — a) Microscopic Ising magnets on a triangular lattice. b) The triangular lattice
can also be viewed as a square lattice with additional connections along one of its diag-
onals.

When implementing simulations the alternative view of the triangular lattice
in Fig.[Ip) can be useful for easier indexing of the lattice sites. For our purpose,
we restrict ourselves to square dimensions of the lattice, i.e., N = L? with edge
length L.

1.2.1 Geometric frustration

The phenomenon of geometric frustration arises on the triangular lattice in the
case of antiferromagnetic interactions between the spins, i.e., J > 0. To get a
tirst intuition for the low temperature behavior of the system, it is instructive
to consider spin configurations on a single triangular plaquette that minimize
the energy. Clearly, one can always minimize the energy contribution coming
from two neighboring spins along one of the bonds, by aligning them antiparal-
lel. However, the third spin can only be antiparallel to one of the two others as
shown in Fig.[2, meaning that the minimal attainable energy is —.J and six of the
eight possible configurations have this energy. This phenomenon of competing
interaction energies that cannot be simultaneously minimized due to the lattice
geometry and thereby lead to degenerate minimal-energy configurations is called
geometric frustration. When considering the full triangular lattice you will realize
that the generalization of the previous considerations for an individual plaque-
tte leads to a very large number of distinct microscopic states that minimize the
energy, which is in stark contrast to an (anti-)ferromagnet on a square lattice,
where fixing the orientation of one spin immediately determines the complete
minimal energy configuration.

One central result of this lab course project will be that the number of minimal
energy configurations in the triangular antiferromagnet is in fact so large that
it exhibits a non-vanishing zero-point entropy. The system fluctuates within this
large manifold of states, which effectively prohibits any ordering at low tem-
peratures and there is no finite-temperature phase transition at all. This resid-



Figure 2 — Possible low energy configurations of spins around an individual triangular pla-
quette. One of the bonds has to contribute positive energy for any possible configura-
tion.

ual entropy was first calculated analytically by Wannier [1} 2], who obtained
the value Sy/N = 0.323, where N is the number of lattice sites. Here you will
explore thermodynamic signatures of this extensive residual entropy and learn
how to accurately determine its value. Most strikingly, however, is the fact that
the low-temperature physics associated with this residual entropy is associated
with emergent magnetostatics — a concept which we discuss in more detail below.
In addition, you will investigate the effect of applying an additional magnetic
tield, which alleviates the effects of the antiferromagnetic interactions, because it
favors configurations where all magnets align with the magnetic field direction.

Figure 3 — Coulomb gas construction for a given configuration of Ising spins on the tri-
angular lattice. a) In a first step the energetically unfavored bonds with ferromagnetic
spin alignments are identified (yellow markers), which are then mapped to a "dimer" on
the medial honeycomb lattice (constructed by connecting the mid points of the elemen-
tary triangles). This first step turns a ground-state spin configuration on the triangular
lattice (with exactly one energetically unfavored bond per elementary triangle) into b) a
dimer covering of the honeycomb lattice (where each site is part of exactly one dimer).
In the second step, this dimer covering on a bipartite lattice is mapped to c) a magnetic
field configuration with strong/weak field lines (orange/blue arrows). This magnetic
field is divergence-free at every site (blue circles).

Emergent magnetostatics The low-temperature physics of the triangular Ising
model with antiferromagnetic couplings is strikingly different from its ferromag-
netic counterpart: While the ferromagnet exhibits a thermal phase transition
at which the Z, (Ising) symmetry of the Hamiltonian is spontaneously broken
and the ground states exhibit less symmetry than the high-temperature paramag-
netic phase, something much richer happens in the antiferromagnetic case — the
ground states of the antiferromagnetic Ising model exhibit an emergent structure



that is completely absent at high temperatures. This structure is called a Coulomb
phase [3] or emergent magnetostatics, in which every ground-state spin config-
uration can be mapped (as illustrated in Fig. [3) to an effectively divergence-free
magnetic field configuration, hence the name magnetostatics.

Here is a short video introducing you to this idea, the exact mapping of a
ground-state spin configuration to a divergence-free magnetic field configura-
tion (see Fig.[3), and its ramifications in terms of long-range correlations:

ground-state hardcore
configuration dimer covering field configuration

M-LAB emergent magnetostatics
NE A
computational physics_

1.3 Thermodynamics and Statistical Physics

Statistical physics provides the theoretical framework to describe the macro-
scopic properties of systems that are composed of many microscopic degrees
of freedom, such as the frustrated magnet introduced in Section Since we
are interested in the behavior of the magnet as we vary temperature, the central
object of interest is the canonical partition function

Zg=> PO )

S

where 5 = 1/kgT denotes the inverse temperature and the sum runs over all
possible configurations of the spins; for our purpose we choose to set kp = 1 in
the following. The individual terms that are summed are the Boltzmann weights
that describe the contribution of the corresponding configuration to the canoni-
cal ensemble at the given temperature and, accordingly,

L
pp(s) = e 3)
B
is the probability of encountering a specific configuration s in the ensemble.
The macroscopic quantities of interest are expectation values with respect to this
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Boltzmann distribution. The central role of the partition function is due to the fact
that these expectation values can always be written as a derivative of the (log-
arithmic) partition function (potentially after introducing some auxiliary source
terms). For example, the energy expectation value is

(E)g = 385 log Zs = ——log (Ze’BH > = Ziﬂ ZH(s)e’ﬁH(s) ., (@)

and, accordingly, the specific heat for some temperature 7' = 1/ at constant
volume is

AQ 10 10 0
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In the latter expression A(Q) denotes the head added to the system to raise its
temperature by AT

Cy (T)

1.3.1 Entropy

For the purpose of this lab course experiment we will combine the two different
viewpoints of entropy taken in thermodynamics and statistical physics, namely
entropy being

a) a thermodynamic function of state, and

b) an information theoretic measure for the ignorance about the microscopic
state.

Entropy in Statistical Physics For a random variable X with probability dis-
tribution P(X) the Shannon entropy is defined as

}:P = z)log, P(X = z) . (6)

The functional form of H is chosen such that it can be interpreted as a measure
for the uncertainty about the outcome x, because H is maximal for a uniform
distribution and minimal for deterministic outcomes with P(X = zy) = 1. In
the form of Eq. (6) entropy is a central quantity in modern information theory,
where it quantifies the information content of a message. Remarkably, Ludwig
Boltzmann had already long before identified that a closely related quantity that
builds on the microscopic states of a system and fulfils the properties of thermo-
dynamic entropy, namely

S =kplnQ. 7)

Here, kp is the Boltzmann constant and €2 denotes the phase space volume ac-
cessible by the microscopic states given the known macroscopic variables. An
equivalent expression is

§ = ks 3 ple)npte SLINSY ®)



In this case = denotes the microscopic states and p(x) is the probability of this
state in the given statistical ensemble. This latter formulation reveals the direct
relation to Shannon entropy.

Thermodynamic entropy In thermodynamics, the entropy S was introduced
by Rudolf Claudius as an extensive function of state. In a reversible process,
where the added heat is 6@y at temperature 7', the differential of entropy is

. 5QI‘GV

Since dS is a total differential, the entropy change in a reversible process is path
independent. This reflects the fact that entropy is a function of state, because
once the entropy is fixed for a value of the thermodynamic variables X, it can
be determined at any other point via

as

©)

S(X) = 5(Xo) + / ¥ 0Quey

10
T (10)

1.3.2 Phase transitions

At a phase transition a small change of some control parameter (e.g., tempera-
ture or applied magnetic field) leads to a rapid qualitative change of the proper-
ties of the system. Formally, phase transitions are signaled by a non-analyticity
of a thermodynamic potential, or, equivalently, zeros of the partition function
(2).

The ferromagnetic Ising model on the triangular lattice exhibits such a thermal
phase transition between a ferromagnetic and a paramagnetic phase at the criti-
cal temperature 7. = 3.6403 [4]. At this continuous phase transition the specific
heat (5)), which is the second derivative of the free energy, diverges as a power
law,

ey (T) ~ |T — T . (11)

1.4 Monte Carlo simulation

A central challenge in statistical physics is due to the fact that it is in most cases
not possible to handle the partition sum (2) analytically and the numerical cost
of naively computing it quickly explodes because of the combinatorially large
number of microscopic configurations that has to be summed over. Hence, it is
in practice typically impossible to work with the normalized Boltzmann weights
ps(s). In this lab course project you will use a numerical approach that circum-
vents the issue of computing the partition sum by resorting to a Monte Carlo
sampling algorithm for which knowing the unnormalized Boltzmann weights

Pa(s) = e MO (12)



is sufficient [5]. But most importantly, Monte Carlo sampling will also allow you
to avoid traversing the exponentially large configuration space, but ingeniously
allow you to converge expectation values of physical observables in polynomial
time.

1.4.1 Monte Carlo estimation of expectation values

In statistical physics we are usually interested in expectation values of the form
(O)y = _ps(s)0(s) . (13)

where O(s) is some function of the microscopic configuration s, such as some ob-
servable like energy, magnetization, or two-point correlation functions. Assume
that we have a means to obtain a finite sample Sy, = {s1, ..., sy} such that in the
limit of large NV the relative frequency of a configuration s in S, is proportional
to its probability ps(s). Then, according to the law of large numbers, the sample
mean converges to the expectation value with increasing sample size,

% 3" 0(s) =57(0), (14)

SES)\s
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Moreover, given the variance o, = >~ ps(s)(O(s)—(0)5)? the expected deviation
of the sample mean from the exact expectation value is

AM — JR(((OY,, — (0),)2) = 22 15

VE(({O)y — (0)52) = 72 15)
if the s; are independent samples. This means that, given a finite sample Sy, we
can obtain an estimate of the expectation value together with a corresponding
error estimate as

(0) = (O)y £ —=. (16)

1.4.2 Metropolis-Hastings algorithm

The idea of the Metropolis-Hastings algorithm is to realize a Markov process
whose stationary distribution is the probability distribution 7(s) that we are in-
terested in. Once the process reached its stationary state, the states s; visited can
be used as a sample S); and therefore to estimate expectation values.

In a Markov process the system is described by a state s and in each time step it
transitions into a new state s’ according to a transition probability py/c(s — §') =
puc(s’|s) that only depends on the current state of the system, i.e. there is no
memory of the past trajectory. In the Metropolis-Hastings algorithm the Markov
transition probabilities are constructed in two steps, given the current state s.
First, a new configuration s’ is proposed following a proposal probability pp(s’|s)



that can be conditioned on the current state. Given the proposed configuration
s’ the update is accepted with a probability

) 20(5).

m(s) pp(s'ls)

pals.s) = min(l, a7)
Hence, the probability to move from state s to state s’ in the resulting Markov
process is

puc(s = ') = pp(s'ls)pa(s,s) . (18)

This form of the transition probability is chosen to satisfy the detailed balance
condition

7(s)pymc(s = 8) = m(spuc(s' = s) (19)

which is a sufficient condition for the Markov process to have 7(s) as stationary
distribution. Uniqueness of the stationary distribution is guaranteed if the pro-
cess is ergodic, i.e., if it is possible for the process to go from any state s to any
other state s’ in a finite number of steps. Clearly, the latter condition has to be
kept in mind when designing the proposal probability pp(s's).

For Ising spin systems single spin flip updates are often sufficient. This means
that from the given configuration s one flips the sign of a single degree of free-
dom, s; = —s;, and the proposal probability pp(s’|s) is a uniform distribution
over all configurations s’ that differ from s by a single spin flip. To reduce the
cost of estimating expectation values and to mitigate the effect of autocorrela-
tion discussed in the following section, one typically performs sweeps of local
updates between subsequent configurations that are added to the sample S}
One sweep consists of one Markov update step per degree of freedom, which
means that the configuration obtained after the update sweep can globally differ
from the initial configuration.

1.4.3 Thermalization and Autocorrelation

For an infinite Markov chain S¥¢ = {s,,s,, ...} constructed using the Metropolis-
Hastings algorithm the frequency of configuration s is proportional to its prob-
ability 7(s). However, when working with finite samples S3/¢, some additional
care is required. Fig.[#a shows the value of some observable O(s) evaluated on a
sequence of configurations s that were obtained using the Metropolis-Hastings
algorithm. The data exhibits two typical features of Markov chain Monte Carlo,
namely an initial thermalization period and a significant autocorrelation time. By
contrast, the trajectory shown in Fig. @b evolves around a stationary value and
signatures of autocorrelation are much less pronounced.

Thermalization (or burn in) refers to the initial part of the trajectory, during
which the process approaches the stationary state. The first configuration s, is
usually chosen to be either random or completely ordered and it is usually not a
typical state of the target distribution 7 (s). Therefore, it takes a number of steps
for the Markov process to thermalize, i.e., to reach states that are typical, and,

10
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Figure 4 — Some observable O(s) evaluated on a sequence of configurations s that were
obtained using the Metropolis-Hastings algorithm. (a) The trajectory exhibits clearly the
signatures of thermalization and autocorrelation. (b) The trajectory evolves around a
stationary value and signatures of autocorrelation are much less pronounced.

thereby, the stationary region. In practice, the configurations sampled during
the thermalization period have to be discarded, because they would otherwise
introduce an unintended bias to the sample S/¢. Determining the duration of
the initial thermalization period is usually one of the first steps when performing
a Markov chain Monte Carlo simulation.

The signature of autocorrelation
in Fig. [ is the fact that one can Loot
throughout the stationary part of ' \
the trajectory still identify clear pe-

0.75

riods of upwards or downwards - — from Fig 4a
trends. This means that consecu- =0.30r from Fig 4b
tive samples in the sequence are

correlated with each other. This 022

behavior is a problem when we es- 0.00 | i i : , '
timate expectation values accord- 0 10 20 30 40 50
ing to Eq. (16), because the error t

estimation based on the standard
deviation assumes independently
drawn samples. Clearly, correlated
samples are not independent and therefore, the error as given in Eq. would
underestimate the actual deviation.

Considering the sequence of configurations s, ..., sy, the autocorrelation is
quantified by the correlation function

Figure 5 — Autocorrelation function computed
from the data shown in Fig.

E[0(s,)O(s,11)] — E[O(s)]?

(0) = Var[O(s)]

(20)

where the expectation values E[-] and the variance Var| - | are in practice esti-
mated via the sample mean over the given sequence. Fig.|5|shows the autocorre-
lation function for the data shown in Fig.[d] It exhibits that correlations between
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samples in Fig. fa remain significant for more than fifty steps of the Monte Carlo
chain, while it rapidly drops in the case of Fig.[db, meaning that subsequent sam-
ples are almost uncorrelated. The characteristic number of steps required for the
decay of the autocorrelation is called the autocorrelation time 7.

If the autocorrelation time of the data is known, it can be used to correct the
error estimate of Eq. by defining an effective number of uncorrelated samples,
Megs = M /(1 + 27) [6]. With this, the error estimate becomes

AM 90 _ 9 Aor 21
© 7 VMg VM @1

For this purpose, it is required to estimate the autocorrelation time. One option
is to assume an exponential form of the autocorrelation function, v(t) oc e/,
and to extract 7 by fitting to the data or by computing the integrated autocorre-
lation time 7 = Y7, 7(¢). However, this is often not practical. A viable alterna-
tive is to extract the autocorrelation time from a binning analysis of the data. This
approach is explained as part of the general purpose toolbox on the lab course
website [7].

2 Preparation

2.1 Theory

While you familiarize yourself with the theoretical background, find answers to
the following questions. You will need those for the analysis of the Monte Carlo
data.

Q1 Considering the definition of the specific heat ¢y in Eq. (5), what quantity
that is a function of the microscopic configurations s can you use to com-
pute ¢y in a Monte Carlo simulation?

Q2 What is the entropy of the frustrated magnet at infinite temperature (8 =
0)?

Q3 Assuming that you know the specific heat as a function of temperature,
cv(T'), how can you use Eq. and your answer to [Q2|to determine the
entropy at 7' = 0?

Q4 Convince yourself that the Metropolis-Hastings acceptance probability
fulfills the detailed balance condition (19).

2.2 Coding

In this lab course project you will write your own implementation of a Markov
chain Monte Carlo simulation for the triangular lattice Ising model. You likely
implemented such a simulation for another Ising model before. In that case you
might use your existing code as a basis for this project.

12
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When composing the simulation from scratch, the central building blocks that
you need to implement are the following;:

1. Write a function that computes the total energy H; 5(s) according to Eq.
for a given spin configurations s and given parameters J and B.

2. For a performant implementation it is useful to have a function that com-
putes the energy difference of configurations s and s’ that differ by a single
flipped spin s, = —s;,

AE;p(s;i) = Hyp(s') — Hyp(s) = —2s; Z 55 . (22)
JEN;

Here, N; denotes the neighboring lattice sites of site i. This function is use-
ful to compute acceptance probabilities for single spin flip updates. Cross-
check your function for the total energy and your function for the energy differ-
ences to ensure a correct implementation.

3. Write a function that performs an update sweep starting from a given con-
figuration s and that returns the updated configuration s’. The sweep
should consist of N Markov steps.

Algorithm 1 Pseudocode for update sweep function

function SWEEP(s, 1)
forninl: N do
i +random_int(1,N)
AFE + AEJ"B(S, Z)
Pacc = eXp(—AE/T)
if random_float(0,1) < pac then
s «flip(s, 7)
return s

4. Write a function that generates a sample S3/¢ of given size M by running
the Markov chain and storing the current configuration s between succes-
sive update sweeps.

5. Write a function that performs a binning analysis for a given sequence of
observables O; = O(s"”) following the instructions given on the toolbox

page [7]

3 Tasks

3.1 Ferromagnet J < 0

For this part, we fix B = 0 and we consider a range of linear system sizes L =
10, 20, 40, 80.

13
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T1 Determine a suited grid for the temperature axis. For this purpose, gener-
ate samples of size M = 2 x 10* for system size L = 20 at different tem-
peratures 1 < 7T'/|J| < 6. Compute the expectation value of the squared
magnetization M?(s) = (£ >, 5) ? to identify in which regions you need
higher resolution in temperature.

T2 For L = 40: Compute and plot the autocorrelation function ~(¢) defined
in Eq. for three temperatures, below, close to, and above the critical
temperature, using the energy and the squared magnetization M? as the
observables. What do you observe?

T3 For L = 10,20, convince yourself that the sequence of error estimates of
the binning analysis converges as function of the coarse-graining size k.
Determine the autocorrelation time 7 at each temperature. How does the
autocorrelation time depend on system size and temperature?

T4 Compute the expectation values of the squared magnetization

M2(s) = (% Zsj)Q | 23)

J

What do you observe as temperature and system size are varied?

T5 Compute the specific heat for all system sizes as function of temperature.
What do you observe as temperature and system size are varied?

3.2 Antiferromagnet J > 0

Choose a temperature grid that is evenly spaced on a logarithmic scale, e.g.,
T,/J = 2"/* for n = —12,...,28 and generate Monte Carlo samples for these
temperatures with linear system sizes L = 10, 20, 40, 80.

T6 For your samples for L = 10,20, convince yourself that the sequence of
error estimates of the binning analysis converges as function of the coarse-
graining size k. Determine the autocorrelation time 7 at each temperature.
How does the autocorrelation time depend on system size and tempera-
ture?

T7 Compute the specific heat as function of temperature for each system size.
Compare the behavior to your results for the ferromagnet.

T8 Using the specific heat obtained in 7, compute the zero-point entropy of the
frustrated magnet. How does the value you find compare with the exact
value from the literature? Discuss possible deviations.

T9 For L = 40, at a fixed small temperature (e.g. 7//.J = 0.2), generate samples
for a grid of magnetic field values B € [0, 10]. Compute the magnetization
as a function of the magnetic field. What do you observe? How can you
explain your observation?

14



T10 (optional) For L = 80, calculate the spin-spin correlation function (ss;)
along a (horizontal) cut in the lattice, where s, is a selected spin along this
cut and s; are the remaining 79 spins along the cut. Investigate the decay
of this spin-spin correlation function for high and low temperatures (e.g.
T/J=1.0and T/J = 0.1) as a function of real-space distance. You can also
compare this to the ordered phase of the ferromagnetic model.
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