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1 Theory

1.1 Teaser video

1.2 Introduction

A central feature of physical systems that are composed of many interacting de-
grees of freedom are phase transitions. At a phase transition the collective behav-
ior of the system exhibits an abrupt qualitative change as some external control
parameter is varied. A paradigmatic example is the continuous transition of the
two-dimensional Ising magnet between a ferromagnetic phase at low tempera-
tures and a paramagnetic phase at high temperatures. This simple model allows
us to understand that thermal fluctuations eventually destroy the macroscopic
magnetization of the system as the temperature is increased; in that sense, we
say that this phase transition is driven by thermal fluctuations.

Remarkably, phase transitions can also occur at zero temperature – so-called
quantum phase transitions. The crossing of a quantum phase transition means
that the ground state properties of a quantum many-body system suddenly change
qualitatively as some external control parameter is tuned. In this case, the tran-
sition is driven by quantum fluctuations instead of thermal fluctuations. In this
project you will investigate numerically two examples of quantum phase transi-
tions.

Addressing quantum many-body systems numerically, however, poses a formi-
dable challenge. Since the many-body Hilbert space is constructed as the tensor
product of the single particle Hilbert spaces, the Hilbert space dimension grows
exponentially with the number of degrees of freedom. In naive approaches
this translates into exponential amounts of computational resources required to
simulate quantum many-body systems. Interestingly, however, the low-energy
regime exhibits additional structure in the wave functions, which can be ex-
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ploited for compressed representations. In this project, you will work with ten-
sor network wave functions that are ideally suited to encode the ground states
of low-dimensional quantum systems.

1.3 Quantum phase transitions

Just as thermal phase transitions, quantum phase transitions feature fluctua-
tions that encompass all length and time scales [1]. As the transition point is
approached, the correlation length diverges as

ξ ∝ |ϵ|−ν , (1)

where ϵ denotes a dimensionless measure of the distance to the critical point
and ν is the correlation length critical exponent.1 Simultaneously, the correlation
time diverges as

τc ∝ ξz ∝ |ϵ|−zν (2)

with the dynamical critical exponent z. Close to the critical point, ξ and τc are
the unique characteristic length and time scales. Therefore, the dependence of
any observable on external parameters is determined by their relation to the di-
verging characteristic scales. For example, an observable O(x, t), that depends
on space and time as external parameters, can be written in terms of a scaling
function FO as

O(x, t) = FO(x/ξ, t/τc) (3)

This is the core of so-called critical behavior close to a phase transition, which
is fully characterized by the critical exponents. For the purpose of this project
we restrict the discussion to finite size scaling of dimensionless quantities; in
other cases, an appropriate dimensionful prefactor has to be added to the scaling
function above.

In practice with numerical simulations, however, one often introduces an ad-
ditional length scale, namely, the system size L. This typically has a significant
impact close to the phase transition. Imagine, for example a quantity

A(ϵ) ∝ |ϵ|ζ ∝ ξζ/ν (4)

that diverges with some exponent ζ at the critical point. In a finite system the
correlation length is bounded by L, such that we obtain the finite size behavior

AL(ϵ) ∝ Lζ/ν (5)

close to the transition. This means, that close to the critical point, some quantities
of interest can exhibit strong (seemingly divergent) dependence on the system

1To be a bit more concrete: If we consider a system, where the phase transition occurs by tuning
an external control parameter g across a critical value gc, then the dimensionless measure of
distance to the critical point can be defined as ϵ = (g − gc)/gc.
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size and need to be treated with care. On the other hand, the system size L
thereby becomes a control parameter and suited finite size scaling can allow us to
determine the value of critical exponents.

In quantum systems a characteristic feature of the energy spectrum that is
related to the characteristic time scale is the energy gap between the ground
state and the first excited state, ∆E. From dimensional considerations we obtain

∆E ∝ τ−1
c ∝ ξ−z ∝ |ϵ|zν . (6)

This means that the divergence of the correlation time scale at the critical point
corresponds to a closing of the energy gap, which is characteristic for quantum
phase transitions. In the presence of a finite size cutoff one can extend this be-
havior to a scaling ansatz for the gap in the vicinity of the phase transition point,

∆EL(ϵ) = L−zF∆E(ϵ/L
−1/ν) . (7)

Given numerical data such finite size scaling forms can be probed by attempting
a so-called scaling collapse. This means for this example that the numerical data
points ∆EL(ϵ) for different system sizes L and different values of ϵ are plotted
on rescaled axes such that all data points lie on a line given by y = F∆E(x).
Concretely, this means that y = Lz∆EL and x = ϵ/L−1/ν .

As part of this project you will probe such finite size scaling relations numeri-
cally.

1.4 Model Hamiltonians

In this project we will be concerned with to model systems that exhibit inter-
esting quantum phases of matter, namely the transverse-field Ising model and
the bilinear-biquadratic spin-1 chain. The former is the drosophila of quantum
phase transitions and the latter admits an exact tensor network representation of
the ground state as well as interesting phenomena like fractionalization.

1.4.1 Transverse-field Ising model

The transverse-field Ising model is the paradigmatic model for a quantum phase
transition. It incorporates the energetic competition between a ferromagnetic
coupling term of neighboring spin-1/2 degrees of freedom and an external mag-
netic field g that is oriented along the transverse direction,

ĤTFIM = −
L−1∑

i=1

Ŝz
i Ŝ

z
i+1 − g

L∑

i=1

Ŝx
i . (8)

Acting on the local spin-1/2 Hilbert spaces, the spin operators have the matrix
representation

Ŝx =
1

2

(
0 1
1 0

)
and Ŝz =

1

2

(
1 0
0 −1

)
(9)
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At g = 0 the system exhibits a degenerate manifold of ferromagnetically ordered
ground states spanned by

|ψ(+)
0 ⟩ = |↑, . . . , ↑⟩+ |↓, . . . , ↓⟩ (10)

and

|ψ(−)
0 ⟩ = |↑, . . . , ↑⟩ − |↓, . . . , ↓⟩ . (11)

At g = ∞ the unique ground state is the transversely polarized product state

|ψ0⟩ = |→, . . . ,→⟩ = 1

2L/2

L⊗

i=1

(
|↑⟩i + |↓⟩i

)
. (12)

In the thermodynamic limit L→ ∞, the system undergoes a symmetry-breaking
phase transition at some intermediate 0 < gc < ∞. The corresponding order
parameter is the longitudinal magnetization

M̂z =
1

L

L∑

i=1

Ŝz
i . (13)

As symmetry-breaking will, however, only occur in the thermodynamic limit,
the ground state expectation value ⟨M̂z⟩ will always be zero in numerical studies
of finite systems. Instead, one can resort to the squared magnetization M̂2

z as an
indicator of ordering in finite systems.

1.4.2 Bilinear-biquadratic spin-1 chain

The Hamiltonian of the bilinear-biquadratic spin-1 chain is defined as

ĤBLBQ = cos θ
L−1∑

i=1

Ŝi · Ŝi+1 + sin θ
L−1∑

i=1

(
Ŝi · Ŝi+1

)2 (14)

Here, we use the notation

Ŝi · Ŝi+1 = Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 + Ŝz

i Ŝ
z
i+1 =

1

2

(
Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1

)
+ Ŝz

i Ŝ
z
i+1 (15)

and the spin-1 operators have the matrix representation

Ŝx =
1√
2



0 1 0
1 0 1
0 1 0


 , Ŝy =

1√
2i




0 1 0
−1 0 1
0 −1 0


 and Ŝz =



1 0 0
0 0 0
0 0 −1


 .

(16)

As the parameter θ is varied, the bilinear-biquadratic spin-1 model exhibits a rich
phase diagram. One point of particular interest is tan θ = 1

3
, the Affleck-Kennedy-

Lieb-Tasaki (AKLT) point. It has been shown by AKLT that the ground state at
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Figure 1 – Schematic depiction of the AKLT state. Orange points represent spin-1/2
degrees of freedom, one pair of which residing on each lattice site. The red lines indicate
the singlet pairing of spin-1/2 degrees of freedom on subsequent lattice sites and the
projection of the common state of spin-1/2 degrees of freedom on the same lattice site
onto the local spin-1 Hilbert spaces as prescribed by Eq. (12) is indicated by the green
circles.

this point can be constructed as depicted in Fig. 1. In this construction the local
spin-1 Hilbert space is viewed as the triplet subspace of two fictitous spin-1/2
degrees of freedom, i.e.,

|+⟩ = |↑↑⟩ , |0⟩ = |↑↓⟩+ |↓↑⟩√
2

, |−⟩ = |↓↓⟩ . (17)

The AKLT ground state is then obtained by pairing the spin-1/2 states on neigh-
boring sites in to singlets and subsequently projecting onto the triplet subspace
of each site.

Remarkably, this prescription immediately translates into a tractable matrix
product form of the AKLT state. Let us denote by ai =↑, ↓ and bi =↑, ↓ the local
quantum numbers of the two auxiliary spin-1/2 degrees of freedom at lattice
site i. Then |a,b⟩ denotes a basis state of the auxiliary spin-1/2 system. As
mentioned above, the starting point is a product of singlets, which can be written
as

|ψ̃a1bL⟩ =
∑

a2,...,aL

∑

b1,...,bL−1

Σb1a2Σb2a3 . . .ΣbL−1aL |ab⟩ (18)

with matrices

Σ =

(
0 1√

2

− 1√
2

0

)
. (19)

The indices of |ψ̃a1bL⟩ indicate that the state of the first and the last spin-1/2 can
be chosen arbitrarily due to the open boundary condition. Next, we perform the
local projections with projection operators

P̂ =
∑

s=−,0,+

∑

a,b=↑,↓

P s
ab |s⟩ ⟨ab| (20)

defined by the tensors

P+ =

(
1 0
0 0

)
, P 0 =

(
0 1√

2
1√
2

0

)
, P− =

(
0 0
0 1

)
. (21)
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Thereby, we obtain

|ψab
AKLT⟩ =

⊗

i

P̂i |ψ̃ab⟩

=
∑

s

∑

a2,...,aL

∑

b1,...,bL−1

P s1
a,b1

Σb1a2 . . . P
sL−1

aL−1,bL−1
ΣbL−1aLP

sL
aL,b

|s⟩

≡
∑

s

∑

a2,...,aL

As1
aa2
As2

a2,a3
. . . AsL−1

asL−1
asL
P sL
aL,b

|s⟩ . (22)

The simplified matrix product form in the last line is obtained by defining

Asi
aiai+1

=
∑

b

P si
ai,b

Σbai+1
. (23)

The four possible choices (a, b) ∈ {(↑, ↑), (↓, ↑), (↑, ↓), (↓, ↓)} reflect a fourfold de-
generacy of the AKLT groundstate in the case of open boundary conditions. The
state is of special interest, because it exhibits a “hidden” order that is indicated
by a non-vanishing expectation value of the string correlators

Cstring
i,j = ⟨ψ|Ŝz

i e
iπ

∑
i<k<j Ŝ

z
k Ŝz

j |ψ⟩ (24)

at arbitrary distances |i−j|. In the AKLT state the value is exactly known, namely

Cstring
i,j = −4

9
for |i− j| > 2 . (25)

By contrast, all two-point correlation functions decay exponentially, meaning
that there is no local order parameter. One characteristic feature of this symmetry-
protected topological order is the existence of localized edge states at the boundary
of the system – the free spin-1/2 degrees of freedom of the AKLT state.

The abovementioned physical features are robust to tuning the parameter θ
away from the AKLT point. The explicit construction of the wave function as a
product of small matrices works only at the AKLT point. However, highly accu-
rate approximations of the ground state in the form of products of small matrices
can be found numerically across the phase diagram. And, most remarkably, this
generalizes to arbitrary one-dimensional quantum systems that exhibit a gap
between the ground state and the first excited state. In the next section we will
discuss how a general matrix product form of the wave function as in Eq. (22)
can be used as the foundation of a family of versatile and controlled numerical
algorithms.

1.5 Tensor networks

Tensor network techniques are applicable to composite quantum systems, where
the total Hilbert space is constructed as the tensor product of the Hilbert spaces
of the individual degrees of freedom,

H =
L⊗

l=1

Hl . (26)
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Accordingly, the wave function can be expanded in a computational basis as

|ψ⟩ =
∑

s1,...,sL

cs1,...,sL |s1⟩ ⊗ . . .⊗ |sL⟩ ≡
∑

s1,...,sL

cs1,...,sL |s1, . . . , sL⟩ , (27)

where the sl denote quantum numbers associated with the basis states |sl⟩ ∈ Hl.
We will in the following consider cases, where the local Hilbert space dimen-

sion of all constituent degrees of freedom is identical, dim(Hl) = d. Hence,
the total Hilbert space dimension is dim(H) = dL. Tensor networks achieve a di-
mensional reduction of the quantum many-body problem by rewriting the wave
function coefficients cs1,...,sL as a contraction of tensors. Thereby, the generally ex-
ponential dependence of the number of required parameters on the system size
can be reduced to a polynomial dependence, if the physical structure of the state
allows for such compression. For one-dimensional systems the simplest tensor
network structure is that of matrix product states (MPS), which you will use
throughout this project.

The explanations below follow in many parts closely the presentation in
Ref. [2].
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1.5.1 Matrix product states

If you are completely new to the idea of tensor networks, you may also consider
this video from the Computation Many-Body Physics lecture, in addition to the
following explanation:

The idea of MPS is to compress the many-body wave function by decompos-
ing the wave function coefficients into a product of matrices,

cs1,...,sL =
∑

a1,...,aL−1

As1
a1
As2

a1a2
. . . AsL

aL−1
. (28)

To estimate the number of parameters used in the matrix product representation,
we can assume that al = 1, . . . , χ independent of l. In that case, the MPS consists
of O(Ldχ2) parameters, which is a substantial reduction compared to the 2d wave
function coefficients if the bond dimension χ can be chosen to be small. In Section
1.5.3 we will see that there is a distinguished physical resource that determines
whether the wave function can be represented faithfully with a small bond di-
mension χ – the entanglement of bipartitions. But before that, we discuss a useful
graphical notation in the context of tensor networks and how a MPS form of a
given wave function can be obtained in a constructive way by using singular
value decompositions.

Graphical notation. To avoid clumsy formulas with abundant summations
and indices as in Eq. (28), we introduce a graphical representation of tensors and
tensor contractions called Penrose graphical notation. Generally, any tensor will be
represented as a node that has one leg for each of its indices. For example, the
wave function coefficient is a tensor with L legs:

cs1,...,sL = c

s1 s2 s3 . . . sL−1 sL

10

https://vimeo.com/552960462


A tensor contraction is indicated in this diagrammatic representation by joining
the legs of two tensors corresponding to the index that is contracted. For exam-
ple, the contraction of the first two tensors on the right hand side of Eq. (28) is
represented as

∑

i1

As1
i1
As2

i1i2
= A A

s1 s2

i2
i1

With these conventions, we can rewrite Eq. (28) graphically as

c

s1 s2 s3 . . . sL−1 sL

=
A A A A A A A

s1 s2 s3 . . . sL−1 sL

This pictorial representation of the MPS is the motivation to call the indices ai
the bond indices, as they appear in the diagram as bonds that connect two tensors.
Accordingly, the maximal value χi that the index ai = 1, . . . , χi assumes is called
the bond dimension.

Singular value decomposition. For an arbitrary m× n matrix M , there exists
the singular value decomposition (SVD)

M = USV † , (29)

where

• U is a m× min(m,n) matrix with orthonormal columns, i.e., U †U = 1,

• S is a diagonal min(m,n) × min(m,n) matrix with non-negative entries
Sii ≥ 0 – the singular values,

• V † is a min(m,n)× n matrix with orthonormal rows, i.e., V †V = 1.

In the graphical notation, the SVD can be written as

M = U
S

V †

Here, we denoted the S-tensor with a circle to indicate that it is a diagonal ma-
trix. Moreover, we introduced arrow annotations to some of the indices. This
notation indicates that the U and V † tensors have the abovementioned orthogo-
nality properties: When these tensors are contracted with their adjoint self along
all indices that do not carry an outward pointing arrow, the result is an identity
tensor. We will see below that being aware of this property can often greatly
simplify tensor contractions.
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MPS via iterative decomposition. For any given wave function the SVD al-
lows us to bring it into MPS form. In a first step, we reshape the dL-dimensional
vector of wave function coefficients into a matrix Cs1,(s2,...,sL) = cs1,s2,...,sL of di-
mensions d × dL−1. In this notation (s2, . . . , sL) denotes a composite index. This
matrix can then be decomposed by means of a SVD,

cs1,s2,...,sL = Cs1,(s2,...,sL)

=

χ1∑

a1=1

Us1,a1Sa1,a1

(
V †)

a1,(s2,...,sL)
≡

χ1∑

a1=1

Us1,a1ca1,s2,...,sL , (30)

where we defined ca1,s2,...,sL ≡ Sa1,a1

(
V †)

a1,(s2,...,sL)
in the last equality, and χ1 ≤ d.

Here, the lesser relation applies if some of the singular values Sii vanish.
Next, we can continue with a decomposition of ca1,s2,...,sL ,

ca1,s2,...,sL = C(a1,s2),(s3,...,sL)

=

χ2∑

a2=1

U(a1,s2),a2Sa2,a2

(
V †)

a2,(s3,...,sL)
≡

χ2∑

a2=1

Ua1,s2,a2ca2,s3,...,sL , (31)

where now χ2 ≤ χ1d ≤ d2. By identifying As1
a1

≡ Us1,a1 and As2
a1,a2

≡ Ua1,s1,a2 , we
have so far achieved

cs1,...,sL =
∑

a1,a2

As1
a1
As2

a1a2
ca2,s3,...,sL . (32)

This procedure can be continued iteratively until a complete decomposition into
a tensor product as written in Eq. (28) is achieved.

Clearly, the maximal possible rank at the center of the chain is χL/2 = dL/2.
Therefore, this procedure is in general not a compression scheme. However,
we will outline next that under specific physically relevant circumstances the
maximal rank is substantially smaller.

Canonical form The orthogonality properties of the matrices resulting from
the SVD result in some additional structure that can be exploited when dealing
with MPS. In the constructive approach discussed above we ultimately arrive at
a decomposition of the wave function coefficients into the form

cs1,...,sL =
∑

a1,...,aL−1

As1
a1
As2

a1a2
. . . AsL−1

aL−2aL−1
caL−1,sL . (33)

Pictorially, the MPS in this form is represented as

|ψ⟩left =

12



where the arrows on the bond indices underline the orthogonality property
resulting from the sequential SVDs. This property, turns out useful when com-
puting contractions of the MPS. One example is the norm of the state, for which
the MPS is contracted with itself:

⟨ψ|ψ⟩ =
∑

s1,...,sL

c∗s1,...,sLcs1,...,sL

=
∑

a1,...,aL−1

∑

a′1,...,a
′
L−1

(∑

s1

(As1
a1
)∗As1

a′1

)
. . .
(∑

sL

c∗aL−1,sL
ca′L−1,sL

)
(34)

In this expression, we can exploit the orthogonality property ofAs1
a1

, which means
that

∑
s1
(As1

a1
)∗As1

a′1
= δa1,a′1 . Hence,

⟨ψ|ψ⟩ =
∑

a2,...,aL−1

∑

a2,...,a′L−1

(∑

s2,a1

(As2
a1a2

)∗As2
a1a′2

)
. . .
(∑

sL

c∗aL−1,sL
ca′L−1,sL

)
. (35)

But now, again,
∑

s2,a1
(As2

a1a2
)∗As2

a1a′2
= δa2,a′2 . In this fashion, all A tensors are

sequentially contracted to identities and what remains is

⟨ψ|ψ⟩ =
∑

aL−1sL

|caL−1,sL|2 . (36)

Graphically, the procedure is represented as

= δi,i′ = δi,i′ = δi,i′ = δi,i′

and an MPS with this property is said to be in left-canonical form. When the proce-
dure of sequential SVDs from above is applied in reverse order, one equivalently
obtains a right-canonical MPS.

An MPS can also be brought into mixed-canonical form. Starting with an MPS
in left-canonical form, we can perform an SVD of the tensor at the end, which is
not an orthogonal matrix. In graphical notation,

|ψ⟩mixed =

Thereby, we have generated an MPS in mixed-canonical form with the orthog-
onality center at position L − 1. The orthogonality center could also be shifted
further to the left by applying additional SVDs.
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1.5.2 Matrix product operators

In analogy to the graphical representation of the wave function as a tensor with
L legs, we can denote an operator Ô acting on the wave function as a tensor with
2L legs:

⟨s′1, . . . , s′L|Ô|s1, . . . , sL⟩ = O
s′1,...,s

′
L

s1,...,sL = O

s′1 s′2 . . . s′L

s1 s2 . . . sL

In analogy to the MPS, any operator can be brought into matrix product operator
(MPO) form by means of the SVD,

O
s′1,...,s

′
L

s1,...,sL =W s′1s1W s′2s2 . . .W s′LsL =

s′1 s′2 . . . s′L

s1 s2 . . . sL

and expectation values of the operator correspond to contractions of the form

⟨ψ|Ô|ψ⟩ =

The construction of some “simple” operators is rather obvious, namely those
that are just products of single-site operators. Consider, for example, the two-
point correlator of a spin-1/2 system,

σ̂x
i σ̂

z
j ≡ 11 ⊗ . . .⊗ 1i−1 ⊗ σ̂x

i ⊗ 1i+1 ⊗ . . .⊗ 1j−1 ⊗ σ̂z
j ⊗ 1j+1 ⊗ . . .⊗ 1L (37)

Defining the local tensors

1 =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)

we can write this operator diagrammatically as

σ̂x
i σ̂

z
j = 1 1 1 X 1 1 1 Z 1

14



or, equivalently, as

σ̂x
i σ̂

z
j = 1 1 1 X 1 1 1 Z 1

with the dimensions of all internal bond indices equal to one.
The construction of large sums of tensor product operators, e.g., the transverse-

field Ising Hamiltonian (8), seems a much more daunting task. However, it turns
out that there is a straightforward recipe to obtain the corresponding MPO. For
this purpose, it is again useful to include explicitly the full tensor products of
operators when writing the Hamiltonian,

Ĥ = (−Ŝz
1)⊗ Ŝz

2 ⊗ 13 ⊗ 14 ⊗ . . .+ 11 ⊗ (−Ŝz
2)⊗ Ŝz

3 ⊗ 14 ⊗ . . .+ . . .

+ (−gŜx
1 )⊗ 12 ⊗ 13 ⊗ . . .+ 11 ⊗ (−gŜx

2 )⊗ 13 ⊗ . . .+ . . . (38)

The generation of the appearing operator strings can be viewed as the outcome
of the execution of a finite-state machine (FSM). In this picture, each bond cor-
responds to a transition of the FSM. Reading the operator strings from right to
left, there are three distinct states: (1) only 1 operators to the right of the cur-
rent bond, (2) Ŝz just right of the current bond, (3) a full interaction term or a
transverse field term somewhere to the right of the current bond. The transi-
tions between the states occur by adding specific operators to the next position:
1 → 1 by 1, 1 → 2 by Ŝz, 1 → 3 by −gŜx, 2 → 3 by −Ŝz, and 3 → 3 by 1. These
rules lead to a transition matrix at site i

W (i) =




1 0 0

Ŝz 0 0

−gŜx −Ŝz 1


 . (39)

Finally, the FSM has to start in state 1 and it must end in state 3, meaning that
the first and the last transition matrices read

W (1) =
(
−gŜx −Ŝz 1

)
and W (L) =




1
Ŝz

−gŜx


 . (40)

Expanding the productW (1)W (2) . . .W (L) yields exactly the sum of operator strings
in Eq. (38). Inserting the explicit operator representations in the transition matri-
ces yields exactly the MPO tensors W s′isi

aiai+1 such that

ĤTFIM =
∑

s,s′

∑

a1...aL−1

W
s′isi
aiai+1 |s′⟩ ⟨s| . (41)

1.5.3 Entanglement

Entanglement entropy For a bipartite quantum system with Hilbert space
H = HA ⊗ HB the von Neumann entropy of entanglement for a given state
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|ψ⟩ ∈ H is defined as

SvN
A = −tr

(
ρA ln ρA

)
. (42)

In this expression,

ρA = trB
(
ρ
)
=
∑

i,j,k

ψi,kψ
∗
j,k |iA⟩ ⟨jA| (43)

denotes the reduced density matrix of subsystem A that is obtained by taking
the partial trace trB(·) of the density matrix ρ = |ψ⟩ ⟨ψ| associated with the given
state.

The reduced density matrix is a quantum generalization of a marginal proba-
bility distribution. ρA contains the complete information to describe all possible
observations if measurements can only be performed on subsystem A. The en-
tanglement entropy is an information theoretic measure of correlations between
both parts of the bipartition. It tells us how much we can learn about the state of
the degrees of freedom in B by performing measurements on A.

Schmidt decomposition Let us denote a choice of orthonormal basis states of
HA and HB by {|i⟩A} and {|j⟩B}, respectively. Then, a general wave function of
the composite Hilbert space can be written as

|ψ⟩ =
∑

i,j

ψi,j |i⟩A ⊗ |j⟩B . (44)

Now, we can perform an SVD of ψi,j , yielding

|ψ⟩ =
∑

i,j

r∑

a=1

Ui,aSaaV
∗
a,j |i⟩A ⊗ |j⟩B . (45)

with r = min
(
dim(HA),dim(HB)

)
and this expression can be further reorga-

nized as

|ψ⟩ =
r∑

a=1

Saa

(∑

i

Ui,a |i⟩A
)
⊗
(∑

j

V ∗
a,j |j⟩B

)

=
r∑

a=1

Saa |a⟩A ⊗ |a⟩B . (46)

Here, {|a⟩A} and {|a⟩B} are sets of pairwise orthonormal vectors due to the or-
thonormality properties of U and V † and they can be extended to orthonormal
bases of the respective subsystem. If we restrict the sum to run only over the
χ ≤ r non-zero singular values, we obtain the Schmidt decomposition of |ψ⟩,

|ψ⟩ =
χ∑

a=1

Saa |a⟩A ⊗ |a⟩B . (47)
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Based on this, we immediately obtain the reduced density matrix in diagonal
form,

ρA =

χ∑

a=1

S2
aa |a⟩A A⟨a| (48)

and, thereby, the von Neumann entropy of entanglement

SvN
A = −

χ∑

a=1

S2
aa ln s

2
a . (49)

Due to the normalization of |ψ⟩ we furthermore know that ⟨ψ|ψ⟩ = ∑a S
2
aa = 1.

Hence, we can read off that SvN
A = 0 in the case of a single non-vanishing singu-

lar value and SvN
A = lnχ if S2

aa = 1
χ
∀a. These are the extreme cases of minimal

and maximal entanglement (with the absolute maximum given by SvN
A = ln(r)).

Correspondingly, if we consider the MPS constructed in Section 1.5.1, we learn
from the Schmidt decomposition that the magnitude of the bond dimensions χi

directly corresponds to the amount of entanglement that can be captured within
the representation. MPS allow us to write weakly entangled wave functions in a com-
pressed form.

Scaling laws of entanglement entropy A quantum state |ψ⟩ is said to satisfy
an area law of entanglement if for any bipartition into parts A and B the corre-
sponding entanglement entropy is proportial to the area of the boundary ∂A,

SvN
A ∝ ∂A . (50)

By contrast, the maximum possible entanglement entropy grows proportionally
with the number of degrees of freedom within A, i.e., with the volume of A. As
part of the numerical experiments that you will perform in this project you will
find that random states typically exhibit this behavior.

Remarkably, however, the ground states of gapped one-dimensional Hamil-
tonians of spin systems with local interactions are known to satisfy an area law
of entanglement [3]. In particular, the surface that separates two subsystems
in a one-dimensional chain does not grow with the subsystem size. Hence, the
entanglement entropy of gapped one-dimensional ground states is a constant.

Clearly, this statement does not apply at the critical point of a quantum phase
transition, where the excitation energy gap vanishes. In one-dimensional sys-
tems the entanglement entropy of a subsystem of size l acquires a logarithmic
correction to the area law and takes the form

SvN(l) =
c

6
ln

(
2L

πa
sin
(πl
L

))
+O(1) . (51)

This functional form can be derived, because the scale-invariance of the system
at the critical point admits an effective description in terms of a conformal field
theory (CFT), which is analytically tractable [4]. In the expression above c de-
notes the central charge that characterizes the CFT, L is the system size, and a is
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the ultraviolet cutoff, i.e., the lattice spacing. Eq. (51) translates into a logarithmic
scaling of the half-chain entanglement entropy with system size by considering
l = L/2:

SvN
|A|=L

2

=
c

6
lnL+O(1) (52)

In this project you will exploit the straightforward access to entanglement en-
tropy within the MPS framework to test the CFT predictions for microscopic
model Hamiltonians.
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1.5.4 Density Matrix Renormalization Group

For a gentler introduction, we again refer to a video from the Computation
Many-Body Physics lecture:

Having introduced the MPS representation of many-body wave functions, we
now turn to an algorithm that makes extensive use of the MPS structure to find
lowest-energy states of one-dimensional quantum systems. The starting point is
a many-body Hamiltonian Ĥ that describes the system of interest. The objective
is to find the MPS |ψ⟩ that minimizes the total energy expectation value

E =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ . (53)

To account for the normalization one can introduce a Lagrange multiplier λ and
optimize the constrained problem

⟨ψ|Ĥ|ψ⟩ − λ ⟨ψ|ψ⟩ , (54)

or, pictorially,

−λ = 0

The idea of the Density Matrix Renormalization Group (DMRG) algorithm is
now, that this optimization can be performed based on the MPS structure itera-
tively, one tensor at a time. An individual DMRG step consists of solving

∂

∂Aal−1,sl,al

(
⟨ψ|Ĥ|ψ⟩ − λ ⟨ψ|ψ⟩

)
= 0 , (55)
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where Aal−1,sl,al is one of the tensors in the MPS. As the MPS is linear in each of
the tensors, taking the derivative with respect to the entries of one tensor simply
means removing the tensor in our graphical representation. Hence, the equation
to solve is

al−1 al

sl

−λ
al−1 al

sl = 0

In the notation above we already assumed implicitly that the MPS is in mixed-
canonical form with the orthogonality center at the position of the tensor that
we are targeting. This means that we can easily perform the contraction of the
second term and are left with

al−1 al

sl

−λ
al−1 al

sl

= 0

By summarizing the triple index into a composite index (al−1, sl, al), we arrive at
an eigenvalue problem

Hv − λv = 0 . (56)

As we are after the lowest energy MPS, we need to solve this eigenvalue problem
for the eigenvector v0 with the smallest eigenvalue λ0; in fact, given the solution
v0, λ = v†0Hv0 is our current guess for the optimal energy.

With this local optimization procedure at its core, the full DMRG algorithm
consists of sweeps through the MPS. Starting with an MPS in right-canonical
form, the tensor at the orthogonality center is optimized by solving the eigen-
value problem above. Then, the orthogonality center is moved to the neighbor-
ing tensor by means of an SVD on order to optimize this tensor. This procedure
is continued until the other end of the MPS is reached, thereby completing the
right sweep. Next, one performs a left sweep, where the tensors are updated se-
quentially in the reverse order. This sweeping is continued until convergence.

2 Preparation

2.1 Theory

While you familiarize yourself with the theoretical background, find answers to
the following questions:
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Q1 What is the MPO form of the string correlator defined in Eq. (24)?

Q2 Can you write the individual steps of the DMRG algorithm (including the
shifting of the orthogonality center) in the diagrammatic language?

2.2 Coding

For this project you will use the ITensors.jl library [5] that provides an im-
plementation of core functionality and basic tensor network algorithms in julia.
As preparation, ensure that the library runs on the computer you will use for
the project. Moreover, read the sections “Perform a basic DMRG calculation”
and “Compute excited states with DMRG” of the DMRG example https://
itensor.github.io/ITensors.jl/stable/examples/DMRG.html and use
the documentation to find out how to compute operator expectation values and
entanglement entropy of a given MPS.

Central points to understand when studying the documentation are

• Which parameters control the accuracy of the DMRG simulation? How do
you pass them to the dmrg routine?

• How can you compose a custom Hamiltonian MPO?

• How can you compose the MPO for the string correlator defined in (24)?

• How can you multiply MPOs with MPSs? How can you compute expecta-
tion values of MPOs?

3 Tasks

3.1 Warmup: Decomposition into a Matrix Product State

For L spin-1/2 degrees of freedom, generate a random state vector in the form of
a big tensor with L 2-dimensional external indices. Then follow the prescription
for an iterative decomposition of the big tensor into a product of one tensor per
site using successive SVDs as described in Section 1.5.1.

1. Plot the entanglement entropy for each possible cut of the MPS (averaged
over a few realizations). What do you observe?

2. Plot the entanglement spectrum (i.e. the singular values) for the bipartition
at the center of the chain. Is the random state compressible?

Hints for the implementation using ITensors.jl:

• Generate random tensors using the randomITensor function.

• ITensors.jl implements an interface for the SVD of ITensor objects in
their svd function.

• The commoninds function returns the index (or indices) shared by two
tensors.
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3.2 Transverse-field Ising model

1. Verify the existence of a long range ordered phase in the transverse field
Ising model by computing the squared magnetization ⟨M̂2

z ⟩ across a range
of values of the transverse field.

2. Determine the value gc that separates the two phases of the transverse-field
Ising model. For this purpose it is useful to resort to the Binder cumulant of
the order parameter,

UL = 1− ⟨M̂4
z ⟩L

3 ⟨M̂2
z ⟩

2

L

(57)

For different (large enough) values of L this quantity exhibits a unique
crossing point as a function of g at gc. Therefore, its is particularly useful to
read of the critical value.

3. The finite size scaling form of the Binder cumulant is

UL(ϵ) = FU(ϵ/L
−1/ν) (58)

Determine the value of the critical exponent ν by performing a scaling col-
lapse of the Binder cumulant.

4. The dmrg routine ITensors.jl library easily allows to constrain the ground
state search to the subspace orthogonal to a set of given reference wave
functions. Thereby, after having found a ground state |ψ0⟩ you can then
look for the next excited state |ψ1⟩, which is the lowest energy state or-
thogonal to |ψ0⟩. Use this to compute the excitation energy gap ∆E as a
function of the transverse field. Can you confirm that this gap closes at
the critical point? Use your previously determined value of ν to determine
the dynamical critical exponent z via the finite size scaling form given in
Eq. (7).

5. By computing the half-chain entanglement entropy of the ground state at
the critical point for a range of system sizes, determine the central charge
by probing the scaling relation Eq. (52). Can you also confirm Eq. (51)?

3.3 Bilinear-biquadratic spin-1 chain

1. Implement the bilinear-biquadratic Hamiltonian and compute the ground
state at the AKLT point. Does it exhibit the expected features?

2. Determine the critical point θc with sin(θc) < 0 that separates the phase
containing the AKLT point from its neighboring phase by examining the
asymptotic value of the string order parameter (24) at large distances |i−j|.
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3. Determine the central charge at θc.
Hint: There are two ways to probe the scaling relation, where finding the
ground state at different system sizes is more straightforward, but also
computationally expensive. Can you find a way which also works with
a single ground state? If you observe any undesirable effects, how can you
work around them?
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