Optimized statistical ensembles
for slowly equilibrating classical and quantum systems

ACS spring meeting, March 2010

Simon Trebst
Microsoft Station Q
University of California, Santa Barbara

Collaborators: David Huse, Matthias Troyer, Emanuel Gull, Helmut Katzgraber, Stefan Wessel, Ulrich Hansmann
Many interesting phenomena in complex many-body systems arise only in the presence of

- multiple energy scales
- complex energy landscapes
- slow equilibration

Motivation
Random walk in temperature space increases equilibration.
Simulation of Markov chains

Monte Carlo, parallel tempering, replica exchange molecular dynamics

- Sample configurations in **phase space**

\[C_1 \rightarrow C_2 \rightarrow \ldots \rightarrow C_i \rightarrow C_{i+1} \rightarrow \ldots \]

Metropolis algorithm (1953)

- **Propose** a (small) **change** to a configuration

\[c_i \rightarrow c_j \]

- **Accept/reject** the update with probability

\[p_{acc} = \min \left(1, \frac{w(c_j)}{w(c_i)} \right) \]

How do we choose these weights?
Sample configurations in **phase space**

\[c_1 \rightarrow c_2 \rightarrow \ldots \rightarrow c_i \rightarrow c_{i+1} \rightarrow \ldots \]

Project onto random walk in **energy space**

\[E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_i \rightarrow E_{i+1} \rightarrow \ldots \]

We define a **statistical ensemble**

\[w(c_i) = w(E_i) = \exp(-\beta E_i) \]

\[p_{acc}(E_1 \rightarrow E_2) = \min \left(1, \frac{w(E_2)}{w(E_1)} \right) = \min \left(1, \exp(-\beta \Delta E) \right) \]
Statistical ensembles

- Sample configurations in **phase space**
 \[C_1 \rightarrow C_2 \rightarrow \ldots \rightarrow C_i \rightarrow C_{i+1} \rightarrow \ldots \]

- Project onto random walk in **energy space**
 \[E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_i \rightarrow E_{i+1} \rightarrow \ldots \]

- **Phase space:** The simulated system does a biased, but **Markovian** random walk.

- **Energy space:** The projected random walk is **non-Markovian**, as memory is stored in the system’s configuration.
Extended ensemble simulations

- Broaden the sampled energy space, e.g. by sampling a flat histogram.

\[
\begin{align*}
 w(E) &= \exp(-\beta E) \\
 w(E) &= 1/g(E)
\end{align*}
\]

\[n_w(E) = w(E) g(E) \]

Multicanonical simulations, Berg & Neuhaus
Wang-Landau algorithm
How well does this work?

The energy range scales like \(N \).

\[E \sim N \]

The round-trip time should scale like \(N^2 \).

\[\tau \sim N^2 \]

Flat-histogram sampling

\[\tau \sim N^{2+z} \]

Critical slowing down.

The fully frustrated Ising model

\[z = 0.9 \]

ferromagnetic Ising model

\[z = 0.4 \]
The problem: local diffusivity not constant

\[D(E, t_D) = \langle [E(t) - E(t + t_D)]^2 \rangle / t_D \]

- The **local diffusivity** is NOT independent of the energy.
Optimizing the ensemble

Measure the **current** in the energy interval

\[j = D(E) \cdot n_w(E) \cdot \frac{df}{dE} \]

Determine the **local diffusivity**.

Maximize current by varying histogram/ensemble.

Optimizing the ensemble (cont’d)

Optimal histogram turns out to be

\[n_{w}^{(opt)}(E) \propto \frac{1}{\sqrt{D(E)}} \]

Ensemble optimization algorithm

Feedback the local diffusivity

\[w'(E) \propto w(E) \cdot \sqrt{\frac{df}{dE}} \cdot \frac{1}{n_w(E)} \]

optimized ensemble

and **iterate** feedback until convergence.

• Feedback reallocates resources towards the critical energy.
Performance of optimized ensemble

The round-trip times scale like $O\left([N \log N]^2\right)$.

speedup ~ 100
Example

Folding of a (small) protein

ST, M. Troyer, U.H.E. Hansmann
A small protein: HP-36

The chicken villin headpiece

folding time: 4.3 microseconds
Parallel tempering

Simulate **multiple replicas** of the system at various temperatures.

Single replica performs **random walk** in temperature space.

\[p(E_i, T_i \to E_{i+1}, T_{i+1}) = \min(1, \exp(\Delta \beta \Delta E)) \]

How do we choose the temperature points?
Ensemble optimization

Feedback algorithm

Measure **local diffusivity** $D(T)$ of current in temperature space.

Optimal choice of temperatures

$$\eta_{\text{opt}}(T) \sim \frac{1}{\sqrt{D(T)}}$$

density of T-points

Iterate feedback of diffusivity.
Random walk in temperature

- Multiple temperature scales are revealed by the local diffusivity.
Feedback reallocates resources towards the relevant temperature scales.
Example

Strong first-order transitions

B. Bauer, E. Gull, ST, M. Troyer, and D.A. Huse
The large-Q Potts model

$Q = 250$

Energy $E / 2N$

Optimized histogram

Canonical histogram

Droplet formation

Droplet stripe transition

Droplet stripe transition
Example

Quantum systems

S. Wessel, N. Stoop, E. Gull, ST, M. Troyer
Quantum systems

Reconsider the high-temperature series expansion

\[Z = \text{Tr} \ e^{-\beta H} = \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \text{Tr} \ (-H)^n = \sum_{n=0}^{\infty} g(n) \beta^n \]

coefficients

“density of states”

We can define a broad-histogram ensemble in the expansion order.

Stochastic series expansion (SSE) samples these coefficients

\[n \to 0 \quad \text{high temperatures} \]

\[\langle n \rangle \propto \beta N \]

\[n \to \infty \quad \text{low temperatures} \]
Examples

Thermal first-order transition

hard-core bosons with next-nearest neighbor repulsion

\[H = -t \sum_{\langle i,j \rangle} (a_i^\dagger a_j + a_j^\dagger a_i) + V_2 \sum_{\langle\langle i,k \rangle\rangle} n_i n_k - \mu \sum_i n_i \]

\[\Lambda = 20 L^2 \]

Spin-flop transition

spin-1/2 XXZ model in a magnetic field

\[H = J \sum_{\langle i,j \rangle} \left[S_i^x S_j^x + S_i^y S_j^y + \Delta S_i^z S_j^z \right] - h \sum_i S_i^z \]

\[\Lambda_{\delta h} = 500 \]
Summary

Metropolis cycle

- configuration
- suggest an update
- accept/reject an update

- non-local update schemes: loops, worms, ...
- unconventional statistical ensembles

- improve sampling efficiency & overcome entropic barriers

© Simon Trebst