topology and supersymmetry

collaborators

Jan Attig PhD student

Michael Lawler Cornell / Binghamton

arXiv:1809.08248

and Phys. Rev. B **96**, 085145 (2017) Editors' suggestion. Krishanu Roychowdury Stockholm

© Simon Trebst

C.L. Kane & T.C. Lubensky, Nat. Phys. 10 (2014)

example #1: "floppy modes" in isostatic lattices
$$|$$
 Maxwell relation $u\equiv N_0-N_{
m ss}=d\cdot n_{
m s}-n_{
m b}$

isostatic lattices

 $\nu = 0$

coordination number

 $z = 2 \cdot d$

kagome lattice d = 2 z = 4

 $d = 3 \quad z = 6$

C.L. Kane & T.C. Lubensky, Nat. Phys. 10 (2014)

example #1: "floppy modes" in isostatic lattices | Maxwell relation $u \equiv N_0 - N_{
m ss} = d \cdot n_{
m s} - n_{
m b}$

"mechanical" SSH chain

example #2: topological insulator from classical pendula

example #2: topological insulator from classical pendula

floppy modes constitute boundary mode

R. Süsstrunk and S. D. Huber, Science **349**, 47 (2015) S. D. Huber, Nature Phys. **12**, 621 (2016)

correspondence principles

correspondence principles

© Simon Trebst

supersymmetry

basic ingredients of SUSY

SUSY & topological mechanics

SUSY & topological mechanics

SUSY charge

 $H_{\mathrm{SUSY}} = \{\mathcal{Q}, \mathcal{Q}^{\dagger}\}$

$$2 = \gamma_i^B \mathbf{1}_{ij} \hat{p}_j + \gamma_i^A \mathbf{A}_{ij} \hat{q}_j$$

encodes block-diagonal form

$$\mathbf{R} = \left(\begin{smallmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} \end{smallmatrix}\right)$$

 $\mathcal{H}_{\text{fermion}} = -i\gamma_j^A \mathbf{A}_{jk} \gamma_k^B + \text{h.c.}$

 $\mathcal{H}_{\text{boson}} = \hat{p}_i \hat{p}_i + \hat{q}_i (\mathbf{A}^T \mathbf{A})_{ij} \hat{q}_j$

Majoranas hopping on two sublattices AB

bosons on one sublattice (B)

dynamical matrix

 ${f R}\,$ is the **rigidity matrix** of the mechanical system.

It allows to directly connect mechanical systems to Majorana analogues, and vice versa.

© Simon Trebst

SUSY & topological mechanics

$$k_{ij} = -2\sum_{a \in A} \mathbf{A}_{ia}^T \mathbf{A}_{aj} \qquad \kappa_i = 2\sum_{a \in A} \mathbf{A}_{ia}^2 - \sum_{b \in B} k_{ib}$$

F

Kitaev model

mechanical analogue

Majorana fermions on **honeycomb** lattice

balls & springs on **triangular** lattice

mechanical 2nd order TI

topological invariants

topological invariants

This SUSY construction allows to explore topological properties of bosonic systems by connecting the symplectic bosonic eigenfunctions with a fermionic Berry phase of its SUSY partner.

route to classify bosonic systems

This SUSY construction allows to explore **topological properties of bosonic systems** by connecting the symplectic bosonic eigenfunctions with a **fermionic Berry phase** of its SUSY partner.

SUSY Berry curvature $\mathcal{A}_{SUSY} = \langle v_m(\mathbf{k}) | i \tilde{\mathbf{R}}^{\dagger} \nabla_k \left(\tilde{\mathbf{R}} | v_n(\mathbf{k}) \rangle \right)$ $= \langle v_m(\mathbf{k}) | i \sigma_2 \left(\nabla_k + \sigma_2 \tilde{\mathbf{R}}^{\dagger} \nabla_k \tilde{\mathbf{R}} \right) | v_n(\mathbf{k}) \rangle$

Bosonic systems that are trivial with regard to conventional definition of Berry phase can be non-trivial with regard to SUSY Berry phase!

spin spirals

Dirac magnons spin liquids

. . . .

spin spirals

Coplanar spirals typically arise in the presence of competing interactions

Elementary ingredient for

- multiferroics
- spin textures/multi-q states
 - skyrmion lattices
 - Z₂ vortex lattices
- spiral spin liquids

Description in terms of a single wavevector

 $\vec{S}(\vec{r}) = \operatorname{Re}\left(\left(\vec{S}_1 + i\vec{S}_2\right)e^{i\vec{q}\vec{r}}\right)$

spin spirals

Coplanar spirals typically arise in the presence of competing interactions

Familiar example

• **120° order** of Heisenberg AFM on triangular lattice

spin spiral materials

Frustrated diamond lattice antiferromagnets

A-site spinels	
MnSc ₂ S ₄	S=5/2
$FeSc_2S_4$	S=2
$CoAl_2O_4$	S=3/2
NiRh ₂ O ₄	S=1

$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} \vec{S}_i \vec{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \vec{S}_i \vec{S}_j$$

degenerate coplanar spirals form **spin spiral surfaces** in *k*-space

spin spiral materials

Experimental observation of spin spiral surface in inelastic neutron scattering of MnSc₂S₄.

spin spiral manifolds

Spiral manifolds are extremely reminiscent of Fermi surfaces

But:

Spiral manifolds describe ground state of classical spin system, while Fermi surfaces are features in the middle of the energy spectrum of an electronic quantum system.

spin spiral manifolds

spin spiral manifolds

matrix correspondence

mapping of a classical to quantum system (of same spatial dimensionality) via a 1:1 matrix correspondence

→ reminiscent of "topological mechanics"

lattice construction

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

What does "**squaring**" of quantum system mean? Explicit **lattice construction**.

lattice construction

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

What does "**squaring**" of quantum system mean? Explicit **lattice construction**.

© Simon Trebst

lattice construction – examples

Spectra of the **kagome** and **extended honeycomb** lattice.

lattice construction – examples

Spectra of the **pyrochlore** and **extended diamond** lattice.

© Simon Trebst

SUSY formulation

Summary

topological mechanics from supersymmetry

novel topological invariant for boson systems

$$\mathcal{A}_{\text{SUSY}} = \langle v_m(\mathbf{k}) | i\sigma_2 \left(\nabla_k + \sigma_2 \tilde{\mathbf{R}}^{\dagger} \nabla_k \tilde{\mathbf{R}} \right) | v_n(\mathbf{k}) \rangle$$

additional covariant derivative

many other SUSY pairs - spin spirals, Dirac magnons, ...

arXiv:1809.08248 and Phys. Rev. B 96, 085145 (2017), Editors' suggestion.

© Simon Trebs

Thanks!

