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Quantum Computing in the NISQ era
An experimental pivot from of a few pristine qubits  
to the realization of circuit architectures of 50-100 qubits  
but tolerating a significant level of imperfections. 

Noisy intermediate
scale quantum
devices

Google

Sycamore chip — 53 qubits

IBM

Eagle generation — 127 qubits
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Quantum Computing in the NISQ era
IBM quantum cloud devices with 5-127 qubits

This model has been very concretely realized in experiments in
many labs in recent years, but notably also in the many chips that
have been made available for use in the IBM cloud service (https://
www.ibm.com/quantum-computing/systems/). These devices of the
“Falcon” and “Hummingbird” generations have employed trans-
mons laid out in the heavy-hexagon lattice geometry of Fig. 1a.
While these devices have fixed values of the coupling parameter T
and of the charging energy EC, their Josephson energy EJ varies
from transmon to transmon. This effectively random variation is, in
fact, crucially required to prevent the buildup of inter-transmon
resonances, and the compromising of quantum information; its role
in the physics of present-day transmon device structures, with
insights drawn from many-body localization theory, is the central
theme of this paper.

Before addressing the physics of the full model Eq. (1), let us
consider its low-energy limit. Applying a sequence of approxima-
tions (series expansion of the Josephson characteristic, rotating
wave approximation) one arrives at the effective Hamiltonian
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To leading order, this model describes the transmon as a
harmonic oscillator, where the above choices of energy scales
place the frequencies !νi ' 6 GHz on average in the middle of a
microwave frequency band, convenient for precision control. The
attraction term, a remnant of the cos-nonlinearity, is considerably
smaller than the average harmonic term, which is desired for
transmon operation. Finally, the characteristic strength of the

nearest neighbor hopping coefficients, jtijj ' T
4
ffiffi
2

p
ffiffiffiffi
EJ
EC

q
(often

called J in the literature), continues to be the smallest energy
scale in the problem.

Unless novel engineering techniques are used (see below), the
abovementioned variations of the Josephson energy, δEJ, are in
the few percent range; thus, at a minimum, there is variation in
oscillator frequencies νi of around δνi ' ð!ν=2EJ ÞδEJ ' 120MHz,
when the typical EJ ≈ 12.5 GHz. This scale is much larger than the
particle hopping strength, which for the same parameter set is
about ∣tij∣ ≈ 6MHz.

From the perspective of many-body physics, these variations
make Eq. (2) a reference model for bosonic MBL. For the above
characteristic ratio δν/∣t∣ ~20 we can hope that the system is in the
MBL phase, and we confirm this below. From the perspective of
transmon engineering, the frequency spread blocks the buildup of
a local nearest neighbor or next-nearest neighbor inter-qubit
resonances. Below, we will discuss how these two perspectives go
together (and where they may depart from each other). However,
before turning to the observable consequences of frequency
spread, we note that there exist two broad design philosophies for
its realization in transmon array structures, schemes A and B

throughout.
Generally speaking, scheme-a aims to suppress the frequency

spread to the lowest possible values required for the stability of
the structure, or dictated by limits in precision engineering. For
example, Fig. 1b shows that the spread of Josephson energies in
IBM devices is consistent with a Gaussian distribution (with no
stringent correlations from site to site). These observations hold
true for all current devices whose parameters are documented
publicly by IBM. Figure 1c shows that the variance δEJ has in fact
remained very constant over 9 realizations of “Falcon” chips (27
qubits) and the two latest “Hummingbird” chips (65 qubits). This
‘natural disorder’ regime was in use in many generations of
quantum computer processors7 that IBM has provided on its
cloud service since 2016. However, a significant reduction of
disorder has been reported in a very recent line of research at
IBM employing Q6Q6high precision laser-annealing12 as a pattern
engineering approach13 to be discussed towards the end of the
manuscript.

The complementary scheme B embraces frequency disorder as
a potent means of protecting qubit information, and in fact,
works to effectively enhance it. Examples in this category include
the recent reports from TU Delft on their extensible module for
surface-code implementation5. Google devices such as its 53-
qubit processor6 contain engineered frequency patterns whose
aperiodic variation effectively realizes a form of the synthetic

Fig. 1 Experimental parameters of recent IBM transmon arrays. a Layout
of the 65-qubit transmon array “Brooklyn”, currently available in IBM’s
quantum cloud (https://www.ibm.com/quantum-computing/systems/), in
a heavy-hexagon geometry. The coloring of the qubits indicates the
variation of Josephson energies EJ which is largely uncorrelated in space.
b Spread of the EJ plotted for the “Brooklyn” chip, consistent with a
Gaussian distribution (solid line). Similar levels of disorder and distributions
are found in all transmon devices available in IBM’s quantum cloud.
c Variance of the measured Josephson energies, δEJ, for nine realizations of
the 27-qubit “Falcon” design, and two realizations of the 65-qubit
“Hummingbird” design. While the mean varies unsystematically from
device to device, the variance remains very consistent, setting the
parameter favored in our “scheme-a” study below. “Scheme B“ cases in
other labs have a much larger spread as indicated by the “flux tunable” level
in the figure. Recent proposals of using high precision laser-annealing12 as a
pattern engineering approach13, discussed towards the end of the
manuscript, aim for a significant reduction of the EJ variance; such pattern-
tuned transmon arrays have so far not appeared in any cloud device.
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disorder / experimental settings
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many-body perspective
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energy spectra – spaghetti plots*OUFSBDUJOH USBOTNPOT

1C1 1C2 . . .

/Bz2`2Mi 1C , /BbQ`/2` �1C

> = 41*
P
B

M2
B �

P
B

1CB +Qb�B + h P
<B,D>

MBMD> = 41*
P
B

M2
B �

P
B

1CB +Qb�B +h P
<B,D>

MBMD *�T�+BiBp2 +QmTHBM;

hM8M9 hM9M10. . .

. . .

h

8 ky RyyJ>x k8yJ>x

1*

ky:>x8

1C

ǵM�im`�H /BbQ`/2`Ƕ ǵBMi2MiBQM�H /BbQ`/2`Ƕ

ek8J>x

�1C

dX8

BX2X A"J +HQm/ b2`pB+2 BX2X hl .2H7i bm`7�+2 d

1

T≠0 
(finite coupling)

#BTJD QSPQFSUJFT

I h = 0, S`Q/m+i bi�i2b | i = |M1, M2, ...i rBi? iQi�H 2t+Bi�iBQM MmK#2` M =
P
B

MB X

0 25 50
0

24

48

h [J>x]

1
[:

>x
]

y k8 8y

�50

0

50

h [J>x]

1
[J

>x
]

0 25 50

�10

0

10

h [J>x]

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

energy spectra – spaghetti plots*OUFSBDUJOH USBOTNPOT

1C1 1C2 . . .

/Bz2`2Mi 1C , /BbQ`/2` �1C

> = 41*
P
B

M2
B �

P
B

1CB +Qb�B + h P
<B,D>

MBMD> = 41*
P
B

M2
B �

P
B

1CB +Qb�B +h P
<B,D>

MBMD *�T�+BiBp2 +QmTHBM;

hM8M9 hM9M10. . .

. . .

h

8 ky RyyJ>x k8yJ>x

1*

ky:>x8

1C

ǵM�im`�H /BbQ`/2`Ƕ ǵBMi2MiBQM�H /BbQ`/2`Ƕ

ek8J>x

�1C

dX8

BX2X A"J +HQm/ b2`pB+2 BX2X hl .2H7i bm`7�+2 d

1

T≠0 
(finite coupling)

#BTJD QSPQFSUJFT

I h = 0, S`Q/m+i bi�i2b | i = |M1, M2, ...i rBi? iQi�H 2t+Bi�iBQM MmK#2` M =
P
B

MB X

0 25 50
0

24

48

h [J>x]

1
[:

>x
]

y k8 8y

�50

0

50

h [J>x]

1
[J

>x
]

0 25 50

�10

0

10

h [J>x]

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

#BTJD QSPQFSUJFT

I h = 0, S`Q/m+i bi�i2b | i = |M1, M2, ...i rBi? iQi�H 2t+Bi�iBQM MmK#2` M =
P
B

MB X

0 25 50
0

24

48

h [J>x]

1
[:

>x
]

y k8 8y

�50

0

50

h [J>x]

1
[J

>x
]

0 25 50

�10

0

10

h [J>x]

energy spectra – spaghetti plots*OUFSBDUJOH USBOTNPOT

1C1 1C2 . . .

/Bz2`2Mi 1C , /BbQ`/2` �1C

> = 41*
P
B

M2
B �

P
B

1CB +Qb�B + h P
<B,D>

MBMD> = 41*
P
B

M2
B �

P
B

1CB +Qb�B +h P
<B,D>

MBMD *�T�+BiBp2 +QmTHBM;

hM8M9 hM9M10. . .

. . .

h

8 ky RyyJ>x k8yJ>x

1*

ky:>x8

1C

ǵM�im`�H /BbQ`/2`Ƕ ǵBMi2MiBQM�H /BbQ`/2`Ƕ

ek8J>x

�1C

dX8

BX2X A"J +HQm/ b2`pB+2 BX2X hl .2H7i bm`7�+2 d

1

T≠0 
(finite coupling)

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

#BTJD QSPQFSUJFT

I h = 0, S`Q/m+i bi�i2b | i = |M1, M2, ...i rBi? iQi�H 2t+Bi�iBQM MmK#2` M =
P
B

MB X

0 25 50
0

24

48

h [J>x]

1
[:

>x
]

y k8 8y

�50

0

50

h [J>x]

1
[J

>x
]

0 25 50

�10

0

10

h [J>x]

energy spectra – spaghetti plots*OUFSBDUJOH USBOTNPOT

1C1 1C2 . . .

/Bz2`2Mi 1C , /BbQ`/2` �1C

> = 41*
P
B

M2
B �

P
B

1CB +Qb�B + h P
<B,D>

MBMD> = 41*
P
B

M2
B �

P
B

1CB +Qb�B +h P
<B,D>

MBMD *�T�+BiBp2 +QmTHBM;

hM8M9 hM9M10. . .

. . .

h

8 ky RyyJ>x k8yJ>x

1*

ky:>x8

1C

ǵM�im`�H /BbQ`/2`Ƕ ǵBMi2MiBQM�H /BbQ`/2`Ƕ

ek8J>x

�1C

dX8

BX2X A"J +HQm/ b2`pB+2 BX2X hl .2H7i bm`7�+2 d

1

T≠0 
(finite coupling)

many-body
localized (MBL)

chaotic
regime

uncooked 
spaghetti

(over)cooked 
spaghetti

“al dente”
(place to be)

http://www.thp.uni-koeln.de/trebst/


We need to find a subtle balance  
– disorder can protect qubits,  

but entangling / coupling qubits in its 
presence might lead to quantum chaos.



©  Simon Trebst

quantifying chaos
spectral statistics

level statistics

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1
𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )

data theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]

0 20 40

20

60

100

𝑇 [MHz]

𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1
𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )

data theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

dim𝐻

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]

0 20 40

20

60

100

𝑇 [MHz]

𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1
𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )

data theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

dim𝐻

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]

0 20 40

20

60

100

𝑇 [MHz]

𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

Kullback-Leiber divergence

4QFDUSBM TUBUJTUJDT

I ai�iBbiB+b 7Q` `M = �✏M+1/�✏M- _M = KBM (`M, 1/`M)X
I J"G T?�b2, SQBbbQM bi�iBbiB+bX
I *?�QiB+, :P1 qB;M2`@.vbQM bi�iBbiB+bX

I .2;`22 Q7 �;`22K2Mi K2�bm`2/ rBi?
EmHH#�+F@G2B#H2` /Bp2`;2M+2,

�✏M�1

�✏M

�✏M+1

.EG(S ||Z) =
P
F

TF HQ;
⇣

TF
[F

⌘

/�i� i?2Q`v

SQBbbQM
qB;M2`

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

_M

T(_M)

H2p2H `2TmHbBQM

,VMMCBDL�-FJCMFS EJWFSHFODF

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

h [J>x]

Em
HH#

�+
F@

G2
B#H

2`
/Bp

2`
;2

M+
2

.EG (S ||SSQBbbQM) .EG
�
S ||SqB;M2`

�

0 1
0

2

_M

T

0 1
0

2

_M

T

0 1
0

2

_M

T

1C = 44:>x
Ry h`�MbKQMb

4QFDUSBM TUBUJTUJDT

I ai�iBbiB+b 7Q` `M = �✏M+1/�✏M- _M = KBM (`M, 1/`M)X
I J"G T?�b2, SQBbbQM bi�iBbiB+bX
I *?�QiB+, :P1 qB;M2`@.vbQM bi�iBbiB+bX
I .2;`22 Q7 �;`22K2Mi K2�bm`2/ rBi?

EmHH#�+F@G2B#H2` /Bp2`;2M+2,
�✏M�1

�✏M

�✏M+1

.EG(S ||Z) =
P
F

TF HQ;
⇣

TF
[F

⌘

/�i� i?2Q`v

SQBbbQM
qB;M2`

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

_M

T(_M)

H2p2H `2TmHbBQM

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

quantifying chaos
spectral statistics

level statistics

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1
𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )

data theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]

0 20 40

20

60

100

𝑇 [MHz]

𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1
𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )

data theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

dim𝐻

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]

0 20 40

20

60

100

𝑇 [MHz]

𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1
𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )

data theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

dim𝐻

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]

0 20 40

20

60

100

𝑇 [MHz]

𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

Kullback-Leiber divergence

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1

𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )
data

theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]
0 20 40

20

60

100

𝑇 [MHz]
𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

wavefunction statistics

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1
𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )

data theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

dim𝐻

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]

0 20 40

20

60

100

𝑇 [MHz]

𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

quantifying chaos

natural
disorder 

tunable 
disorder

patterned 
disorder

GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1

𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )
data

theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]
0 20 40

20

60

100

𝑇 [MHz]
𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽
GkWdj_\o_d] Y^Wei

Δ𝜖𝑛Δ𝜖𝑛+1

𝐷KL(𝑃||𝑄) = ∑𝑘 𝑝𝑘 log (𝑝𝑘𝑞𝑘 )
data

theory

Level statistics▶ Statistics for 𝑟𝑛 = Δ𝜖𝑛+1/Δ𝜖𝑛.▶ Measure distance with
Kullback-Leibler divergence:

Wave function statistics

MBL: Poisson
Chaos: Wigner

0.5 1

1

2

𝑅𝑛
𝑝(𝑅𝑛)
level repulsion

IPR = ∑𝑐 |⟨𝑐|𝜓⟩|4
IPR=1

perfectly localized IPR=1/𝑑
fully delocalized

|𝜓|2

lattice sites

MBL

Chaos

20

60

100

𝐸 𝐽[GHz]

0 1𝐷KL (𝑃||𝑃Poisson)

MBL

Chaos

01 IPR

experiments20

60

100

𝐸 𝐽[GHz]
0 20 40

20

60

100

𝑇 [MHz]
𝐸 𝐽[GHz]

0 20 40𝑇 [MHz]

small 𝛿𝐸𝐽
natural disorder
fixed 𝜈(IBM)
flux tunable 𝜈
early Google,
Delft,ETH

𝛿𝐸𝐽

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

quantifying chaos
ZZ couplings & more 

p-qubits and l-qubits
8BMTI USBOTGPSNBUJPO *

> =
∑

B
?Bτ x

B +
∑
BD

CBDτ x
B τ

x
D +

∑
BDF

EBDFτ x
B τ

x
D τ

x
F + · · · =

∑
#

+#w#1
1 w#2

2 . . .w#L
L

τ >�KBHiQMB�M
7Q` i?2 H@[m#BibX

#, #Bi bi`BM;- 2X;X yRRyR, +01101w0
1 w1

2 w1
3 w0

4 w1
5 = E235 τ2 τ3 τ5

lb27mH pBbm�HBx�iBQM , +# →

+Q``2H�iBQMb

= E235 τ2 τ3 τ5
= ?4τ4
= G1245τ1τ2τ4τ5

�p2`�;2 Qp2` Ę
Ę2[mBp�H2Mi +#X

Ę+# rBi? b�K2 K�tX /Bbi�M+2
#2ir22M irQ H@#BibX

PHYSICAL REVIEW B 90, 174202 (2014)

Phenomenology of fully many-body-localized systems

David A. Huse,1 Rahul Nandkishore,2 and Vadim Oganesyan3,4

1Physics Department, Princeton University, Princeton, New Jersey 08544, USA
2Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

3Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314, USA
4Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York 10016, USA

(Received 27 August 2014; published 13 November 2014)

We consider fully many-body-localized systems, i.e., isolated quantum systems where all the many-body
eigenstates of the Hamiltonian are localized. We define a sense in which such systems are integrable, with
localized conserved operators. These localized operators are interacting pseudospins, and the Hamiltonian is
such that unitary time evolution produces dephasing but not “flips” of these pseudospins. As a result, an initial
quantum state of a pseudospin can in principle be recovered via (pseudospin) echo procedures. We discuss how the
exponentially decaying interactions between pseudospins lead to logarithmic-in-time spreading of entanglement
starting from nonentangled initial states. These systems exhibit multiple different length scales that can be defined
from exponential functions of distance; we suggest that some of these decay lengths diverge at the phase transition
out of the fully many-body-localized phase while others remain finite.

DOI: 10.1103/PhysRevB.90.174202 PACS number(s): 72.15.Rn

Isolated quantum many-body systems with short-range
interactions and static randomness may be in a many-body-
localized phase where they do not thermally equilibrate under
their own dynamics. While this possibility was pointed out
long ago by Anderson [1], such localization of highly excited
states in systems with interactions did not receive a lot of
attention until more recent work [2–7] brought the subject into
focus. Although the original idea of many-body localization
came from considering spins in solids [1], more recent interest
in the unitary quantum dynamics of many-body systems fully
isolated from their environment is also due to developments
in atomic physics that allow good approximations to such
systems to be assembled in the laboratory, e.g., using systems
of cold neutral atoms [8] or ions [9]. Interest in many-body
localization also accrues from the fact that localization can
protect types of order that are forbidden in equilibrium
[10–20], which may have implications for quantum devices
and quantum computation.

Isolated systems in the localized phase have strictly
zero thermal conductivity [2], so if energy is added to the
system locally, it does not diffuse, even when the system’s
energy density corresponds to a nonzero (even infinite [5])
temperature. Many-body-localized energy eigenstates violate
the eigenstate thermalization hypothesis (ETH) [21–23] and
exhibit only area-law entanglement, unlike the volume-law
entanglement of excited eigenstates at nonzero temperature
in thermalizing systems. It is also known [6,24–27] that for
generic initial area-law-entangled states in the many-body-
localized phase, the entanglement spreads logarithmically
with time, unlike thermalizing systems (where entanglement
can spread ballistically [6,28]) and single-particle localized
systems (where the entanglement remains area law).

In this paper, which is an extended version of Ref. [29],
we further explore the phenomenology of fully many-body-
localized (FMBL) systems [14,29–33] (systems where all the
many-body eigenstates of the Hamiltonian display localiza-
tion). We argue that there must exist localized pseudospin
operators in terms of which the many-body eigenstates within

the localized phase are indeed precisely product states with
zero entanglement. The existence of such a construction has
recently been proven for a certain class of spin chains [34].
Writing the Hamiltonian in terms of these localized pseudospin
operators reveals that fully many-body-localized Hamiltonians
are a type of integrable system, which contain an even larger
number of local conserved quantities than do traditional inte-
grable systems. Additionally, this structure is robust to small
but otherwise arbitrary local perturbations of the Hamiltonian,
which only lead to a redefinition of the local constants of
motion. We note that when the Hamiltonian is expressed in
terms of these localized pseudospins, it has exponentially
decaying long-range interactions which produce dephasing
but do not produce spin flips. It is these interactions that
cause the logarithmic spreading of entanglement observed
when the system is initialized in a nonentangled product state
of the bare spins [6,24–27]. We note also that the effective
interaction between distant pseudospins depends sensitively
on the configurations of all intervening pseudospins, and thus
changes from one many-body eigenstate to the next—a form
of “chaos” reminiscent of spin glasses [35].

The model: To be concrete, assume we have a system
of N spin-1/2’s on some lattice (say, in one, two, or three
dimensions), labeled by Pauli operators {σ i}. We call these
spins “p-bits” (p = physical). Our system has a specific random
Hamiltonian H that contains only short-range interactions
and strong enough static random fields on each spin so
that, with probability one in the limit of large N , all 2N

many-body eigenstates of this H are localized. For an example,
see [7]. The discussion should be readily generalizable to
local operators with more than two states, to Floquet systems
where the Hamiltonian is a periodic function of time, and
to systems where the dominant strong randomness is instead
the spin-spin interactions rather than random fields. In the
latter, the pseudospins may instead be localized domain wall
operators [13] or spin-exchange operators [25] and the lowest-
energy mode may be either a global symmetry mode [13] or
bilocalized between distant sites [25].

1098-0121/2014/90(17)/174202(5) 174202-1 ©2014 American Physical Society
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Mitigating crosstalk errors, whether classical or quantum mechanical, is critically important for
achieving high-fidelity entangling gates in multiqubit circuits. For weakly anharmonic superconducting
qubits, unwanted ZZ interactions can be suppressed by combining qubits with opposite anharmonicity. We
present experimental measurements and theoretical modeling of two-qubit gate error for gates based on the
cross resonance interaction between a capacitively shunted flux qubit and a transmon, and demonstrate the
elimination of the ZZ interaction.

DOI: 10.1103/PhysRevLett.125.200504

Building a fault-tolerant quantum computer requires not
only highly coherent qubits but also tailored interactions
between qubits for implementing high-fidelity two-qubit
entangling gates. Superconducting qubits are a promising
candidate [1–4], however, the gate errors in current devices
are not definitively below the threshold required for fault
tolerance. Despite tremendous improvements in qubit
coherence, circuit design, and control, two-qubit gate errors
remain in the range of 4–9 × 10−3 [5,6]. This is worse than
what would be naively expected based on current device
coherences [7]. One limiting factor to these errors is
crosstalk in the device corresponding to unwanted terms
in the Hamiltonian. This is a particular concern for one of
the more common superconducting qubit architectures,
fixed-frequency transmons [8] coupled to nearest neighbors
via a static exchange term J. In this architecture, the two-
qubit gate is enabled by activating the cross-resonance
(CR) effect [9–11], where a ZX interaction term is
generated by driving one qubit (the control) at the fre-
quency of the neighboring qubit (the target).
The strength of the CR effect is proportional to J [12],

and this J also produces an always-on ZZ coupling term.
The static ZZ coupling originates from level repulsion
between the energy level with both qubits in the first
excited state and some noncomputational energy levels and
is a consequence of two competing qubit-qubit interactions.
Such a ZZ interaction, whether static or driven during the
CR gate [12], is an ever-present source of error. Unlike
classical crosstalk, which can be canceled by the applica-
tion of compensation tones [6,12], the ZZ term leads to
unwanted entanglement between pairs and so is not easily
mitigated unless, for example, additional circuitry, such as a
tunable coupler, is added [13,14].

For a transmon-transmon system, which has a negative
value of the anharmonicity—the difference between the
primary transition out of the qubit subspace and the qubit
transition itself—there is no symmetry in the competing
interactions and so ZZ is always nonzero. As an alternative
approach, if the transmon can be combined with a qubit
design where the anharmonicity is positive, the symmetry
in the two competing interactions can cause the ZZ term to
be canceled at specific qubit-qubit detunings. In this way,
the CR effect between two opposite-anharmonicity qubits
can be utilized to form a high-fidelity gate. Fortunately,
such a qubit exists—the capacitively shunted flux qubit
(CSFQ) [15]. Recently, the CSFQ has regained attention, in
part, due to its greatly improved coherence time [16].
Although the CSFQ is a flux-tunable device, it can be
operated at a flux sweet spot (flux bias f ¼ Φ=Φ0 ¼ 0.5,
where Φ0 ¼ h=2e, h is Planck’s constant, and e is the
electron charge), where it is first-order insensitive to flux
noise. The anharmonicity at the sweet spot can be positive
and large (> þ500 MHz), which provides a parameter
regime that is otherwise inaccessible in all-transmon
devices.
In this Letter we present measurements of the first such

hybrid CSFQ-transmon device and theoretical modeling to
investigate its performance. First, we experimentally dem-
onstrate and theoretically model the suppression of the
static ZZ interaction for a particular detuning of the CSFQ
and transmon. Second, we investigate the characteristic
behavior of the CR effect as a function of CSFQ-transmon
detuning. Third, we explore the dependence of two-qubit
gate error on both flux and gate length. Finally, we use our
model to describe the requirements for a future device
capable of achieving a two-qubit gate error of 1 × 10−3.

PHYSICAL REVIEW LETTERS 125, 200504 (2020)
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FIG. S12. Idle frequency solutions found by our Snake optimizer with di↵erent error mechanisms enabled.
The optimizer makes increasingly complex tradeo↵s as more error mechanisms are enabled. These tradeo↵s manifest as a
transition from a structured frequency configuration into an unstructured one. Similar tradeo↵s are simultaneously made in
optimizing interaction and readout frequencies. Optimized idle and interaction operating frequencies are shown in Figure S13
and optimized readout frequencies are shown in Figure S20. Color scales are chosen to maximize contrast. Grey indicates that
there is no preference for any frequency.

Given the problem complexity, it is assumed that find-
ing globally optimal operating frequencies is intractable.
However, we have empirically verified that locally op-
timal solutions are su�cient for state-of-the-art system
performance. To find local optima, we developed the
“Snake” homebrew optimizer that combines quantum al-
gorithm structure with physics intuition to exponentially
reduce optimization complexity and take intelligent op-
timization steps. For the circuits used here, the opti-
mizer exploits the time-interleaved structure of single-
qubit gates, two-qubit gates, and readout. For our 53
qubit processor, it returns local optima in ⇠ 10 seconds
on a desktop. Because of its favorable scaling in runtime
versus number of qubits, we believe the Snake optimizer
is a viable long-term solution to the frequency selection
problem.

To illustrate how the Snake optimizer makes trade-
o↵s between error mechanisms, we plot idle frequency
solutions with di↵erent error mechanisms enabled (Fig-
ure S12). Starting with an ideal processor with no
error mechanisms enabled, there is no preference for
any frequency configuration. Enabling frequency-control
electronics noise, the optimizer pushes qubits towards
their respective maximum frequencies, to minimize flux-
noise susceptibility. Note that each qubit has a dif-
ferent maximum frequency due to fabrication variabil-
ity. Enabling frequency-control pulse distortions forces
a gradual transition between qubit frequencies to min-
imize two-qubit-gate frequency-sweep amplitudes. En-
abling nearest-neighbor (NN) and next-nearest neighbor
(NNN) parasitic coupling further lowers the degeneracy
between qubit frequencies into a structure that resem-
bles a multi-tiered checkerboard. Finally, enabling er-
rors from TLS defects, spurious microwave modes, and
all other known error mechanisms removes any obvious
structure. A set of optimized idle and interaction fre-
quencies is shown in Figure S13, and readout frequencies
are shown in Figure S20.

5. Grid config: procedure

Calibrating a grid of qubits follows the same procedure
as calibrating an isolated qubit with additional calibra-
tions to turn o↵ the qubit-qubit coupling.

• Achieve basic state discrimination for each qubit at
its desired frequency.

• For each coupler, minimize the qubit-qubit cou-
pling (note changing coupler biases a↵ects qubit
frequencies). For each case below, we choose the
coupler bias minimizing the interaction.

– For qubit pairs idling within 60 MHz of each
other, use a resonant swapping experiment.
We excite one qubit and apply flux pulses to
nominally put the qubits on resonance and let
the qubits interact over time [8].

– For qubit pair idling further apart, use a con-
ditional phase experiment. We perform two
Ramsey experiments on one qubit, where the
other qubit is in the ground state and the ex-
cited state, to identify the state-dependent fre-
quency shift of the first qubit.

• Adjust the qubit biases to restore the desired qubit
frequencies and proceed with qubit calibration as
in the single-qubit configurations.

• Calibrate the entangling gate.

– Estimate the qubit pulse amplitudes to reach
the desired interaction frequency with their
frequency versus bias calibration.

– Fine-tune the qubit pulse amplitudes to reach
resonance, compensating for pulse under-
shoot.

– Tune the coupler pulse amplitude to achieve a
complete photon exchange.
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Laser-annealing Josephson junctions for yielding scaled-up
superconducting quantum processors
Jared B. Hertzberg 1✉, Eric J. Zhang1, Sami Rosenblatt 1, Easwar Magesan1, John A. Smolin1, Jeng-Bang Yau1,
Vivekananda P. Adiga 1, Martin Sandberg 1, Markus Brink 1, Jerry M. Chow1 and Jason S. Orcutt 1

As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we
present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-
fabrication, we show a nearly tenfold improvement in the precision of setting qubit frequencies. To assess scalability, we identify
the types of “frequency collisions” that will impair a transmon qubit and cross-resonance gate architecture. Using statistical
modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that,
without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However, with the demonstrated
precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in
available quantum systems and will be indispensable as systems continue to scale to larger sizes.

npj Quantum Information ����������(2021)�7:129� ; https://doi.org/10.1038/s41534-021-00464-5

INTRODUCTION
Realizing robust large-scale quantum information processors is
one of the foremost challenges in quantum science. Many
practical applications have been proposed for robust quantum
computers, including estimating the ground state energy of
chemical compounds and implementing machine learning algo-
rithms1–8. Quantum advantage relative to classical computers can
be realized without full fault tolerance, but requires large quantum
circuits that a classical computer cannot simulate9. Recent
demonstrations have shown qubit circuits nearly at the threshold
for demonstrating quantum advantage10. Much work remains in
order to realize fault-tolerant quantum processors; however, scale-
up of solid-state quantum circuits has shown consistent and
ongoing progress11–20. As the qubit circuits are scaled up, they
must maintain high one- and two-qubit gate fidelities, high qubit
connectivity, and low cross-talk error, which can be measured in a
holistic sense via the quantum volume of the circuit21,22. Lattices
of fixed-frequency transmon qubits represent a promising
architecture for building systems of larger sizes10. A growing
number of systems at the 20–50-qubit scale are now available to
users through cloud access. Fixed-frequency transmons are largely
insensitive to charge or flux noise and have achieved coherence
times of 100 μs and growing. A variety of technical challenges
confront further system scaling, including improving three-
dimensional circuit integration and fast readout. High on the list
of such challenges is the issue of “frequency crowding.”
The cross-resistance (CR) gate, a hardware-efficient all-micro-

wave gate23–26, is readily used to entangle fixed-frequency
transmons with gate fidelities >99%, approaching the threshold
for fault-tolerant codes27. To achieve these fidelities, the CR gate
needs not only high coherence qubits but also a precise setting of
the qubits’ frequencies. The CR gate activates a ZX interaction by
driving one “control” qubit with a microwave pulse at the other
“target” qubit’s transition frequency. The magnitude of the ZX as
well as other Hamiltonian terms depends on the relative
frequencies of the two qubits28,29. Diminished ZX magnitude
increases gate time, while other terms such as ZZ add gate errors.

Neighboring qubits having the wrong detuning will exhibit a
frequency collision in which the ZX may be suppressed or other
undesirable effects arise.
Maintaining high gate fidelities for all pairs in a lattice will require

solving this frequency-crowding problem by precise setting of qubit
frequencies to specified values, as characterized by a standard
deviation σf. To achieve low σf, the tunnel-junction conductance
must be controlled with high precision. Transmon frequency f01
follows hf 01 ’

ffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
! EC , where Josephson energy EJ ¼ _Ic

2e is
many times greater than charging energy EC ¼ e2

2C
30. In typical

transmons, a photolithographically defined capacitance C has
dimensions in the tens to hundreds of microns and varies little from
qubit to qubit. The critical current Ic is set by a tunnel barrier of area
~100 × 100 nm and thickness a few nm and is thus challenging to
fabricate with precision better than a few percent31–35. However,
tunnel barrier resistance Rn is readily measurable to precision better
than 0.1% and relates to Ic according to the Ambegaokar–Baratoff
relation Ic ¼ πΔ

2eRn
(where Δ is the superconducting gap energy)36. We

expect imprecision in resistance σR to produce a corresponding
imprecision in frequency σf ¼ 1

2
σR
Rh i # fh i, where fh i and Rh i are the

mean values of frequency and resistance, respectively. We can
therefore measure Rn before a chip is cooled in order to assess qubit
frequency imprecision. The best demonstrated precision in setting Rn
at the time of fabrication is 2%34. A 2% variation in Rn indicates a
fractional σf of 1%.
Careful design of lattices can enable error correction codes

while at the same time minimizing the likelihood of “frequency
collisions” and therefore the required σf for fabrication yield37,38.
Yet even the most robust designs require a fractional σf of
0.25–0.5%, which represents a factor of 2–4 improvement over the
best literature results. To overcome such limits will require rework
of individual qubits’ tunnel junctions after fabrication. Thermal
anneal has been shown to increase tunnel resistance Rn, and laser
heating has been demonstrated as a highly localized rework
tool39–44. However, the inherent variability of the anneal process
itself must be overcome, and qubit frequency control utilizing

1IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA. ✉email: jbhertzberg@us.ibm.com
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IBM quantum processors
IBM’s strategy to avoid

frequency crowding

• optimize device geometry
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• frequency patterns
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A – B – C frequency patterns
inverse participation ratio

?8C�i 7#8#9#8 fWjj[hd

v

vv

vvv ŏȀżȩȘ_ࢅ mࢆ

vģ

ߡ˲ߜߝ ߠ˲ߜߝ ߟ˲ߜߝ ߞ˲ߜߝ ߝ˲ߜߝ ߜߜߝ

ߠࡏߜ

ߢࡏߜ

ߤࡏߜ

ߝ

ֻҞңbmˌࡠ
vÚ
á

v vv
vvv vģ

ࡽ˲ࡱࡹ
ࡹ˲ࡱࡹ
ࡱࡱࡹ

ӂ	żȩȀȀǞɯǞ
ȩȘ
ǀɟࡷ
ƚƚ

żǕ
Ǟɔ



device layouts

optimal disorder 
strength

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

extreme disorder engineering

staggered  
disorder  
regimes

reentrant chaotic behavior  
(multiplet delocalization)
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summary Nature Comm. (2022)

Take-away messages
•  Transmon qubit architectures need to balance 

 intentional disorder and non-linear couplings 
 to stay away from an MBL - chaos transition. 

•  Some current experimental setups in fact lie 
 dangerously close to chaos transition. 

•  Highly connected two dimensional chips 
 will be even more susceptible to chaos.

Outlook

•  Disorder engineering needs to explore 
 more complex staggering pattern than currently done.

•  Dynamical qubit operations will need delicate stabilization.
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