Quantum computing "al dente"

Entangled States of Matter Berlin, May 2022

Simon Trebst University of Cologne

An experimental pivot from of a **few pristine qubits** to the realization of circuit architectures of **50-100 qubits** but tolerating a significant level of **imperfections**.

Eagle generation — 127 qubits

Noisy intermediate scale quantum devices

Sycamore chip — 53 qubits

				IBM Quantum
2022	2023	2024	2025	2026+
	Workflow integration Application developmen Skills building Quantum model services	ıt		
	Natural Sciences	Finance		
	Optimization	Machine Learning		
	Prebuilt quantum runtimes		Prebuilt quant HPC runtimes	um +
Dynamic circuits	Circuit libraries		Advanced cont	rol systems
Osprey 133 qubits	Condor 1121 qubits	Beyond 1K - 1M+ qubits		
	Models			

https://research.ibm.com/blog/quantum-development-roadmap

IBM quantum cloud devices with 5-127 qubits

M Quantum Services					Q @ ;;		
/iew the availability and details of IB nd simulators.	M Quantum pro	grams, systems,					
Programs Systems	Simul	ators					
BM Quantum systems combine worl ryogenic components, control electr echnology. Learn more →	d-leading quan onics, and class	tum processors with sical computing			器 Card \mid 🗎 Table		
Q Search by system name					All systems (24) ∨ 1↓ 7		
≜ ibm_washington E	xploratory	A ibmq_brooklyn Exploratory	A ibmq_ manhattan Exploratory	∆ ibmq_ montreal	≜ ibmq_ kolkata Exploratory		
System status• Offline Processor type Eagle r1		System status • Online - Queue paused Processor type Hummingbird r2	System status• Offline Processor type Hummingbird r2	System status• Online Processor type Falcon r4	System status • Online Processor type Falcon r5.11		
Qubits		Qubits <u>QV CLOPS</u>	Qubits <u>QV</u>	Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u>		
127		65 32 1.5k 🍸	65 32 🦅	27 128 2.0k 🔍	27 128		
≜ ibmq_ mumbai E	xploratory	a ibm_ cairo	a ibm_ hanoi	a ibmq_ toronto	∆ ibmq_ sydney		
System status• Online Processor type Falcon r5.1		System status • Online Processor type Falcon r5.11	System status • Online Processor type Falcon r5.11	System status• Online Processor type Falcon r4	System status • Online - Queue paused Processor type Falcon r4		
Qubits <u>QV</u>		Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u> <u>CLOPS</u>		
27 128	Â	27 64 2.4k 🔍	27 64 2.3k 🔍	27 32 1.8k 🔍	27 32 1.8k		
å ibm_ peekskill	xploratory	å ibmq_ guadalupe	∆ ibm_ lagos	<mark>≜</mark> ibm_ nairobi	∆ ibmq_ casablanca System status● Online Processor type Falcon r4H		
System status• Offline Processor type Falcon r8		System status • Online Processor type Falcon r4P	System status • Online - Queue paused Processor type Falcon r5.11H	System status• Online Processor type Falcon r5.11H			
Qubits		Qubits <u>QV</u>	Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u> <u>CLQPS</u>	Qubits <u>QV</u> <u>CLOPS</u>		
27	<u></u>	16 32	7 32 2.7k	7 32 2.6k	7 32 2.3k		
<mark>≜</mark> ibm_ perth		8 ibmq_ jakarta	ibmq_ manila	ibmq_ bogota	ibmq_ santiago		
System status• OnlineSystemProcessor typeFalcon r5.11HProcessor typeProcessor type		System status• Online Processor type Falcon r5.11H	System status • Online Processor type Falcon r5.11L	System status• Online Processor type Falcon r4L	System status • Online - Queue paused Processor type Falcon r4L		
Qubits <u>QV</u>		Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u> <u>CLOPS</u>	Qubits <u>QV</u>		
7 32	G	7 16 2.4k 🔍	5 32 2.8k	5 32 2.3k	5 32		
ibmq_ quito		ibmq_ belem	ibmq_ lima	ibmq_ armonk			
System status• Online Processor type Falcon r4T		System status• Online Processor type Falcon r4T	System status • Online Processor type Falcon r4T	System status• Online Processor type Canary r1.2			
Qubits <u>QV</u> <u>CLOPS</u>		Qubits <u>QV CLOPS</u>	Qubits <u>QV CLOPS</u>	Qubit <u>QV</u>			
	G	5 16 2 5k	5 8 2 7k	1 1 \$			

IBM quantum cloud devices with **5-127 qubits**

and simulators.								
Programs	Systems	Simula	imulators					
IBM Quantum syste cryogenic compone technology. Learn m	ms combine world-l nts, control electron nore →	eading quant ics, and class	um processors with sical computing					
Q Search by sys	tem name							
a ibm_washingt	on Exp	loratory	₿ ibmq_ brooklyn	Exploratory	₿ ibmq _manhattan	Exploratory	<mark>≜</mark> ibmq _montreal	
System status• (Processor type	Offline Eagle r1		System status • Online - Que Processor type Hummingbi	eue paused rd r2	System status• Offline Processor type Hummingb	ird r2	System status• Online Processor type Falcon r4	
Qubits		~	Qubits <u>QV</u> <u>CLOPS</u>	N	Qubits <u>QV</u>	N	Qubits <u>QV</u> <u>CLOPS</u>	~
127		· M	65 32 1.5k	X	65 32	S.	27 128 2.0k	
a ibmq_ mumbai	Exp	loratory	a ibm_ cairo		<mark>≜</mark> ibm _hanoi		A ibmq_ toronto	
System status• (Processor type - F	Online Falcon r5.1		System status • Online Processor type Falcon r5.11	L	System status • Online Processor type Falcon r5.1	1	System status• Online Processor type Falcon r4	
Qubits <u>QV</u>		~	Qubits <u>QV</u> <u>CLOPS</u>	0	Qubits <u>QV</u> <u>CLOPS</u>	0	Qubits <u>QV <u>CLOPS</u></u>	0
27 128	}	<u> </u>	27 64 2.4k	Ĩ	27 64 2.3k	<i>آ</i>	27 32 1.8k	Ű.
≜ ibm_ peekskill	Exp	loratory	8 ibmq_ guadalupe		8 ibm_ lagos		å ibm_ nairobi	
System status• (Processor type	Offline Falcon r8		System status • Online Processor type Falcon r4P		System status• Online - Qu Processor type Falcon r5.1	eue paused 1H	System status• Online Processor type Falcon r5.11H	
Qubits			Qubits <u>QV</u>		Qubits <u>QV</u> <u>CLOPS</u>		Qubits <u>QV</u> <u>CLOPS</u>	
27			16 32		7 32 2.7k	(M)	7 32 2.6k	
a ibm_ perth			∆ ibmq _jakarta		ibmq_ manila		ibmq_ bogota	
System status• (Processor type	Online Falcon r5.11H		System status • Online Processor type Falcon r5.11	LH	System status • Online Processor type Falcon r5.1	1L	System status• Online Processor type Falcon r4L	
Qubits <u>QV</u>			Qubits <u>QV</u> <u>CLOPS</u>		Qubits <u>QV</u> <u>CLOPS</u>		Qubits <u>QV</u> <u>CLOPS</u>	
7 32			7 16 2.4k		5 32 2.8k		5 32 2.3k	G
ibmq_ quito			ibmq_ belem		ibmq_ lima		ibmq_ armonk	
System status• (Processor type	Dnline Falcon r4T		System status • Online Processor type Falcon r4T		System status • Online Processor type Falcon r4T		System status• Online Processor type Canary r1.2	
Oubits OV	CLOPS		Oubits OV CLOPS		Oubits OV CLOPS		Qubit QV	

single transmon qubit

anharmonic oscillator

Christoph also prepared many (LaTeX) originals for the slides of this talk.

meet the team

many transmon qubits

disorder / experimental settings

many-body perspective

 $H = 4E_C \sum_i n_i^2$ series expansions random-wave approximation $H = \sum_{i} \nu_{i} a_{i}^{\dagger} a_{i} - \frac{E_{C}}{2} \sum_{i} a_{i}^{\dagger} a_{i}$

attractive Bose-Hubbard model

 $\nu_i = \sqrt{8E_{J_i}E_C}$ large

$$\sum_{i} E_{J_i} \cos \phi_i + T \sum_{\langle i,j \rangle} n_i n_j$$

$$a_i^{\dagger}a_i(a_i^{\dagger}a_i+1)+\sum_{\langle i,j\rangle}t_{ij}(a_ia_j^{\dagger}+a_i^{\dagger}a_j)$$

We need to find a subtle balance - disorder can protect qubits,

but entangling / coupling qubits in its

presence might lead to quantum chaos.

spectral statistics

Kullback-Leiber divergence

$$D_{KL}(P||Q) = \sum_{k} p_{k} \log\left(\frac{p_{k}}{q_{k}}\right)$$

data ______ theory

wavefunction statistics

ZZ couplings & more

p-qubits and **I**-qubits

of many-body localization

$H = \sum_{i} h_i \tau_i^z + \sum_{ij} J_{ij} \tau_i^z \tau_j^z + \sum_{ijk} K_{ijk} \tau_i^z \tau_j^z \tau_k^z + \cdots$

PHYSICAL REVIEW B 90, 174202 (2014)

Phenomenology of fully many-body-localized systems

David A. Huse,¹ Rahul Nandkishore,² and Vadim Oganesyan^{3,4} ¹Physics Department, Princeton University, Princeton, New Jersey 08544, USA ²Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA ³Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314, USA ⁴Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York 10016, USA (Received 27 August 2014; published 13 November 2014)

PHYSICAL REVIEW LETTERS 125, 200504 (2020)

Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System

Jaseung Ku[®],¹ Xuexin Xu[®],^{2,3} Markus Brink,⁴ David C. McKay,⁴ Jared B. Hertzberg[®],⁴ Mohammad H. Ansari⁽⁾,^{2,3} and B. L. T. Plourde⁽⁾, ¹Department of Physics, Syracuse University, Syracuse, New York 13244, USA ²Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52428, Germany ³ Jülich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologies, Jülich 52428, Germany ⁴IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA

(Received 8 April 2020; accepted 2 September 2020; published 11 November 2020)

disorder engineering

Google quantum processor

FIG. S12. Idle frequency solutions found by our Snake optimizer with different error mechanisms enabled. The optimizer makes increasingly complex tradeoffs as more error mechanisms are enabled. These tradeoffs manifest as a transition from a structured frequency configuration into an unstructured one. Similar tradeoffs are simultaneously made in optimizing interaction and readout frequencies. Optimized idle and interaction operating frequencies are shown in Figure S13 and optimized readout frequencies are shown in Figure S20. Color scales are chosen to maximize contrast. Grev indicates that

IBM quantum processors

A – B – C frequency patterns

device layouts

III ("Falcon H")

inverse participation ratio

Where to go from here?

Take-away messages

- Transmon qubit architectures need to balance intentional disorder and non-linear couplings to stay away from an MBL - chaos transition.
- Some current experimental setups in fact lie dangerously close to chaos transition.
- Highly connected two dimensional chips will be even more susceptible to chaos.

Outlook

- **Disorder engineering** needs to explore more complex staggering pattern than currently done.
- Dynamical qubit operations will need delicate stabilization.

summary

Nature Comm. (2022)

