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Lecture overview

• Why series expansions?

• Linked-cluster expansions
• From Taylor expansions to linked-cluster expansions
• Why linked clusters?
• Series analysis, (Padé) approximants

• Things to calculate, examples
• ground-state properties
• tracking (various) excited states

• Alternative approaches
• References
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Some history
High-temperature series expansions for classical models.

Series expansions gave the first indications 
of universal exponents.

This led to the development of renormalization 
group techniques and the discovery of universality.

Starting in the late 80’s series expansion techniques were expanded 
to quantum systems including zero-temperature expansions.

exp(−βH) = 1− βH +
(β)2

2!
H

2 + . . .
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Series expansions at T=0 

E(λ) = E0 + E1λ
1 + E2λ

2 + . . . + Enλn + O(λn+1)

Taylor expansion, e.g. for ground-state energy

Focus in this lecture: High-order perturbation expansions 
in some coupling parameter at zero temperature. 

unperturbed
Hamiltonian

some
perturbation

H = H0 + λH1
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High-order series expansions (T=0)

Toy model: One-dimensional spin ladder

|J
J||

H = H0 + λH1 = J⊥
∑

i

{
"Si · "S′

i + λ
(

"Si · "Si+1 + "S′
i · "S′

i+1

)}

λ = J||/J⊥

E(λ) = E0 + E1λ
1 + E2λ

2 + . . . + Enλn + O(λn+1)

Taylor expansion, e.g. for ground-state energy
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cluster weight

Multivariable expansions
The perturbation H1 is a sum of local interaction terms hk

h1 h4h2 h3
H1 =

∑

〈ij〉

!Si · !Sj =
∑

k

hk

Associate each term hk with a coefficient λk 
and (multi-)expand the ground-state energy

h1

h4h3 h2h1 h3

h2 h3h3
E({λk}) =

∑

{nk}

e{nk}
∏

k

λnk
k

=
∑

C

W[E](C)



© Simon Trebst

Linked-cluster expansions

h1 h4h2 h3

Simplify multivariable expansion by setting all λk equal to λ.
Topologically equivalent clusters then give identical contributions.
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Linked-cluster expansions

Two clusters G and H are called topologically equivalent,
if there is a mapping M of the vertices of G to the vertices of H

such that M(G) = H.

? ✓

Simplify multivariable expansion by setting all λk equal to λ.
Topologically equivalent clusters then give identical contributions.
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“lattice constant”
counts the # of embeddings

Linked-cluster expansions

Simplify multivariable expansion by setting all λk equal to λ.

P (λ)/N =
∑

C̃

L(C̃) · W[P ](C̃)

Topologically equivalent clusters then give identical contributions.
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Efficiency gain of a linked-cluster expansion

We can reduce the number of calculations 
by many orders of magnitude!

Square lattice Triangular lattice Cubic lattice
N Cluster Embeddings Cluster Embeddings Cluster Embeddings
1 1 4 1 6 1 6
2 2 16 2 36 2 36
3 4 76 5 306 4 306
4 8 280 10 1.860 8 2.016
5 14 1.180 22 13.278 15 16.278
6 28 4.856 50 89.988 31 126.036
7 56 21.060 122 656.862 64 1.071.954
8 124 90.568 320 4.756.596 147 9.008.808
9 280 419.468 910 37.095.654 353 82.540.686
10 679 1.911.352 2.727 284.221.236 908 742.248.348

9
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The thermodynamic limit

The subcluster subtraction eliminates 
all (low-order) contributions of subclusters.

Reconsider the cluster weight

W[P ](C) = PC −
∑

C′⊂C

W[P ](C ′)

➡
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The thermodynamic limit

However, we trade finite-size scaling with series extrapolation.

Each cluster contributes only the additional high-order terms, 
which can be evaluated first for the respective cluster size.

The subcluster subtraction eliminates 
all (low-order) contributions of subclusters.

Reconsider the cluster weight

W[P ](C) = PC −
∑

C′⊂C

W[P ](C ′)

We obtain results directly for the thermodynamic limit.



© Simon Trebst

The linked-cluster theorem
Disconnected clusters have vanishing weight

PC = PA + PB ⇒ W[P ](C) = 0
because

W[P ](C) = PC −
∑

C′⊂C

W[P ](C ′)

= PA −
∑

C′⊆A

W[P ](C ′) + PB −
∑

C′⊆B

W[P ](C ′) = 0

➡
disconnected

cluster C

A B
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Graph theory

• Generation of clusters

• Isomorphism of clusters
→  identify topologically

     equivalent clusters

• Embedding of clusters 
  onto given lattices

→  topologically equivalent 
     clusters have identical weights

=
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• Graphs and and their general properties
(vertices, edges, labels, …)

Boost graph library
http://www.boost.org

•   Graph isomorphisms 
    (automorphism group, canonical labeling, 
     sorting, …)

  The nauty algorithm by Brendan McKay
!  http://cs.anu.edu.au/people/bdm/nauty/

Efficient graph handling

Lukas Gamper
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• Perturbation theory for T=0
–  Rayleigh-Schrödinger perturbation theory

–  High-temperature expansion for finite T.

en = 〈ψ0|H1|ψn−1〉 〈k|ψn〉 =
〈k|H1|ψn−1〉 −

∑n−1
m=1 em〈k|ψn−m〉

〈0|H0|0〉 − 〈k|H0|k〉

E(C) =
∑

n

λnen |ψ〉 =
∑

n

λnψn

–  A cluster with n edges will contribute first in order n.

Calculating cluster observables

ground-state energy ground-state wavefunction
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Ground-state expansion for spin ladder
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What is the elementary excitation of the coupled system?

What is the excitation spectrum?

What can be calculated using (high-order) cluster expansions?

Quasiparticle dynamics: Excitation spectrum
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One-particle excited states
Calculate effective Hamiltonians in the degenerate

   manifold of excited one-particle states for each cluster.

However, there is no cluster expansion

Heff
C =

[
Heff + eBI

]
A
⊕

[
Heff + eAI

]
B
"= Heff

A ⊕ Heff
B

Calculate irreducible matrix elements instead
∆(i, j) = 〈j|Heff |i〉 − E0δi,jHeff − eCI



© Simon Trebst

Calculation of eigenvalues

∆(i, j) = ∆(δ)

The energy eigenvalues are

E(K) =
∑

δ

∆(δ) cos(K · δ)

For a translationally invariant system we have

and the momentum K is a good quantum number.

The effective one-particle Hamiltonian can then easily be 
   diagonalized by a Fourier transformation.
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Spectrum for spin-1/2 ladder

0 π/2 π
K

0

0.5

1

1.5

E(
K)

Δ

The elementary excitation becomes 
a dressed triplet state, the triplon.

gapped
dispersion

triplon band
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Two-particle excitations

€ 

OTHO =

Heff 0( ) 0 0 0

0 Heff 1( ) 0 0

0 0 Heff 2( ) 0
0 0 0 ...

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

Generalize single-particle approach to block diagonalize Hamiltonian

Cluster expansion for effective Hamiltonians,
more precisely their irreducible matrix elements.

This gives the exact 2-particle Schrödinger equation,
which can be (numerically) solved.
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Spin-1/2 ladder

• The 2-triplon states form
• a continuum of states,
• bound states (S = 0,1), 
• antibound states (S = 2).

  
• Typical ladder materials  
    (La,Ca)14Cu24O41

triplon

S=0 bound state
S=1 bound state

2-triplon continuum
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Further extensions

• multiparticle excitation spectra

• spectral weights

• ...

€ 

OTHO =

Heff 0( ) 0 0 0

0 Heff 1( ) 0 0

0 0 Heff 2( ) 0
0 0 0 ...

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
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Sometimes, we do get convergent series.

Does the calculated series (always) converge?

E/J⊥ = −3
4
− 3

8
λ2 − 3

16
λ3 +

3
128

λ4 + O(λ5)

Quantum spin-S models  
e.g. ground state energy of the spin-1/2 Heisenberg ladder

But sometimes, we also obtain asymptotic series. 

E/U = −1
2
− 4λ2 + 4λ4 + 30.22λ6 − 62.57λ8 + 121.18λ10 + O(λ12)

Bose-Hubbard model
e.g. ground state energy of chain of bosons
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Pade[2, 2] =
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−3
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16

x2
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= −3
4
− 3

8
x2 − 3

16
x3 +

3
128

x4

+
9

128
x5 +

57
2048
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x8 + . . .

E/J⊥ = −3
4
− 3

8
x

2 − 3
16

x
3 +

3
128

x
4 + O(x5)

A Padé approximant to some finite series is a rational function

where the Taylor expansion of  f  matches the approximated series.

fPade(λ) =
pN (λ)
qM (λ)

Series extrapolation: Padé approximants
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A Padé approximant to some finite series is a rational function

where the Taylor expansion of  f  matches the approximated series.

fPade(λ) =
pN (λ)
qM (λ)

Well-suited to estimate small gaps.

0 π/4
K

0

0.5

1
Δ

 / 
J 

Dlog Pade
10th order dimer expansion

Series extrapolation: Padé approximants

dimer expansion for
AFM Heisenberg chain
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Assume a series obeys a power-law dependency

s(λ) = f(λ) · (λ − λc)ν

 Let’s differentiate the logarithm of s(λ)

D log s(λ) =
f ′(λ)
f(λ)

+
ν

λ − λc
=

pN (λ)
qM (λ)

The critical point       is a root of the denominator            .qM (λ)λc

ν = resλc

(
f ′(λ)
f(λ)

+
ν

λ − λc

)
=

pN (λc)
q′M (λc)

The critical exponent     can be evaluated byν

Dlog Padés: Critical points and exponent

critical point

critical exponent
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Example: J1-J2 Heisenberg chain
α

Dimer series expansion
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Series expansion
Chitra et. al.
White, Affleck
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Example: J1-J2 Heisenberg chain

Dlog Padé approximants

ν = 0.74(3)

ν = 0.65(3)

Rajiv Singh and Zhengh Weihong, Phys. Rev. B 59, 9911 (1999).
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Applications / frustrated magnetism
Series expansion techniques can be used to calculate 

effective Hamiltonians for the highly degenerate manifold 
of ground states characteristic of a frustrated magnet.

Two types of effective Hamiltonians 

• those which act only in the degenerate subspace of an 
unperturbed Hamiltonian.
→ systematic calculation by a linked-cluster expansion
→ isolates effective degrees of freedom
→ solving effective Hamiltonian allows to study degeneracy splitting

• those which act on the full Hilbert space.
→ non-trivial, as one needs suitable generator (see CUTs below)

F. Mila and K.P. Schmidt, arXiv:1005.2495
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Example: kagome Heisenberg model
Rajiv Singh and David Huse, Phys. Rev. B 76, 180407 (2007); Phys. Rev. B 77, 144415 (2008)

series expansions for
various dimer coverings

candidate dimer coverings
honeycomb VBC of perfect hexagons

stripe VBC of perfect hexagons

lowest order the effective theory is

H̃!"Nh"K6W6 , !4"

where N is the number of Kagome sites, and W6 is the
kinetic-energy operator of the perfect hexagons:

!5"

The sum runs over all hexagonal plaquettes of the Kagome
lattice. The quantum fluctuations created by the kinetic term
yield the ground states in which the number of resonating
perfect hexagons is maximized. This is an exact statement,
since all perfect hexagon flips commute with one another: as
illustrated in Fig. 4, the perfect hexagons can never be
nearest-neighbors, and therefore cannot affect one another. In
order to gain more insight about these states, we want to
recall some observations from Refs. 12 and 24. The total
number of dimers in a hard-core dimer covering on the
Kagome lattice is N2!N/2, and the number of triangular
plaquettes is N!!2N/3, so that N2!3N!/4!(1
"1/4)N! . Since a triangle can carry at most one dimer, we
see that one quarter of all triangles are the defects in any
hard-core dimer covering: N!d!N!/4. Next, we note that
every perfect hexagon has exactly three neighboring defect
triangles, and since no two perfect hexagons can be neigh-
bors, those defect triangles are not shared between them. It
follows from this that the total number of perfect hexagons
has an upper bound: N˝p#N!d/3!N!/12!N˝/6. The
maximum possible density of perfect hexagons is one per six
hexagonal plaquettes, and it can be achieved in a variety of
ways. In Fig. 5 we show two characteristic possibilities: !a"
the honeycomb and !b" the stripe state. In general, these
states are constructed by placing the perfect hexagons as
close as possible to each other. The closest they can be is the
next-nearest-neighbors, provided that between them is an-
other hexagonal plaquette, and not a bowtie pair of triangles
(q), because in the latter case there would have been a site
!the center of the bowtie" involved in no dimers. This rule
allows one to arrange perfect hexagons in strings which may

be straight, bent at an angle of 120°, or forked into two new
strings at the 120° angles. The stripe state is an example of
straight strings, while the honeycomb state has strings fork-
ing at each perfect hexagon.
Before we proceed with the next order of the perturbation

theory, we need to make some additional remarks. If we look
at the elementary flippable loops realized on the various hex-
agonal plaquettes in Fig. 5, we observe that between every
two closest perfect hexagons there is an eight-bond flippable
loop, right on the sides of the strings there are only ten-bond
flippable loops, and in the case of the honeycomb state, there
is a 12-bond star-shaped flippable loop sitting at the center of
every honeycomb cell. Also, one never finds an arrow-
shaped eight-bond flippable loop between two perfect hexa-
gons. These are quite general features of the states with the
maximum number of perfect hexagons, which we explain in
more detail in Fig. 6.
At the second order of perturbation theory, we need to

include the combinations of two K3 , K6, and K3#3 flips.
One of them is the flip on the arrow-shaped eight-bond flip-
pable loop $a hexagon, and a bowtie: see Fig. 3!b"%:

&Har
(2)!"

K6K3#3

2h W8
(ar) ; !6"

FIG. 4. Two perfect hexagons cannot be nearest-neighbors, and
the perfect hexagon flip does not affect length of any other elemen-
tary flippable loop. Consider a perfect hexagon 2 being flipped from
the configuration !a" to !b". The flippable loop on hexagon 1 has to
go through the sites A, B, and C, and therefore pass through the
shaded bonds in order to be tangential to the dimers. As a conse-
quence, it has to include at least one triangle, so that it cannot be a
perfect hexagon, and also, its length is not affected by the flip on
hexagon 2.

FIG. 5. Two hard-core dimer patterns that maximize the number of perfect hexagons: !a" honeycomb pattern; !b" stripe pattern. The
perfect hexagons are shaded to guide the eye. Note that the eight-bond flippable loops appear only as ‘‘connections’’ between the perfect
hexagons, and the ten-bond flippable loops touch exactly one perfect hexagon. The honeycomb pattern has the 12-bond flippable loops, the
stars: they sit inside the honeycomb cells.

PHYSICS OF LOW-ENERGY SINGLET STATES OF THE . . . PHYSICAL REVIEW B 68, 214415 !2003"

214415-5

honeycomb VBC

stripe VBC

lowest order the effective theory is

H̃!"Nh"K6W6 , !4"

where N is the number of Kagome sites, and W6 is the
kinetic-energy operator of the perfect hexagons:

!5"

The sum runs over all hexagonal plaquettes of the Kagome
lattice. The quantum fluctuations created by the kinetic term
yield the ground states in which the number of resonating
perfect hexagons is maximized. This is an exact statement,
since all perfect hexagon flips commute with one another: as
illustrated in Fig. 4, the perfect hexagons can never be
nearest-neighbors, and therefore cannot affect one another. In
order to gain more insight about these states, we want to
recall some observations from Refs. 12 and 24. The total
number of dimers in a hard-core dimer covering on the
Kagome lattice is N2!N/2, and the number of triangular
plaquettes is N!!2N/3, so that N2!3N!/4!(1
"1/4)N! . Since a triangle can carry at most one dimer, we
see that one quarter of all triangles are the defects in any
hard-core dimer covering: N!d!N!/4. Next, we note that
every perfect hexagon has exactly three neighboring defect
triangles, and since no two perfect hexagons can be neigh-
bors, those defect triangles are not shared between them. It
follows from this that the total number of perfect hexagons
has an upper bound: N˝p#N!d/3!N!/12!N˝/6. The
maximum possible density of perfect hexagons is one per six
hexagonal plaquettes, and it can be achieved in a variety of
ways. In Fig. 5 we show two characteristic possibilities: !a"
the honeycomb and !b" the stripe state. In general, these
states are constructed by placing the perfect hexagons as
close as possible to each other. The closest they can be is the
next-nearest-neighbors, provided that between them is an-
other hexagonal plaquette, and not a bowtie pair of triangles
(q), because in the latter case there would have been a site
!the center of the bowtie" involved in no dimers. This rule
allows one to arrange perfect hexagons in strings which may

be straight, bent at an angle of 120°, or forked into two new
strings at the 120° angles. The stripe state is an example of
straight strings, while the honeycomb state has strings fork-
ing at each perfect hexagon.
Before we proceed with the next order of the perturbation

theory, we need to make some additional remarks. If we look
at the elementary flippable loops realized on the various hex-
agonal plaquettes in Fig. 5, we observe that between every
two closest perfect hexagons there is an eight-bond flippable
loop, right on the sides of the strings there are only ten-bond
flippable loops, and in the case of the honeycomb state, there
is a 12-bond star-shaped flippable loop sitting at the center of
every honeycomb cell. Also, one never finds an arrow-
shaped eight-bond flippable loop between two perfect hexa-
gons. These are quite general features of the states with the
maximum number of perfect hexagons, which we explain in
more detail in Fig. 6.
At the second order of perturbation theory, we need to

include the combinations of two K3 , K6, and K3#3 flips.
One of them is the flip on the arrow-shaped eight-bond flip-
pable loop $a hexagon, and a bowtie: see Fig. 3!b"%:

&Har
(2)!"

K6K3#3

2h W8
(ar) ; !6"

FIG. 4. Two perfect hexagons cannot be nearest-neighbors, and
the perfect hexagon flip does not affect length of any other elemen-
tary flippable loop. Consider a perfect hexagon 2 being flipped from
the configuration !a" to !b". The flippable loop on hexagon 1 has to
go through the sites A, B, and C, and therefore pass through the
shaded bonds in order to be tangential to the dimers. As a conse-
quence, it has to include at least one triangle, so that it cannot be a
perfect hexagon, and also, its length is not affected by the flip on
hexagon 2.

FIG. 5. Two hard-core dimer patterns that maximize the number of perfect hexagons: !a" honeycomb pattern; !b" stripe pattern. The
perfect hexagons are shaded to guide the eye. Note that the eight-bond flippable loops appear only as ‘‘connections’’ between the perfect
hexagons, and the ten-bond flippable loops touch exactly one perfect hexagon. The honeycomb pattern has the 12-bond flippable loops, the
stars: they sit inside the honeycomb cells.
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Example: kagome Heisenberg model
Rajiv Singh and David Huse, Phys. Rev. B 76, 180407 (2007); Phys. Rev. B 77, 144415 (2008)

lowest order the effective theory is

H̃!"Nh"K6W6 , !4"

where N is the number of Kagome sites, and W6 is the
kinetic-energy operator of the perfect hexagons:

!5"

The sum runs over all hexagonal plaquettes of the Kagome
lattice. The quantum fluctuations created by the kinetic term
yield the ground states in which the number of resonating
perfect hexagons is maximized. This is an exact statement,
since all perfect hexagon flips commute with one another: as
illustrated in Fig. 4, the perfect hexagons can never be
nearest-neighbors, and therefore cannot affect one another. In
order to gain more insight about these states, we want to
recall some observations from Refs. 12 and 24. The total
number of dimers in a hard-core dimer covering on the
Kagome lattice is N2!N/2, and the number of triangular
plaquettes is N!!2N/3, so that N2!3N!/4!(1
"1/4)N! . Since a triangle can carry at most one dimer, we
see that one quarter of all triangles are the defects in any
hard-core dimer covering: N!d!N!/4. Next, we note that
every perfect hexagon has exactly three neighboring defect
triangles, and since no two perfect hexagons can be neigh-
bors, those defect triangles are not shared between them. It
follows from this that the total number of perfect hexagons
has an upper bound: N˝p#N!d/3!N!/12!N˝/6. The
maximum possible density of perfect hexagons is one per six
hexagonal plaquettes, and it can be achieved in a variety of
ways. In Fig. 5 we show two characteristic possibilities: !a"
the honeycomb and !b" the stripe state. In general, these
states are constructed by placing the perfect hexagons as
close as possible to each other. The closest they can be is the
next-nearest-neighbors, provided that between them is an-
other hexagonal plaquette, and not a bowtie pair of triangles
(q), because in the latter case there would have been a site
!the center of the bowtie" involved in no dimers. This rule
allows one to arrange perfect hexagons in strings which may

be straight, bent at an angle of 120°, or forked into two new
strings at the 120° angles. The stripe state is an example of
straight strings, while the honeycomb state has strings fork-
ing at each perfect hexagon.
Before we proceed with the next order of the perturbation

theory, we need to make some additional remarks. If we look
at the elementary flippable loops realized on the various hex-
agonal plaquettes in Fig. 5, we observe that between every
two closest perfect hexagons there is an eight-bond flippable
loop, right on the sides of the strings there are only ten-bond
flippable loops, and in the case of the honeycomb state, there
is a 12-bond star-shaped flippable loop sitting at the center of
every honeycomb cell. Also, one never finds an arrow-
shaped eight-bond flippable loop between two perfect hexa-
gons. These are quite general features of the states with the
maximum number of perfect hexagons, which we explain in
more detail in Fig. 6.
At the second order of perturbation theory, we need to

include the combinations of two K3 , K6, and K3#3 flips.
One of them is the flip on the arrow-shaped eight-bond flip-
pable loop $a hexagon, and a bowtie: see Fig. 3!b"%:
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2h W8
(ar) ; !6"

FIG. 4. Two perfect hexagons cannot be nearest-neighbors, and
the perfect hexagon flip does not affect length of any other elemen-
tary flippable loop. Consider a perfect hexagon 2 being flipped from
the configuration !a" to !b". The flippable loop on hexagon 1 has to
go through the sites A, B, and C, and therefore pass through the
shaded bonds in order to be tangential to the dimers. As a conse-
quence, it has to include at least one triangle, so that it cannot be a
perfect hexagon, and also, its length is not affected by the flip on
hexagon 2.

FIG. 5. Two hard-core dimer patterns that maximize the number of perfect hexagons: !a" honeycomb pattern; !b" stripe pattern. The
perfect hexagons are shaded to guide the eye. Note that the eight-bond flippable loops appear only as ‘‘connections’’ between the perfect
hexagons, and the ten-bond flippable loops touch exactly one perfect hexagon. The honeycomb pattern has the 12-bond flippable loops, the
stars: they sit inside the honeycomb cells.
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214415-5

lowest order the effective theory is

H̃!"Nh"K6W6 , !4"

where N is the number of Kagome sites, and W6 is the
kinetic-energy operator of the perfect hexagons:

!5"

The sum runs over all hexagonal plaquettes of the Kagome
lattice. The quantum fluctuations created by the kinetic term
yield the ground states in which the number of resonating
perfect hexagons is maximized. This is an exact statement,
since all perfect hexagon flips commute with one another: as
illustrated in Fig. 4, the perfect hexagons can never be
nearest-neighbors, and therefore cannot affect one another. In
order to gain more insight about these states, we want to
recall some observations from Refs. 12 and 24. The total
number of dimers in a hard-core dimer covering on the
Kagome lattice is N2!N/2, and the number of triangular
plaquettes is N!!2N/3, so that N2!3N!/4!(1
"1/4)N! . Since a triangle can carry at most one dimer, we
see that one quarter of all triangles are the defects in any
hard-core dimer covering: N!d!N!/4. Next, we note that
every perfect hexagon has exactly three neighboring defect
triangles, and since no two perfect hexagons can be neigh-
bors, those defect triangles are not shared between them. It
follows from this that the total number of perfect hexagons
has an upper bound: N˝p#N!d/3!N!/12!N˝/6. The
maximum possible density of perfect hexagons is one per six
hexagonal plaquettes, and it can be achieved in a variety of
ways. In Fig. 5 we show two characteristic possibilities: !a"
the honeycomb and !b" the stripe state. In general, these
states are constructed by placing the perfect hexagons as
close as possible to each other. The closest they can be is the
next-nearest-neighbors, provided that between them is an-
other hexagonal plaquette, and not a bowtie pair of triangles
(q), because in the latter case there would have been a site
!the center of the bowtie" involved in no dimers. This rule
allows one to arrange perfect hexagons in strings which may

be straight, bent at an angle of 120°, or forked into two new
strings at the 120° angles. The stripe state is an example of
straight strings, while the honeycomb state has strings fork-
ing at each perfect hexagon.
Before we proceed with the next order of the perturbation

theory, we need to make some additional remarks. If we look
at the elementary flippable loops realized on the various hex-
agonal plaquettes in Fig. 5, we observe that between every
two closest perfect hexagons there is an eight-bond flippable
loop, right on the sides of the strings there are only ten-bond
flippable loops, and in the case of the honeycomb state, there
is a 12-bond star-shaped flippable loop sitting at the center of
every honeycomb cell. Also, one never finds an arrow-
shaped eight-bond flippable loop between two perfect hexa-
gons. These are quite general features of the states with the
maximum number of perfect hexagons, which we explain in
more detail in Fig. 6.
At the second order of perturbation theory, we need to

include the combinations of two K3 , K6, and K3#3 flips.
One of them is the flip on the arrow-shaped eight-bond flip-
pable loop $a hexagon, and a bowtie: see Fig. 3!b"%:

&Har
(2)!"

K6K3#3

2h W8
(ar) ; !6"

FIG. 4. Two perfect hexagons cannot be nearest-neighbors, and
the perfect hexagon flip does not affect length of any other elemen-
tary flippable loop. Consider a perfect hexagon 2 being flipped from
the configuration !a" to !b". The flippable loop on hexagon 1 has to
go through the sites A, B, and C, and therefore pass through the
shaded bonds in order to be tangential to the dimers. As a conse-
quence, it has to include at least one triangle, so that it cannot be a
perfect hexagon, and also, its length is not affected by the flip on
hexagon 2.

FIG. 5. Two hard-core dimer patterns that maximize the number of perfect hexagons: !a" honeycomb pattern; !b" stripe pattern. The
perfect hexagons are shaded to guide the eye. Note that the eight-bond flippable loops appear only as ‘‘connections’’ between the perfect
hexagons, and the ten-bond flippable loops touch exactly one perfect hexagon. The honeycomb pattern has the 12-bond flippable loops, the
stars: they sit inside the honeycomb cells.
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honeycomb VBC

stripe VBC

series expansions for
various dimer coverings

candidate dimer coverings
honeycomb VBC of perfect hexagons

stripe VBC of perfect hexagons

3rd order
formation of perfect hexagons 
(binding of 3 empty triangles)

lifts the degeneracy of all dimer coverings

2nd order
dimers resonate across empty triangles

4th order
lifts degeneracy of stripe vs. pinwheel states
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Example: kagome Heisenberg model

order honeycomb VBC stripe VBC 36-site cluster

0 -0.375 -0.375 -0.375

1 -0.375 -0.375 -0.375

2 -0.421875 -0.421875 -0.421875

3 -0.42578125 -0.42578125 -0.42578125

4 -0.431559245 -0.43101671 -0.43400065

5 -0.432088216 -0.43153212 -0.43624539

Exact diagonalization, DMRG for honeycomb-VBC
extrapolated: -0.433(1)    36-site cluster: -0.43837653

Multiscale entanglement renormalization ansatz (MERA)
-0.43221 (exact upper bound)

Gutzwiller projected wavefunction study (variational) → U(1) spin liquid
-0.429

Rajiv Singh and David Huse, Phys. Rev. B 76, 180407 (2007); Phys. Rev. B 77, 144415 (2008)
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Future prospects

• Experience has shown that adding 5 more terms
in the expansion can lead to qualitatively new insights
upon series extrapolation.

• Series expansions can be highly parallelized, and
potentials benefit substantially from peta-flop computing.

• Estimates (Rajiv Singh):

• 2D t-J model: 
superconducting susceptibilities up to order β15

• triangular lattice Heisenberg model: 
susceptibilities and correlations length up to order β18

Square lattice Triangular lattice Cubic lattice
N Cluster Embeddings Cluster Embeddings Cluster Embeddings
1 1 4 1 6 1 6
2 2 16 2 36 2 36
3 4 76 5 306 4 306
4 8 280 10 1.860 8 2.016
5 14 1.180 22 13.278 15 16.278
6 28 4.856 50 89.988 31 126.036
7 56 21.060 122 656.862 64 1.071.954
8 124 90.568 320 4.756.596 147 9.008.808
9 280 419.468 910 37.095.654 353 82.540.686
10 679 1.911.352 2.727 284.221.236 908 742.248.348

9
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Related / alternative approaches

• Numerical linked-cluster expansions
For every cluster keep complete spectrum, e.g. contributions from all 
powers of β (or other expansion parameter). Allows to go to (slightly) 
lower temperatures (without extrapolation techniques), but no symbolic 
series anymore.

M. Rigol, T. Bryant, R.R.P. Singh, Phys. Rev. Lett. 97, 187202 (2006).

• Continuous unitary transformations (CUTs)
Unitary transformation to block-diagonalize Hamiltonian is constructed 
as an infinite product of infinitesimal transformations. High-energy 
processes are integrated out first, before treating those at lower energies 
(similar to renormalization-group approach).

F.J. Wegner, Ann. Physik 3, 77 (1994).
S.D. Glazek and K.G. Wilson, Phys. Rev. D 48, 5863 (1993). 
C. Knetter and G.S. Uhrig, Eur. Phys. J. B 13, 209 (2000).
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Related / alternative approaches

• Contractor renormalization (CORE)
Related non-perturbative approach to construct an effective Hamiltonian 
in a real-space block-decimation procedure that can fully capture the 
low-energy physics of a given system. Construction works via exact 
diagonalization of subunits (in real space), keeping a set of low-energy 
states, and then combining results similar to a cluster expansion.
Non-perturbative character allows to study systems across a quantum 
phase transition (in contrast to the previous perturbative techniques).

C.J. Morningstar and M. Weinstein, Phys. Rev. Lett. 73, 1873 (1994).
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Summary

• controlled numerical framework 
• for strongly correlated systems,               

particularly gapped quantum states,
• static and dynamic properties calculated in                              

thermodynamic limit,
• close connection to graph theory.

• advantages / disadvantages
• no sign problem.
• works for (1,2,3)-dimensional quantum systems.
• perturbative approach ( T=0, finite T ).
• ‘clever’ series extrapolation tools needed.

Linked-cluster expansions
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