Of

Universal principles moiré band structures

CMD29 conference Manchester, August 2022

Simon Trebst **University of Cologne**

This talk

- the physics of moiré systems with **giant unit cells**
- statistical analysis
- quantum chaos versus Anderson localization
- twisted bilayer graphene and beyond

• What happens with the **spaghetti**?

why most moiré bands are **not** flat

Bandstructure (zoom) 0.5 Abuengy Voine 0.3 Gamma momentum

© Simon Trebst

twisted MoS₂/graphite moiré, Chun-I Lu et al. 2017

twisted bilayer graphene

- flat bands at magic twist angle of 1.2° due to interference effect
- giant unit cell of 10⁴ atoms

moiré materials

twisted bilayer graphene

- flat bands at magic twist angle of 1.2° due to interference effect
- tunable by gate voltage

Mott insulators

- superconductors
- topolgical bands & anomalous QHE
- magnetic phases
- nematic order

. . .

moiré materials

Cao et al., Nature (2018)

correlations & topology in a *single* highly-tunable system

Why moiré systems with giant unit cells?

- easy to add 1 electron per unit cell \Rightarrow tunable by gate
- additional tunability from twist angle, chemical decoration, ...

This talk

- flat bands natural or "magic" needed ?
- fate of all **the other 10⁴ bands** ?
- what is **universally** valid?

moiré materials

Cao et al., Nature (2018)

correlations & topology in a *single* highly-tunable system

2D Materials 8, 044007 (2021)

meet the team

basic principles

lattice periodicity

- linear size of moiré unit cell $N \gg 1$
- reciprocal lattice vector $G_M \sim \frac{G}{N}$
- number of atoms = number of bands N^2
- moiré potential ⇒ effective hopping in reciprocal space

Anderson localization

- aperiodic site-to-site variations
- quantum disorder
- dimensional reduction (1D Fermi surfaces)
- momentum space localization

\Rightarrow strong band dispersions

quantum chaos

- dimensional crossover $1D \Rightarrow$ quasi-2D
- momentum space delocalization
- ergodicity hampered
 - by discrete lattice symmetries

entur mo

- tice subject to 2D crystalline

numerical simulations

real space

twisted bilayer graphene in real space with parameters:

- twist angle
- distance of graphene layers
- strength of corrugation

momentum space

momentum space code based on continuum model

© Simon Trebst

0.6 0.5 6uergy 0.3 0.2

momentum

Gamma

Bandstructure (zoom)

© Simon Trebst

typical velocities of O(1), not O(1/N)

• enhanced probability for small v ?

• why are some regions unaffected ?

• equally spaced, very flat bands ?

 close to minimum/maximum of graphene band, map to tunnelling in a potential $t_{\perp} \cos(Q_M x)$

potential is large

harmonic oscillator spacing

$$\sqrt{\frac{t_{\perp}Q_M^2}{m}} \sim \frac{1}{N^3}$$

exponentially small bandwidth

harmonic oscillator states

• Why is there **almost no effect** of tunnelling for most energies ?

momentum space ocaization

- dynamics in momentum space: lattice points spanned by reciprocal moiré lattice
- **tunnelling** between graphene layers or **scattering** from moiré potential

hopping in reciprocal space

• graphene **band structure**

potential term in k-space

 tunnelling along equal-energy contours (circles) $v_F|k| = E \pm t_\perp$

Anderson localization

- localization by "effective disorder"
- localization in 1D highly efficient

why 1D? hopping along Fermi surface (equal-energy contour)

localization length

= mean-free path times # of channels

velocity

= weighted average of underlying Fermi velocities

localization in k-space

 \Rightarrow no level repulsion high velocity

momentum-space localization

Anderson localization

- localization by "effective disorder"
- localization in 1D highly efficient

why 1D? hopping along Fermi surface (equal-energy contour)

localization length

= mean-free path times # of channels

velocity

= weighted average of underlying Fermi velocities

partial localization in k-space

⇒ level repulsion reduced velocity

momentum-space localization

localization driven by interlayer hopping

three localization regimes

spectral statistics

Where to go from here?

summary

Take-away messages

- **typical band** in generic moiré system: **not flat**, but velocities of O(1)
- reason localization in momentum space along 1D Fermi surface

• exceptions to the rule:

- close to **minima/maxima** of unperturbed bands expect bandwidth $e^{-\sqrt{N}}$
- at magic points (derived from Dirac points of graphene)

2D Materials 8, 044007 (2021)

three localization regimes: deep localization, 1D delocalization, strong coupling

