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Topological quantum liquids

• Gapped spectrum
• No broken symmetry

• Degenerate ground state on torus

• Fractional statistics of excitations

• Hilbert space split into topological sectors
No local matrix element mixes the sectors
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Fractional quantum Hall liquids

J.S. Xia et al., PRL (2004)

Moore-Read “Pfaffian” state

Charge e/4 quasiparticles
Ising anyons

Moore & Read, Nucl. Physics B (1994)

Nayak & Wilzcek (1996)

SU(2)2

Charge e/5 quasiparticles
Fibonacci anyons

Read-Rezayi “parafermion” state
Read & Rezayi, PRB (1999)

Slingerland & Bais (2001)

SU(2)3



Anyonic statistics

Abelian anyons

ψ(x2, x1) = eiπθ · ψ(x1, x2)
fractional phase

Non-Abelian anyons

In general M and N do not commute!

ψ(x2 ↔ x3) = N · ψ(x1, . . . , xn)

ψ(x1 ↔ x3) = M · ψ(x1, . . . , xn)
matrix



Probing anyonic statistics
Interference experiments

Detecting Non-Abelian Statistics in the ! ! 5=2 Fractional Quantum Hall State
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In this Letter we propose an interferometric experiment to detect non-Abelian quasiparticle statistics—
one of the hallmark characteristics of the Moore-Read state expected to describe the observed fractional
quantum Hall effect plateau at ! ! 5=2. The implications for using this state for constructing a
topologically protected qubit as has been recently proposed by Das Sarma et al. are also addressed.

DOI: 10.1103/PhysRevLett.96.016803 PACS numbers: 73.43.Fj, 73.43.Jn

Introduction.—One of the most interesting aspects of the
fractional quantum Hall effect (FQHE) is the fractionalized
nature of its quasiparticle excitations. In addition to carry-
ing a fraction of the electron charge, these excitations are
generally expected to have exotic exchange statistics
which are neither bosonic nor fermionic. These exotic
statistics, generally allowed in 2" 1 dimensions [1], are
given by representations of the braid group (as opposed to
higher dimensions where statistics is represented by the
permutation group), and particles that transform as such
have been dubbed anyons [2]. The fractional charge of
quasiparticles in the ! ! 1=3 Laughlin state was first
measured a decade ago [3], but confirmation of their
statistics remained elusive until very recently [4]. Aside
from the experimental difficulties associated with measur-
ing quasiparticle interference patterns, there are also con-
ceptual issues regarding how to isolate the contribution of
braiding statistics from that of the Aharonov-Bohm phases
that arise due to the quasiparticle charge encircling a region
of magnetic flux. For a careful discussion of this subject,
see [5]. Curiously, isolating these pieces may prove easier
in a more exotic state with non-Abelian statistics. In such a
system, the Hilbert space is multidimensional and ex-
change transformations may rotate different states into
one another. This notion, along with a topological protec-
tion inherent in these systems make them attractive candi-
dates for fault-tolerant quantum computation [6–8]. A
concrete proposal for creating a topologically protected
qubit has been recently put forward in [9].

While the existence of Abelian anyons has been well
established in the context of FQHE, the more exciting
prospect that non-Abelian anyons exist has not been ex-
perimentally confirmed. The prime candidate for finding
non-Abelian statistics seems to be the FQH state observed
at the ! ! 5=2 plateau [10]. While its first Landau level
counterpart, the ! ! 1=2 state, is widely believed to be a
Fermi liquid of composite fermions [11], it is most likely
that the ! ! 5=2 system is the p-wave (spin-polarized)
superconducting condensate described by the Moore-Read
(MR) state [12,13]. Experimental evidence of spin polar-
ization [14], together with careful numerical studies [15],
indicate a preference for the MR state over other potential

candidates, notably the Abelian (3,3,1) Halperin state [16],
the non-Abelian (albeit critical) Haldane-Rezayi state [17],
and the compressible striped phase [18].

Proposed experimental setup.—The experimental de-
vice we would like to consider is a two-point-contact
interferometer composed of a quantum Hall bar with two
front gates on either side of an antidot (see Fig. 1). Biasing
the front gates can be used to create constrictions in the
Hall bar, adjusting the tunneling amplitudes t1 and t2. The
relative amplitudes can be compared by individually
switching them on. The tunneling between the opposite
edge currents leads to the deviation of "xy from its quan-
tized value, or equivalently, to the appearance of "xx. The
goal of the experiment is to observe the interference be-
tween the two tunneling paths that the quasihole current
may traverse. For this experiment, we are interested in the
weak backscattering regime, i.e., the case where the tun-
neling amplitudes t1 and t2 are small. The main reason for
this is to ensure that the tunneling current is entirely due to
charge e=4 quasiholes (with essentially no contribution
from the higher charge composites), which is a crucial
component of our predictions. In this regime, such tunnel-
ing is indeed the most relevant perturbation [19,20], but
this need not be true in the strong tunneling regime, where
the constrictions are effectively pinched off. We should

t1 2t

FIG. 1 (color online). A two-point-contact interferometer for
measuring the quasiparticle statistics. The hatched region con-
tains an incompressible FQH liquid. The front gates (gray
rectangles) are used to bring the opposite edge currents (indi-
cated by arrows) close to each other to form two tunneling
junctions. Applying voltage to the central gate creates an antidot
in the middle and controls the number of quasiparticles con-
tained there.
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Figure 1 Device and measurement set-up. a, Scanning electron micrograph of the
0.5µm QPC. b, Optical micrograph of the entire device (the outline of the
wet-etched Hall bar has been enhanced for clarity). The measurement circuit for the
red-highlighted QPC is drawn schematically, with the direction of the edge-current
flow indicated by the yellow arrows.

bulk Rxx. On bulk IQHE plateaux, the filling fraction is equivalent
to the number of edge states, νbulk = Nbulk. By analogy, in the
QPC, where the filling fraction is not well defined owing to non-
uniform density, we define an effective filling fraction in the QPC:
νQPC ∼ h/e2(1/RD).

The edge-state interpretation for Rxy, Rxx, RD and RL has
been extended to the FQHE32–39. Within this generalized picture,
a quantized plateau in Rxy ∼ h/e2(1/νbulk) corresponds to the
quantum Hall state at filling fraction νbulk, and a plateau in
RD ∼ h/e2(1/νQPC) indicates that an incompressible quantum Hall
state has formed in the vicinity of the QPC with effective filling
fraction νQPC. We associate deviations from precisely quantized
values with tunnelling, which we study below as a function of
temperature and bias.

To simplify the study of quantum states in the vicinity
of the QPC, the perpendicular magnetic field (B) and gate
voltage of the QPC (Vg) are tuned such that νbulk is fixed at
an IQHE plateau whenever νQPC is at a value of interest. With
Rxx ∼ 0 and Rxy quantized to an IQHE plateau, features in RD and
RL measurements can be attributed to the QPC region and not
the bulk.

Previously, QPCs have been used to selectively transmit
integer40,41 and fractional edge channels36,42, and to study inter-
edge tunnelling between fractional edge channels, including in the
regime where the bulk is intentionally set to an IQHE plateau28,43.
Comparisons with these results are discussed below. QPCs have also
been used in studies of noise44,45 and (along with etched trenches)
interference of quasiparticles46 in the FQHE regime. In all of these
studies, ν < 2, where the FQHE gaps are typically much larger than
those with ν > 2.

The sample is a GaAs/AlGaAs heterostructure grown in the
[001] direction with an electron gas layer 200 nm below the surface,
with Si δ-doping layers 100 and 300 nm below the surface. A
150-µm-wide Hall bar is patterned using photolithography and
a H2O:H2SO4:H2O2 (240:8:1) wet-etch, followed by thermally
evaporated Cr/Au (5 nm/15 nm) top gates patterned using
electron-beam lithography (see Fig. 1). The gates form QPCs with
lithographic separation between gates of 0.5, 0.8 and 1.2 µm.
Depleting the electron gas beneath only one side of a QPC has no
effect on transport measurements. Gate voltages are restricted to
the range −1.9 V (depletion) to −3 V and are allowed to stabilize
for several hours at each set-point before measuring; beyond −3 V
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Figure 2 Bulk transport measurements, including T dependence. (T refers to the
temperature of the refrigerator.) The inset is an enlargement of the Rxy data near
νbulk = 5/2.

the conductance is typically hysteretic as a function of gate voltage.
Measurements are carried out in a dilution refrigerator with a base
temperature of 8 mK using standard four-wire lock-in techniques,
with an a.c. current-bias excitation (Ia.c. ) ranging from 0.2 to
0.86 nA, and a d.c. current bias ranging from 0 to 20 nA. The
differential resistances (dV/dIa.c.) are measured in four places, as
shown in Fig. 1. All quoted temperatures are measured using a
RuO2 resistor mounted on the mixing chamber. The bulk mobility
of the device measured at the base temperature is 2,000 m2 V−1 s−1

and the electron density is 2.6×1015 m−2.
Bulk Rxx and Rxy measurements for the filling fraction range

νbulk = 3–2, measured in the vicinity of the 1.2 µm QPC before
the gates are energized, are shown in Fig. 2. Rxx and Rxy are also
measured in a region of the Hall bar without gates, and found to
be virtually indistinguishable, showing that the surface gates do not
significantly affect the two-dimensional electron gas. Rxx and Rxy in
an ungated region show no changes caused by energizing gates.

As temperature is increased, Rxy near νbulk = 5/2 evolves from a
well-defined plateau at Rxy = 0.4±0.0002 h/e2 to a line consistent
with the classical Hall effect for a material with this density.
There is a stationary point in the middle of the plateau where
Rxy is very close to 0.4 h/e2, consistent with scaling seen in other
quantum Hall transitions47. Activation energies, ∆, for the three
fractional states νbulk = 5/2, 7/3 and 8/3 are extracted from the
linear portion of the data in a plot of ln(Rxx) versus 1/T (using
the minimum Rxx for each FQHE state, and Rxx ∝ e−∆/2T ), giving
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Figure 1 Device and measurement set-up. a, Scanning electron micrograph of the
0.5µm QPC. b, Optical micrograph of the entire device (the outline of the
wet-etched Hall bar has been enhanced for clarity). The measurement circuit for the
red-highlighted QPC is drawn schematically, with the direction of the edge-current
flow indicated by the yellow arrows.

bulk Rxx. On bulk IQHE plateaux, the filling fraction is equivalent
to the number of edge states, νbulk = Nbulk. By analogy, in the
QPC, where the filling fraction is not well defined owing to non-
uniform density, we define an effective filling fraction in the QPC:
νQPC ∼ h/e2(1/RD).

The edge-state interpretation for Rxy, Rxx, RD and RL has
been extended to the FQHE32–39. Within this generalized picture,
a quantized plateau in Rxy ∼ h/e2(1/νbulk) corresponds to the
quantum Hall state at filling fraction νbulk, and a plateau in
RD ∼ h/e2(1/νQPC) indicates that an incompressible quantum Hall
state has formed in the vicinity of the QPC with effective filling
fraction νQPC. We associate deviations from precisely quantized
values with tunnelling, which we study below as a function of
temperature and bias.

To simplify the study of quantum states in the vicinity
of the QPC, the perpendicular magnetic field (B) and gate
voltage of the QPC (Vg) are tuned such that νbulk is fixed at
an IQHE plateau whenever νQPC is at a value of interest. With
Rxx ∼ 0 and Rxy quantized to an IQHE plateau, features in RD and
RL measurements can be attributed to the QPC region and not
the bulk.

Previously, QPCs have been used to selectively transmit
integer40,41 and fractional edge channels36,42, and to study inter-
edge tunnelling between fractional edge channels, including in the
regime where the bulk is intentionally set to an IQHE plateau28,43.
Comparisons with these results are discussed below. QPCs have also
been used in studies of noise44,45 and (along with etched trenches)
interference of quasiparticles46 in the FQHE regime. In all of these
studies, ν < 2, where the FQHE gaps are typically much larger than
those with ν > 2.

The sample is a GaAs/AlGaAs heterostructure grown in the
[001] direction with an electron gas layer 200 nm below the surface,
with Si δ-doping layers 100 and 300 nm below the surface. A
150-µm-wide Hall bar is patterned using photolithography and
a H2O:H2SO4:H2O2 (240:8:1) wet-etch, followed by thermally
evaporated Cr/Au (5 nm/15 nm) top gates patterned using
electron-beam lithography (see Fig. 1). The gates form QPCs with
lithographic separation between gates of 0.5, 0.8 and 1.2 µm.
Depleting the electron gas beneath only one side of a QPC has no
effect on transport measurements. Gate voltages are restricted to
the range −1.9 V (depletion) to −3 V and are allowed to stabilize
for several hours at each set-point before measuring; beyond −3 V
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Figure 2 Bulk transport measurements, including T dependence. (T refers to the
temperature of the refrigerator.) The inset is an enlargement of the Rxy data near
νbulk = 5/2.

the conductance is typically hysteretic as a function of gate voltage.
Measurements are carried out in a dilution refrigerator with a base
temperature of 8 mK using standard four-wire lock-in techniques,
with an a.c. current-bias excitation (Ia.c. ) ranging from 0.2 to
0.86 nA, and a d.c. current bias ranging from 0 to 20 nA. The
differential resistances (dV/dIa.c.) are measured in four places, as
shown in Fig. 1. All quoted temperatures are measured using a
RuO2 resistor mounted on the mixing chamber. The bulk mobility
of the device measured at the base temperature is 2,000 m2 V−1 s−1

and the electron density is 2.6×1015 m−2.
Bulk Rxx and Rxy measurements for the filling fraction range

νbulk = 3–2, measured in the vicinity of the 1.2 µm QPC before
the gates are energized, are shown in Fig. 2. Rxx and Rxy are also
measured in a region of the Hall bar without gates, and found to
be virtually indistinguishable, showing that the surface gates do not
significantly affect the two-dimensional electron gas. Rxx and Rxy in
an ungated region show no changes caused by energizing gates.

As temperature is increased, Rxy near νbulk = 5/2 evolves from a
well-defined plateau at Rxy = 0.4±0.0002 h/e2 to a line consistent
with the classical Hall effect for a material with this density.
There is a stationary point in the middle of the plateau where
Rxy is very close to 0.4 h/e2, consistent with scaling seen in other
quantum Hall transitions47. Activation energies, ∆, for the three
fractional states νbulk = 5/2, 7/3 and 8/3 are extracted from the
linear portion of the data in a plot of ln(Rxx) versus 1/T (using
the minimum Rxx for each FQHE state, and Rxx ∝ e−∆/2T ), giving
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Fibonacci anyons
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What is the collective state 
of a set of interacting anyons?

FQH liquid

How can we model interactions between anyons?



Fibonacci anyons

1× 1 = 1
1× τ = τ

τ × τ = 1 + τ

Fusion rules for SU(2)3 SU(2) spins
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τ ττ × τ = τ

τ × τ = 1

τ × τ = 1

τ × τ = τ
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Weak interaction
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Weak interaction

Strong interaction



The Heisenberg model

1× 1 = 1
1× τ = τ

τ × τ = 1 + τ

Fusion rules for SU(2)3 SU(2) spins
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The golden chain
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Hilbert space: |x1, x2, x3, . . .〉

τ τ τ τ τ

τ . . .x1 x2 x3

dimL = FL+1 ∝ φL

φ =
1 +

√
5

2
= 1.618 . . .

Hilbert space has no natural decomposition as tensor product of single-site states.



The golden chain
We want to construct a local Hamiltonian                      .H =

∑

i

Hi

SU(2) spins

1
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Clebsch-Gordan 
coefficient

6-J symbol
E. Wigner 1940

τ τ

x1 x2 x3

τ τ

x1 x3

x̃2
=

∑

x̃2

F x2
x̃2

F-matrix

F =
(

φ−1 φ−1/2

φ−1/2 −φ−1

)

Hi = Fi Π1
i FiLocal Hamiltonian:



The golden chain
Hi = Fi Π1

i FiLocal Hamiltonian:

Hi = −
(

φ−2 φ−3/2

φ−3/2 φ−1

)

Explicit form:

off-diagonal matrix element

Hi = −P1τ1 − φ−2Pτ1τ − φ−1Pτττ

−φ−3/2 (|τ1τ〉 〈τττ | + h.c.)



conformal field theory 
description

Criticality
Finite-size gap
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“d-isotopy” parameter
d = φ

Mapping & exact solution

The operators                     form a representation of the 
Temperley-Lieb algebra

Xi = −φHi

(Xi)2 = d · Xi XiXi±1Xi = Xi [Xi, Xj ] = 0
|i− j| ≥ 2for

quantum 1D Hamiltonian

classical 2D 
tricritical Ising model

integrable lattice model description
restricted-solid-on-solid model (RSOS)

central charge
c = 7/10



Energy spectra
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Topological symmetry
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Topological stability
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Is this special to             ?SU(2)3

Local perturbations do not gap the system.



A larger space of models

“dimerized” chain

Majumdar-Ghosh chain
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Majumdar-Ghosh chain

Consider a (competing) three anyon-fusion term
➠ neither translational nor topological symmetry are broken
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Phase diagram
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Critical endpoints
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S3-symmetric point
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Conformal field theory: parafermions with central charge                 .c = 4/5
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Tetracritical Ising
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Gapped phase (AFM)
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Majumdar-Ghosh
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Breaking the topological symmetry
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“Dimerized” chain
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Summary and Outlook

arXiv 0801.4602
Phys. Rev. Lett. 98, 160409 (2007).

τ

• Interacting non-Abelian anyons can support 
a variety of collective states.

• Interactions modeled by Heisenberg Hamiltonian
generalized to anyonic degrees of freedom.

• Exact solutions, CFT descriptions, ...

• Topological symmetry protects critical phases.

Do these observations generalize to SU(2)k ?
What happens in two dimensions?

What happens for higher genus surfaces?
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