Supersymmetry on the lattice Geometry, Topology, and Spin Liquids

Frustrated Metals and Insulators ICTS / Tata Institute virtual, September 2022

CRC1238 Control and Dynamics of Quantum Materials

Simon Trebst **University of Cologne**

C.L. Kane & T.C. Lubensky, Nat. Phys. **10**, 39 (2014)

isostatic lattices $\nu = 0$

coordination number

$$z = 2 \cdot d$$

kagome lattice $d = 2 \quad z = 4$

example #2: topological insulator from classical pendula

correspondence principles

meet the team

Jan Attig

Phys. Rev. B 96, 085145 (2017)

© Simon Trebst

Phys. Rev. Res. 1, 032047(R) (2019)

arXiv:2207.09475

Michael Lawler 4

supersymmetry

arXiv:2207.09475

supersymmetric lattice models

adjacency matrix

$$\mathbf{A}_{ij} = \begin{cases} 1 \\ 0 \end{cases}$$

 v_i connected to v_j otherwise.

adjacency matrix

$$\mathbf{A}_{ij} = \begin{cases} 1 & v_i \text{ connected to } v_j \\ 0 & \text{otherwise .} \end{cases}$$

bipartite lattice

$$\mathbf{A} = \begin{pmatrix} & \mathbf{A}_{\mathrm{I}-\mathrm{II}} \\ \mathbf{A}_{\mathrm{II}-\mathrm{I}} & & \end{pmatrix}$$

lattice "squaring"

$$\mathbf{A}^2 = \begin{pmatrix} \mathbf{A}_{\mathrm{I}} & \\ & \mathbf{A}_{\mathrm{II}} \end{pmatrix}$$

lattice "squaring"

SUSY graph correspondence

$$\begin{pmatrix} \mathbf{R}\mathbf{R}^{\dagger} \\ \mathbf{R}^{\dagger}\mathbf{R} \end{pmatrix} = \begin{pmatrix} \mathcal{H}_{F} \\ \mathcal{H}_{B} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{I} \\ \mathbf{A}_{I} \\ \mathbf{A}_{II} \end{pmatrix}$$
fermion

$$\begin{pmatrix} \mathbf{R}^{\dagger} & \mathbf{R} \end{pmatrix} = \begin{pmatrix} \mathcal{Q}^{\dagger} & \mathcal{Q} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{\mathrm{II-II}} & \mathbf{A}_{\mathrm{II-II}} \end{pmatrix}$$

$$\mathbf{SUSY charge}$$

SUSY graph correspondence

$$\begin{pmatrix} \mathbf{R}\mathbf{R}^{\dagger} \\ \mathbf{R}^{\dagger}\mathbf{R} \end{pmatrix} = \begin{pmatrix} \mathcal{H}_{F} \\ \mathcal{H}_{B} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{I} \\ \mathbf{A}_{I} \\ \mathbf{A}_{II} \end{pmatrix}$$
fermion

$$\begin{pmatrix} \mathbf{R}^{\dagger} & \mathbf{R} \end{pmatrix} = \begin{pmatrix} \mathcal{Q}^{\dagger} & \mathcal{Q} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{\mathrm{II-II}} & \mathbf{A}_{\mathrm{II-II}} \end{pmatrix}$$

$$\mathbf{SUSY charge}$$

SUSY & topology

frustrated magnets ground-state manifolds

Phys. Rev. B 96, 085145 (2017)

spin spirals

elementary ingredient for

- multiferroics
- spin textures & multi-q states
- spiral spin liquids

description in terms of a single wavevector

Coplanar spirals typically arise as ground state(s) of Heisenberg antiferromagnets.

spin spiral liquids / materials

Frustrated diamond lattice antiferromagnets

 $J_2/J_1 = 0.2$

 $J_2/J_1 = 0.4$

Spiral manifolds are extremely reminiscent of **Fermi surfaces**

diamond lattice

Fermi surface

Note, however:

frustrated magnets spin liquids & parton dispersions

3D Kitaev materials (akin to β , γ -Lilr₂O₃)

hyperoctagon

Majorana Fermi surface

Z₂ gauge theory

M. Hermanns, ST, PRB 89, 235102 (2014)

© Simon Trebst

quantum spin liquids

j=1/2 Mott insulator $Na_4Ir_3O_8$

hyperkagome

spinon Fermi surface

U(1) gauge theory

M. Lawler et al, PRL **101**, 197202 (2008)

mechanical analogues of Kitaev spin liquids

Phys. Rev. Res. 1, 032047(R) (2019)

SUSY & topological mechanics

topological mechanics – phase space coordinates (p, q) as bosonic degrees of freedom

$$\frac{i}{2} \begin{pmatrix} \gamma^A & \gamma^B \end{pmatrix} \begin{pmatrix} & -\mathbf{A} \\ \mathbf{A}^T & & \end{pmatrix} \begin{pmatrix} \gamma^A \\ \gamma^B \end{pmatrix}$$

block off-diagonal

SUSY & topological mechanics

equations of motion

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \gamma_A \\ \gamma_B \end{pmatrix} = i \begin{pmatrix} -\mathbf{A}(\mathbf{k}) \\ \mathbf{A}^{\dagger}(\mathbf{k}) \end{pmatrix} \begin{pmatrix} \gamma_A \\ \gamma_B \end{pmatrix}$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \hat{p} \\ \hat{q} \end{pmatrix} = i \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) & -1 \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) & \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf{A}(\mathbf{k}) \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{\dagger}(\mathbf{k})\mathbf{A}(\mathbf{k})\mathbf$$

Majorana fermions

topological invariants

Phys. Rev. Res. 1, 032047(R) (2019)

SUSY topological invariants for bosons

Our SUSY construction allows to explore topological properties of bosonic systems by connecting the symplectic bosonic eigenfunctions

Phys. Rev. Res. 1, 032047(R) (2019)

- with a **fermionic Berry phase** of its SUSY partner.

SUSY topological invariants for bosons

bosonic Berry curvature

Phys. Rev. Res. 1, 032047(R) (2019)

Our SUSY construction allows to explore topological properties of bosonic systems by connecting the symplectic bosonic eigenfunctions with a **fermionic Berry phase** of its SUSY partner.

 $\mathcal{A} = \langle u_m(\mathbf{k}) | i \nabla_k | u_n(\mathbf{k}) \rangle$

fermionic eigenstates

summary

Take-away messages

• **Unifying framework** for frustrated magnets & topological mechanics Maxwell counting ground-state manifolds mechanical spin liquids magnon / parton spectra Maxwell counting Phys. Rev. B 96, 085145 (2017)

arXiv:2207.09475

Phys. Rev. Res. 1, 032047(R) (2019)

