Kitaev materials

48th IFF Spring School "Topological Matter" Jülich, April 2017

Simon Trebst

University of Cologne

lecture notes online at arXiv:1701.07056

4d/5d transition metal compounds

Transition metal oxides with **partially filled 4d/5d shells** exhibit an intricate interplay of **spin-orbit coupling**, **electronic correlations**, and **crystal field effects** resulting in a **broad variety of metallic and insulating states**.

spin-orbit coupling λ/t

W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annual Review of Condensed Matter Physics 5, 57 (2014).

j=1/2 Mott insulators

Why are these spin-orbit entangled j=1/2 Mott insulators interesting?

Sr2IrO4exhibits cuprate-like magnetism
superconductivity?B.J. Kim et al. PRL 101, 076402 (2008)
B.J. Kim et al. Science 323, 1329 (2009)(Na,Li)2IrO3exhibits Kitaev-like magnetism
spin liquids?G. Jackeli, G. Khaliullin, J. Chaloupka
PRL 102, 017205 (2009); PRL 105, 027204 (2010)

bond-directional exchange

exchange frustration

Kitaev model

fractionalization

 $H = - \sum K_{\gamma} S_i^{\gamma} S_j^{\gamma}$ γ -bonds

Kitaev model

Represent spins in terms of four **Majorana fermions**

 $\sigma^{\alpha} = ia^{\alpha}c$

Bond operators

$$\hat{u}_{jk} = ia_j^{\alpha}a_k^{\alpha}$$

realize a Z₂ gauge field

The **Z₂ gauge fields** are **static** degrees of freedom.

Generically, one has to find its gapped ground-state configuration via educated guesses, Monte Carlo sampling, or for some lattices via Lieb's theorem.

Bond operators

 $\hat{u}_{jk} = ia_j^{\alpha}a_k^{\alpha}$

realize a Z₂ gauge field

Kitaev model

Represent spins in terms of four **Majorana fermions**

$$\sigma^{\alpha} = ia^{\alpha}c$$

The emergent **Majorana fermions** are **itinerant** degrees of freedom.

Generically, they form a **gapless** collective state – a **Majorana metal**.

Heisenberg-Kitaev model

$$H = \sum_{\gamma - \text{bonds}} \cos \varphi \, \mathbf{S}_i \mathbf{S}_j + \sin \varphi \, S_i^{\gamma} S_j^{\gamma}$$

- mapping between pairs of points (on left and right half-circle)
- basis transformation involves spin-rotations on four sublattices
- preserves symmetry of Hamiltonian, four SU(2) symmetric points

$$\tilde{J}_H = -J_H \qquad \tilde{J}_K = 2J_H + J_K$$

G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 (2005)

id

 $S^x \mapsto -S^x$

 $S^y \mapsto -S^y$

 $S^z \mapsto -S^z$

 \bigcirc

 $S^x S^x$

Magnetic field & topological order

© Simon Trebst

Kitaev materials

© Simon Trebst

Kitaev materials

honeycomb Kitaev materials Na₂IrO₃, α-Li₂IrO₃, (H_{3/4}Li_{1/4})₂IrO₃ RuCl₃

triangular Kitaev materials

Ba3IrTi2O9, Ba3Ir2TiO9, Ba3Ir2InO9

more conventional (4d, 3d) triangular quantum magnets

three-dimensional Kitaev materials β-Li₂IrO₃, γ-Li₂IrO₃, metal-organic compounds 3D Dirac matter

honeycomb Kitaev materials

proximate spin liquids

honeycomb Kitaev materials

Na₂IrO₃, α-Li₂IrO₃, RuCl₃, (H_{3/4}Li_{1/4})₂IrO₃

Na₂IrO₃ and α-Li₂IrO₃

> these local moments form **magnetic order** at some finite temperature

honeycomb Kitaev materials

	magnetic moment	ordering temperature	Curie-Weiss temperature	
	$\mu_{ m eff}/\mu_{ m B}$	$T_{ m N}$	Θ_{CW}	
Na ₂ IrO ₃	1.79(2)	15 K zig-zag order	-125 K	
a-Li ₂ IrO ₃	1.83(5)	15 K counterrotating spirals	-33 K	
RuCl ₃	2.2	7 K zig-zag order	-150 K	
(H _{3/4} Li _{1/4}) ₂ IrO ₃	?		?	
1.74 for spin 1/2				

© Simon Trebst

RuCl₃

neutron scattering Banerjee *et al.*, Nature Materials 4604 (2016)

Proximate spin liquids

triangular Kitaev materials

spin textures

Ba₃Ir_{2-x}Ti_xO₉

Ba₃Ir_{2-x}Ti_xO₉

triangular lattice Heisenberg-Kitaev model

Ba₃Ir_{2-x}Ti_xO₉

Triangular lattice Heisenberg-Kitaev model

Spin textures – vortex lattice

© Simon Trebst

3D Kitaev materials

Majorana metals

Family of Li₂IrO₃ compounds

hexagonal layers

hyperhoneycomb

harmonic honeycomb

Counter-rotating spiral order

(b) Ordering in γ -Li₂IrO₃

Tricoordinated lattices

		other names	Z	inversion	space gr	oup
	(10,3)a	hyperoctagon, K4 crystal	4	×	14 ₁ 32	214
	(10,3)b	hyperhoneycomb	4	\checkmark	Fddd	70
	(10,3)c		6	×	P3112	151
ttices	(9,3)a		12	\checkmark	R3m	166
3D 1a	(8,3)a		6	×	P6 ₂ 22	180
	(8,3)b		6	\checkmark	R3m	166
	(8,3)c		8	\checkmark	P6 ₃ / mmc	194
	(8,3)n		16	\checkmark	14 / mmm	139
20	(6,3)	honeycomb	2	\checkmark		

PRB 93, 085101 (2016)

		Majorana metal	TR breaking	
	(10,3)a	Fermi surface	Fermi surface	
	(10,3)b	nodal line	Weyl nodes	
	(10,3)c	nodal line	Fermi surface	Majorana Fermi surfaces
attices	(9,3)a	Weyl nodes	Weyl nodes	
3D 3D	(8,3)a	Fermi surface	Fermi surface	
	(8,3)b	Weyl nodes	Weyl nodes	
	(8,3)c	nodal line	Weyl nodes	
	(8,3)n	gapped	gapped	
20	(6,3)	Dirac nodes	gapped	

PRB 93, 085101 (2016)

		Majorana metal	TR breaking	
	(10,3)a (10,3)b (10,3)c	Fermi surface nodal line nodal line	Fermi surface Weyl nodes Fermi surface	Majorana Fermi surfaces
ittices	(9,3)a	Weyl nodes	Weyl nodes	
3D la	(8,3)a (8,3)b (8,3)c (8,3)n	Fermi surface Weyl nodes nodal line gapped	Fermi surface Weyl nodes Weyl nodes gapped	nodal lines
\mathbb{S}	(6,3)	Dirac nodes	gapped	-

PRB 93, 085101 (2016)

		Majorana metal	TR breaking	
	(10,3)a (10,3)b (10,3)c	Fermi surface nodal line nodal line	Fermi surface Weyl nodes Fermi surface	Majorana Fermi surfaces
attices	(9,3)a	Weyl nodes	Weyl nodes	
3D 9	(8,3)a (8,3)b (8,3)c	Fermi surface Weyl nodes	Fermi surface Weyl nodes Weyl nodes	nodal lines
	(8,3)n	gapped	gapped	
20	(6,3)	Dirac nodes	gapped	- Weyl nodes

© Simon Trebst

Breaking time-reversal symmetry

$$H_{\text{Kitaev}} = -J_K \sum_{\gamma - \text{bonds}} \sigma_i^{\gamma} \sigma_j^{\gamma} - \sum_j \vec{h} \cdot \vec{\sigma}_j$$

Fermi surface

Fermi surface deforms

(10,3)b - hyperhoneycomb

Fermi line

Fermi line gaps out, but two Weyl nodes remain

© Simon Trebst

Weyl physics – energy spectrum

(10,3)b - hyperhoneycomb

Touching of two bands in 3D is linear

$$\hat{H}=ec{v}_0\cdotec{q}\,\mathbb{1}+\sum_{i=1}^3ec{v}_j\cdotec{q}\,\sigma_j$$
 Weyl nodes

Weyl physics – Chern numbers

Weyl nodes are **sources or sinks of Berry flux**

$$\vec{B}_n(\vec{k}) = \nabla_{\vec{k}} \times \left(i \langle n(\vec{k}) | \nabla_{\vec{k}} | n(\vec{k}) \rangle \right)$$
with chirality $\operatorname{sign}[\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)]$

Weyl physics – surface states

Experimental signatures?

specific heat

Specific heat has bulk and surface contributions

$$C(T) \sim a_{\text{bulk}} \cdot L^3 \cdot T^3 + a_{\text{surf}} \cdot L^2 \cdot T$$

Could be distinguished via sample size variation.

thermal Hall effect

Applying a thermal gradient to the system, a net heat current perpendicular to the gradient arises due to the chiral nature of the surface modes.

Thermal Hall conductance given by

$$K = \frac{1}{2} \frac{k_B^2 \pi^2 T}{3h} \frac{d}{2\pi} L_z$$

see also T. Meng and L. Balents, Phys. Rev. B 86, 054504 (2012).

PRB 93, 085101 (2016)

		Majorana metal	TR breaking	
	(10,3)a (10,3)b (10,3)c	Fermi surface nodal line nodal line	Fermi surface Weyl nodes Fermi surface	Majorana Fermi surfaces
attices	(9,3)a	Weyl nodes	Weyl nodes	
3D 19	(8,3)a	Fermi surface	Fermi surface	
	(8,3)b	Weyl nodes	Weyl nodes	nodal lines
	(8,3)c	nodal line	Weyl nodes	To
	(8,3)n	gapped	gapped	
	(6,3)	Dirac nodes	gapped	Weyl nodes

Summary

Kitaev materials

- a family of spin-orbit assisted j=1/2 Mott insulators
- bond-directional exchange induces frustration
- unconventional forms of magnetism

Bond-directional exchange

- (proximate) spin liquids
- signatures of Majorana fermions and Z₂ gauge field
- spin textures

Family of lattice geometries

- honeycomb Na₂IrO₃, α-Li₂IrO₃, (H_{3/4}Li_{1/4})₂IrO₃, RuCl₃
- triangular Ba₃IrTi₂O₉, Ba₃Ir₂TiO₉, Ba₃Ir₂InO₉
- $3D \beta Li_2 IrO_3$, $\gamma Li_2 IrO_3$, metal-organic compounds

Thanks!