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Machine learning 101

Examples include spam filters, face and voice recognition.

In computer science, machine learning is concerned with 
algorithms that allow for data analytics, most prominently 
dimensional reduction and feature extraction.

Implicit knowledge representation in artificial neural networks,
which are trained in supervised or unsupervised learning settings.

Hierarchical neural networks gathered a lot of attention
for their “deep learning” capabilities, e.g. playing Go.
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ARTICLE
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Mastering the game of Go with deep 
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,  
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1, 
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,  
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s), 
which determines the outcome of the game, from every board position 
or state s, under perfect play by all players. These games may be solved 
by recursively computing the optimal value function in a search tree 
containing approximately bd possible sequences of moves, where b is 
the game’s breadth (number of legal moves per position) and d is its 
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and 
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but 
the effective search space can be reduced by two general principles. 
First, the depth of the search may be reduced by position evaluation: 
truncating the search tree at state s and replacing the subtree below s 
by an approximate value function v(s) ≈ v*(s) that predicts the outcome 
from state s. This approach has led to superhuman performance in 
chess4, checkers5 and othello6, but it was believed to be intractable in Go 
due to the complexity of the game7. Second, the breadth of the search 
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example, 
Monte Carlo rollouts8 search to maximum depth without branching 
at all, by sampling long sequences of actions for both players from a 
policy p. Averaging over such rollouts can provide an effective position 
evaluation, achieving superhuman performance in backgammon8 and 
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts 
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant 
values become more accurate. The policy used to select actions during 
search is also improved over time, by selecting children with higher 
values. Asymptotically, this policy converges to optimal play, and the 
evaluations converge to the optimal value function12. The strongest 
current Go programs are based on MCTS, enhanced by policies that 
are trained to predict human expert moves13. These policies are used 
to narrow the search to a beam of high-probability actions, and to 
sample actions during rollouts. This approach has achieved strong 
amateur play13–15. However, prior work has been limited to shallow 

policies13–15 or value functions16 based on a linear combination of 
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many 
layers of neurons, each arranged in overlapping tiles, to construct 
increasingly abstract, localized representations of an image20. We 
employ a similar architecture for the game of Go. We pass in the board 
position as a 19 × 19 image and use convolutional layers to construct a 
representation of the position. We use these neural networks to reduce 
the effective depth and breadth of the search tree: evaluating positions 
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several 
stages of machine learning (Fig. 1). We begin by training a supervised 
learning (SL) policy network pσ directly from expert human moves. 
This provides fast, efficient learning updates with immediate feedback 
and high-quality gradients. Similar to prior work13,15, we also train a 
fast policy pπ that can rapidly sample actions during rollouts. Next, we 
train a reinforcement learning (RL) policy network pρ that improves 
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games, 
rather than maximizing predictive accuracy. Finally, we train a value 
network vθ that predicts the winner of games played by the RL policy 
network against itself. Our program AlphaGo efficiently combines the 
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work 
on predicting expert moves in the game of Go using supervised  
learning13,21–24. The SL policy network pσ(a |  s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The 
input s to the policy network is a simple representation of the board state 
(see Extended Data Table 2). The policy network is trained on randomly  

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its 
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach 
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep 
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement 
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state- 
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a 
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, 
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go 
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the 
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved
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artificial neural networks
artificial neurons
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artificial neural networks
Artificial neural networks are pretty powerful.
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Like circuits of NAND gates artificial neural networks can encode arbitrarily 
complex logic functions, thus allowing for universal computation.

But the power of neural networks really comes about by varying 
the weights such that one obtains some desired functionality. 

http://www.thp.uni-koeln.de/trebst/
http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

How to train a neural network?

input layer output layerhidden layers
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How to train a neural network?

gradient descent

•  quadratic cost function

desired
output

actual
output

C(~w,~b) =
1

2n

X

x

||y(x)� a(x)||2

•  back propagation algorithm
Rumelhart, Hinton & Williams, Nature (1986) 

@C

@w

@C

@b

extremely efficient way to calculate all partial derivatives

needed for a gradient descent optimization.
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pattern recognition

93106
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Some 60 lines of code (Python/Julia) will do this for you with >95% accuracy.

conv pool conv pool full dropout full

conventionalmatrix reductions

Much higher accuracy possible for networks with additional convolutional layers.
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.

filter

activation map

Slide filters across image and create new image based on how well they fit.

element-wise
matrix product
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GPUs & open-source codes
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Supervised learning approach

Supervised learning approach 
1) train convolutional neural network on representative “images” deep within the two phases
2) apply trained network to “images” sampled elsewhere to predict phases + transition

What are the right images to feed into the neural network?

phase A phase B
phase

transition

train
here

train
here

predict phases by applying neural network here

step 1

step 2
�

General setup
Consider some Hamiltonian, which as a function of some parameter λ exhibits 
a phase transition between two phases.
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classical phases of matter
6
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FIG. 2. Detecting the critical temperature of the triangular Ising model through the crossing of the

values of the output layer vs T . The orange line signals the triangular Ising model T
c

/J = 4/ ln 3,

while the blue dashed line represents our estimate T

c

/J = 3.63581.

shown in Figure 3. In a conventional condensed-matter approach, the ground states and the

high-temperature states are distinguished by their spin-spin correlation functions: power-

law decay in the Coulomb phase at T = 0, and exponential decay at high temperature.

Instead we use supervised learning, feeding raw Monte Carlo configurations to train a fully-

connected neural network (Figure 1(A)) to distinguish ground states from high-temperature

states. Figure 3(A) and Figure 3(B) display high- and low-temperature snapshots of the

configurations used in the training of the model. For a square ice system with N = 2 ⇥

16⇥ 16 spins, we find that a standard fully-connected neural network with 100 hidden units

successfully distinguishes the states with a 99% accuracy. The network does so solely based

on spin configurations, with no information about the underlying lattice – a feat di�cult for

the human eye, even if supplemented with a layout of the underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

arXiv:1605.01735

Finite-temperature transition in the Ising model
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FIG. 3. Typical configurations of square ice and Ising gauge models. (A) A high-temperature state.

(B) A ground state of the square ice Hamiltonian. (C) A ground state configuration of the Ising

lattice gauge theory. The vertices and plaquettes defining the square ice and Ising gauge theory

Hamiltonians are shown in the insets of (B) and (C).

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[7, 20]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i

where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [7, 21] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish

from the high temperature phase.

Just as in the square ice model, we have made an attempt to use the neural network in

Figure 1(A) to classify the high- and low- temperature states in the Ising gauge theory. A

straightforward implementation of supervised training fails to classify a test set containing

samples of the two states to an accuracy over 50% – equivalent to simply guessing. Such

failures typically occur because the neural network overfits to the training set. To over-

come this di�culty we consider a convolutional neural network (CNN) [4, 22] which readily

takes advantage of the two-dimensional structure of the input configurations, as well as the

translational invariance of the model. The CNN in Figure 4 is detailed in the supplemen-

tary materials. We optimize the CNN using Monte Carlo configurations drawn from the

partition function of the Ising gauge theory at T = 0 and T = 1. Using this setting, the

CNN successfully discriminates high-temperature from ground states with an accuracy of

100% on a test set with 1 ⇥ 104 configurations, in spite of the lack of an order parameter

or qualitative di↵erences in the spin-spin correlations. Through the generation of new test

More interestingly, the convolutional neural 
network can also be trained to distinguish
the high-T paramagnet from a Coulomb 
phase or loop gas ground state, i.e. phases
without a local order parameter.
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Dirac fermions
Hubbard models on the honeycomb lattice

Spinful fermions

H = �t
X

hi,ji,�

c†i,�cj,� + U
X

i

n",in#,i

semi-metal spin density wave
Gross-Neveu type

fermionic quantum phase transition

U/t

H = �t
X

hi,ji

⇣
c†i cj + c†jci

⌘
+ V

X

hi,ji

ninj

Spinless fermions

semi-metal charge density wave
V/t

no sign
problem

severe sign
problem
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Supervised learning approach

But what are the right images to represent a quantum state?

Supervised learning approach 
1) train convolutional neural network on representative “images” deep within the two phases
2) apply trained network to “images” sampled elsewhere to predict phases + transition

phase A phase B
phase

transition

train
here

train
here

predict phases by applying neural network here

step 1

step 2
�
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Monte Carlo for fermions

Determinantal (or auxiliary field) quantum Monte Carlo 
for unbiased studies of strongly interacting fermions

Path integral representation of partition sum

Decouple quartic interaction via Hubbard-Stratonovich 
transformation

Now integrate out free fermions moving in background field

Z =
X

s

detU(s)

sample Hubbard-Stratonovich field
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Hubbard-Stratonovich decoupling

Decoupling quartic interaction via Hubbard-Stratonovich 
transformation introduces an Ising-type auxiliary field

site site

auxiliary
field

Vi = n"
in

#
i Vi(s)
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Hubbard-Stratonovich decoupling

real-space coupling
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Hubbard-Stratonovich decoupling

real-space coupling
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Hubbard-Stratonovich decoupling

The auxiliary field has a natural interpretation has “image”.
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Hubbard-Stratonovich decoupling

The auxiliary field has a natural interpretation has “image”.
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Supervised learning / auxiliary fields
Case 1 – spinful fermions

The choice of Hubbard-Stratonovich transformation influences
image, i.e. when coupling to ... 

magnetization
breaks SU(2)

semi-metal

SDW

charge
preserves SU(2)

semi-metal

SDW
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Supervised learning / auxiliary fields
coupling to magnetization
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Supervised learning / auxiliary fields
coupling to charge
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Supervised learning / auxiliary fields
Hubbard-Stratonovich fields might not be ideal objects/images 
for machine learning based discrimination of quantum phases.

- supervised learning does not work very well

- sensitive to choice of Hubbard-Stratonovich transformation

- finite temperatures require adjusting discretization step

- each coupling enlarges dataset

on a more technical level

general observations

Alternative – Green’s functions G(i, j) = hci c
†
ji
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Supervised learning / Green’s functions
Green’s functions sampled as complex valued matrices. 

Convert into color-coded image using HSV color scheme.

Hue

Saturation

Value (opacity)

hue

saturationc = |c| · ei�
Our color mapping
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Supervised learning / Green’s functions
Green’s functions for spinful fermion model 

semi-metal

SDW

L = 2x9x9
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Spinful fermions
Green’s functions are ideal objects/images for machine learning 
based discrimination of quantum phases.
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Some intermediate conclusions

QMC + machine learning approach can be used to 
distinguish phases of interacting many-fermion systems.

The ensemble of sampled Green’s functions contains 
sufficient information to discriminate fermionic phases.

Green’s functions are ideal “images” for machine learning.
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Algorithmic power of Monte Carlo

c1 ! c2 ! . . . ci ! ci+1 ! . . .

Sample configurations in high-dimensional space

Metropolis (1953): accept new configuration with probability

pacc = min

✓
1,

w(cj)

w(ci)

◆

Simultaneously measured observables converge in polynomial time.

Tremendous impact across many different fields. 
In hard condensed matter • percolation

• phase transitions
• quantum magnetism
• ultracold bosons
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Quantum Monte Carlo

classical Monte Carlo hOi =
P

C O(C) e��E(C)
P

C e
��E(C)

quantum Monte Carlo hOi = TrOe��H

Tr e��H

Map quantum to classical system Z = Tr e��H =
X

C
p(C)

Map to “world lines” of the 
trajectories of the particles

Monte Carlo sampling
of these world lines 

space

im
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y 
tim
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�
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The sign problem

hOi =
PO(C)p(C)P

p(C) =

PO(C)�(C)|p(C)|P
�(C)|p(C)| =

hO · �iabs
h�iabs

Expectation value for observables

when we ignore the sign of the configuration weights.

... resulting in an exponentially slow convergence of the statistical error

... but the average sign decreases exponentially 

h�iabs =
P

�(C)|p(C)|P
|p(C)| =

Z

Zabs
= exp (��N�f)

��

h�i =

p
h�2i � h�i2p

Mh�i
⇡ e�N�f

p
M
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It’s a real problem ...

classic example: superconductivity in doped Hubbard model 
Loh, Gubernatis, Scalettar, White, Scalapino and Sugar, PRB 1990
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It’s a real problem ...

classic example: superconductivity in doped Hubbard model 
Loh, Gubernatis, Scalettar, White, Scalapino and Sugar, PRB 1990

correlation functions come out wrong!
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Is there a way out?
The sign problem is basis dependent

energy eigenbasis simulation basis

exponentially hard

Successful basis changes
meron cluster Wiese et al.,  PRL (1995)

fermion bag Chandrasekharan,  PRD (2009)

Majorana fermion basis Yao et al.,  PRB (2015)

no general solution Troyer and Wiese,  PRL (2005) the sign problem is NP-hard

Change of perspective

entanglement entropies Broecker and Trebst, PRB (2016)

effective, sign-problem free actions Berg, Metlitski, and Sachdev,  Science (2012)
Schattner, Gerlach, Trebst and Berg,  PRL (2016)

http://www.thp.uni-koeln.de/trebst/
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+ machine learning
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Can we bypass the sign problem?
QMC sampling + statistical analysis

hOi =
PO(C)p(C)P

p(C) =

PO(C)�(C)|p(C)|P
�(C)|p(C)| =

hO · �iabs
h�iabs

QMC sampling + machine learning

hFiabs =
P

F(C)|p(C)|P
|p(C)

Assume there exists a “state function”

that is 0 deep in phase A and 1 deep in phase B.

http://www.thp.uni-koeln.de/trebst/
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Spinless fermions
QMC + machine learning approach gives useful results even
for systems with a severe sign problem.
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Spinless fermions @ 1/3 filling
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Transfer learning
Training on spinful, sign-problem free fermion model, 
application to spinless, sign-problematic fermion model.
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Summary

QMC + machine learning approach can be used to 
distinguish phases of interacting many-fermion systems
even in the presence of a severe sign problem..

The future: QMC + machine learning will become a robust tool 
for quickly and semi-automatically mapping out phase diagrams 
of quantum many-body systems.

The ensemble of sampled Green’s functions contains sufficient 
information to discriminate quantum phases. Accessible in most
quantum Monte Carlo flavors.
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