Majorana metals

Cargese – June 28th, 2013

Simon Trebst University of Cologne

Motivation

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

Motivation

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

But they are also notoriously difficult to handle analytically, due to

- multiple energy scales
- complex energy landscapes / slow equilibration
- strong coupling

Examples – quantum Hall liquids

Landau level degeneracy

 $2\Phi/\Phi_0$

orbital states

integer quantum Hall

fractional quantum Hall

partially filled level Coulomb repulsion incompressible liquid

Examples – frustrated magnets

Overview

Vortices, quasiholes, anyons, ...

Interactions

Disorder

Vortices

Abelian vs. non-Abelian vortices

Consider a set of 'pinned' vortices at fixed positions.

Abelian

single state

Example: Laughlin-wavefunction + quasiholes

non-Abelian

(degenerate) manifold of states

Manifold of states grows **exponentially** with the number of vortices.

 $\underset{\text{(Majorana fermions)}}{\text{Ising anyons}} \sqrt{2}^N$

Fibonacci ϕ^N anyons

Abelian vs. non-Abelian vortices

Consider a set of 'pinned' vortices at fixed positions.

Abelian

single state

$$\psi(x_2, x_1) = e^{i\pi\theta} \cdot \psi(x_1, x_2)$$

fractional phase

non-Abelian

(degenerate) manifold of states

 $\begin{array}{c} \text{matrix} \\ \psi(x_1 \leftrightarrow x_3) = \mathbf{M} \cdot \psi(x_1, \dots, x_n) \\ \psi(x_2 \leftrightarrow x_3) = \mathbf{N} \cdot \psi(x_1, \dots, x_n) \end{array}$

In general *M* and *N* do not commute!

Topological quantum computing

Topological quantum computing

Degenerate manifold = qubit

Employ **braiding** of non-Abelian vortices to perform computing (unitary transformations).

non-Abelian

(degenerate) manifold of states

 $\begin{array}{c} \text{matrix} \\ \psi(x_1 \leftrightarrow x_3) = \mathbf{M} \cdot \psi(x_1, \dots, x_n) \\ \psi(x_2 \leftrightarrow x_3) = \mathbf{N} \cdot \psi(x_1, \dots, x_n) \end{array}$

In general *M* and *N* do not commute!

Vortex quantum numbers

 $SU(2)_k$ = 'deformation' of SU(2)

with finite set of representations

$$0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots, \frac{k}{2}$$

fusion rules $j_1 \times j_2 =$ $|j_1 - j_2| + (|j_1 - j_2| + 1) + \dots +$ $\min(j_1 + j_2, k - j_1 - j_2)$

> example k = 2 $1/2 \times 1/2 = 0 + 1$

Vortex pair $1/2 \times 1/2 = 0 + 1$

Energetics for many vortices

$$H = J \sum_{\langle ij \rangle} \prod_{ij} {}^{0}$$

"Heisenberg Hamiltonian" for vortices

Microscopics

Which channel is favored is not universal, but microscopic detail.

Vortex pair $1/2 \times 1/2 = 0 + 1$

Energetics for many vortices

$$H = J \sum_{\langle ij \rangle} \prod_{ij} {}^{0}$$

"Heisenberg Hamiltonian" for vortices

The many-vortex problem

macroscopic degeneracy

The many-vortex problem

macroscopic degeneracy

unique ground state

The collective state

Anyonic Heisenberg chainsHilbert space $\overline{\tau}$ $\overline{\tau}$ $\overline{\tau}$ $\overline{\tau}$ $|x_1, x_2, x_3, \ldots\rangle$ $\overline{\tau}$ </t

Edge states

6		

Gapless theories

level k	$1/2 \times 1/2 \rightarrow 0$	$1/2 \times 1/2 \rightarrow 1$
2	$\frac{\mathbf{Ising}}{\mathbf{c}=1/2}$	$\frac{\mathbf{Ising}}{\mathbf{c}=1/2}$
3	tricritical Ising c = 7/10	3-state Potts $c = 4/5$
4	$\boxed{SU(2)_{k-1} \times SU(2)_1}$	$SU(2)_k$
5	$SU(2)_k$	U(1)
k	k-critical Ising c = 1-6/(k+1)(k+2)	Z_k -parafermions c = 2(k-1)/(k+2)
∞	Heisenberg AFM	Heisenberg FM

Gapless modes & edge states

Interactions + disorder

Disorder induced phase transition

macroscopic degeneracy

degeneracy is split

Interactions and disorder

sign disorder + strong amplitude modulation

Natural analytical tool: strong-randomness RG

Unfortunately, this does not work. The system flows *away* from strong disorder under the RG. No infinite randomness fixed point.

From Ising anyons to Majorana fermions

$$H = \sum_{\langle jk \rangle} J_{jk} \Pi_{jk} \longrightarrow \mathcal{H} = -\sum_{\langle jk \rangle} i \mathcal{J}_{jk} \gamma_j \gamma_k$$

interacting Ising anyons "anyonic Heisenberg model" free Majorana fermion hopping model

From Ising anyons to Majorana fermions

$$\mathcal{H} = -\sum_{\langle jk \rangle} i \mathcal{J}_{jk} \gamma_j \gamma_k$$

free Majorana fermion hopping model Majorana operators

$$\{\gamma_i, \gamma_j\} = \delta_{ij}$$
$$\gamma_i^{\dagger} = \gamma_i$$
$$\gamma_{i1} = (c_i^{\dagger} + c_i)/2$$
$$\gamma_{i2} = (c_i^{\dagger} - c_i)/2i$$

particle-hole symmetry \$\lambda\$ } symmetry
time-reversal symmetry \$\lambda\$ } class D

A disorder-driven metal-insulator transition

Density of states indicates phase transition.

The thermal metal

Density of states **diverges** logarithmically at zero energy.

Taking a closer look

Oscillations in the DOS fit the prediction from **random matrix theory** for symmetry class D

$$\rho(E) = \alpha + \frac{\sin(2\pi\alpha EL^2)}{2\pi EL^2}$$

The thermal metal

Inverse participation ratios (moments of the GS wavefunction) indicate **multifractal** structure characteristic of a metallic state.

Disorder induced phase transition

macroscopic degeneracy

degeneracy is split

Heat transport

Caltech thermopower experiment

quantum liquid new quantum liquid

Heat transport along the sample edges changes quantitatively Bulk heat transport diverges logarithmically as $T \rightarrow 0$.

 $\kappa_{xx}/T \propto \log T$

Other places to look for Majorana metals ...

Spin-orbit assisted Mott physics in Iridates

(Na,Li)₂IrO₃

Y. Singh, P. Gegenwart, ST, et al., PRL 108, 127203 (2012)

Spin-orbit assisted Mott physics in Iridates

(Na,Li)₂IrO₃

$$H_{\rm Kitaev} = \sum_{\gamma-\rm links} J_\gamma \sigma_i^\gamma \sigma_j^\gamma$$

Rare combination of a model of **fundamental conceptual importance** (harboring topological phases) and an **exact analytical solution**.

The Kitaev model

$$H_{\rm Kitaev} = \sum_{\gamma-\rm links} J_{\gamma} \sigma_i^{\gamma} \sigma_j^{\gamma}$$

Rare combination of a model of **fundamental conceptual importance** (harboring topological phases)

(narboring topological phases) and an **exact analytical solution**.

A. Kitaev, Ann. Phys. **321**, 2 (2006)

© Simon Trebst

Kitaev model + field + disorder

© Simon Trebst

Summary

Topological excitations + interactions + disorder can give rise to a plethora of collective phenomena.

- Topological liquid nucleation
- Thermal metal
- Distinct experimental **bulk observable** (heat transport) in search for Majorana fermions.