Spin liquids and (Majorana) metals

Princeton Universi June 2017

Simon Trebst University of Cologne

Collaborators

Jan Attig Master student

Maria Hermanns

Emmy-Noether group → Gothenburg

Kevin O'Brien PhD student

Spin liquids

In **frustrated magnets**, the suppression of magnetic ordering can lead to the **formation of spin liquids**.

The **local moments** in spin liquid ground states are **highly correlated** but **still fluctuate strongly** down to zero temperature.

Herbertsmithite

Volborthite

hyperkagome Na₄Ir₃O₈

Spin liquids

Herbertsmithite

Volborthite

hyperkagome Na₄Ir₃O₈

What features are we looking for in these materials?

geometric frustration

exchange frustration

Spin liquids & fractionalization

Quantum spin liquids are macroscopically entangled quantum states, where the original spins fractionalize into novel, emergent degrees of freedom that carry a fractional quantum number – partons + gauge field.

Spin liquids can be dichotomous states, where an electronic Mott insulator harbors emergent itinerant degrees of freedom that form a **metal**.

> $c_1^{\dagger}c_1 + c_2^{\dagger}c_2 = 2S$ bosons or fermions

auxiliary fermions (or bosons)

 $S^{\gamma} = \frac{1}{2} c^{\dagger}_{\alpha} \sigma^{\gamma}_{\alpha,\beta} c_{\beta}$ spin Pauli matrices U(1) gauge field Majorana fermions Majorana metal Majorana $S^{\gamma} = ia^{\gamma}c$ w/ Majorana fermions spin Fermi surface Z₂ gauge field

spinon metal w/ spinon Fermi surface

this talk

Part I – fractionalization

Majorana metals and quantum spin liquids in 3D Kitaev models.

Part II – "doubling"

Spiral spin liquids and metals in classical spin systems.

 $\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$ free fermion system / metal

Majorana metals

PRB 93, 085101 (2016) PRL 115, 177205 (2015) PRL 114, 157202 (2015) PRB 89, 235102 (2014)

Kitaev models

Lattice classifications

Tricoordinated lattices

Tricoordinated lattices

Classification by elementary loop length (polygonality)

hyperoctagon

hyperhoneycomb

(8,3)

Tricoordinated lattices

		other names	Ζ	inversion	space gr	oup
3D lattices	(10,3)a	hyperoctagon, K4 crystal	4	×	14 ₁ 32	214
	(10,3)b	hyperhoneycomb	4	\checkmark	Fddd	70
	(10,3)c		6	×	P3112	151
	(9,3)a		12	\checkmark	R3m	166
	(8,3)a		6	×	P6222	180
	(8,3)b		6	\checkmark	R3m	166
	(8,3)c		8	\checkmark	P6 ₃ / mmc	194
	(8,3)n		16	\checkmark	14 / mmm	139
2D	(6,3)	honeycomb	2	\checkmark		

Majorana metals

PRB 93, 085101 (2016)

surfaces

		Majorana metal	TR breaking	_
3D lattices	(10,3)a	Fermi surface	Fermi surface	
	(10,3)b	nodal line	Weyl nodes	
	(10,3)c	nodal line	Fermi surface	Majorana Fermi
	(9,3)a	Weyl nodes	Weyl nodes	_
	(8,3)a	Fermi surface	Fermi surface	
	(8,3)b	Weyl nodes	Weyl nodes	
	(8,3)c	nodal line	Weyl nodes	
	(8,3)n	gapped	gapped	
2D	(6,3)	Dirac nodes	gapped	_

Majorana Fermi surface

(10,3)a – hyperoctagon

Fermi surface instabilities arise from additional spin interactions (e.g. a Heisenberg term), which introduce interactions between the Majorana fermions.

The generic instability is a **spin-Peierls instability**, i.e. the system spontaneously dimerizes at exponentially small temperatures and forms a spin liquid with a Fermi line.

perfect nesting between the two surfaces

(complex) fermion

conventional **BCS instability**

$$\epsilon_{\mathbf{k}} = \epsilon_{\mathbf{k}+\mathbf{k}_0}$$

time-reversal symmetry

$$c_j(\mathbf{R}) \xrightarrow{\mathcal{T}} (-1)^j e^{i\mathbf{k}_0 \cdot \mathbf{R}} c_j(\mathbf{R})$$

 $E_{\mathbf{k}_0/2+\mathbf{k}} = E_{\mathbf{k}_0/2-\mathbf{k}}$

time-reversal symmetry

 $f^{\dagger}_{\mathbf{k}_0/2+\mathbf{k}} \xrightarrow{\mathcal{T}} f^{\dagger}_{\mathbf{k}_0/2-\mathbf{k}}$

Fermi surface instabilities arise from additional spin interactions (e.g. a Heisenberg term), which introduce interactions between the Majorana fermions.

The generic instability is a **spin-Peierls instability**, i.e. the system spontaneously dimerizes at exponentially small temperatures and forms a spin liquid with a Fermi line.

The doubling of the unit cell will generically be reflected in shifts of the position of atoms.

The **doubling of the unit cell** will generically be reflected in **shifts of the position of atoms** and in **valence bond correlations**.

valence bond correlations along $\mathbf{v} = (1/2, 1/2, 1/2)$

 $\langle \mathbf{S}(\mathbf{r}_0 + n\mathbf{v}) \mathbf{S}(\mathbf{r}_0 + (n+1)\mathbf{v}) \rangle \sim (-1)^n \Delta$

Majorana metals

PRB 93, 085101 (2016)

		Majorana metal	TR breaking		
Ces	(10,3)a (10,3)b (10,3)c	Fermi surface nodal line nodal line Weyl podes	Fermi surface Weyl nodes Fermi surface	Majorana Fermi surfaces	
3D lattic	(9,3)a (8,3)a (8,3)b (8,3)c (8,3)n	Fermi surface Weyl nodes nodal line gapped	Fermi surface Weyl nodes Weyl nodes gapped	- nodal lines	
20	(6,3)	Dirac nodes	gapped		

Majorana nodal lines

(10,3)b – hyperhoneycomb

Majorana metals

PRB 93, 085101 (2016)

		N	lajorana metal	TR breaking	
	(10,3)a (10,3)b		ermi surface nodal line	Fermi surface Weyl nodes	Majarana Farmi aurfagaa
S	(10,3)c		nodal line	Fermi surface	Majorana Fermi surfaces
attice	(9,3)a		Weyl nodes	Weyl nodes	
30	(8,3)a		ermi surface	Fermi surface	
	(8,3)b		Weyl nodes	Weyl nodes	nodal lines
	(8,3)c		nodal line	Weyl nodes	
	(8,3)n		gapped	gapped	
20	(6,3)		Dirac nodes	gapped	Weyl nodes

Breaking time-reversal symmetry PRL 114, 157202 (2015)

$$H_{\text{Kitaev}} = -J_K \sum_{\gamma - \text{bonds}} \sigma_i^{\gamma} \sigma_j^{\gamma} - \sum_j \vec{h} \cdot \vec{\sigma}_j$$

(10,3)a - hyperoctagon

Fermi surface

Fermi surface deforms

(10,3)b - hyperhoneycomb

Fermi line

Fermi line gaps out, but two Weyl nodes remain

Weyl physics – energy spectrum PRL 114, 157202 (2015)

(10,3)b - hyperhoneycomb

Touching of two bands in 3D is generically linear

$$\hat{H} = ec{v}_0 \cdot ec{q}\,\mathbb{1} + \sum_{i=1}^3 ec{v}_j \cdot ec{q}\,\sigma_j$$
 Weyl nodes

Weyl physics – surface states

PRL 114, 157202 (2015)

Majorana metals

PRB 93, 085101 (2016)

		Majorana metal	TR breaking	
	(10,3)a	Fermi surface	Fermi surface	
	(10,3)b	nodal line	Weyl nodes	
(0)	(10,3)c	nodal line	Fermi surface	Majorana Fermi surfaces
attices	(9,3)a	Weyl nodes	Weyl nodes	
30	(8,3)a	Fermi surface	Fermi surface	
	(8,3)b	Weyl nodes	Weyl nodes	nodal lines
	(8,3)c	nodal line	Weyl nodes	
	(8,3)n	gapped	gapped	
20	(6,3)	Dirac nodes	gapped	Weyl nodes

© Simon Trebst

Three scenarios for Weyl physics

(10,3)b – hyperhoneycomb

explicit breaking of time-reversal symmetry

symmetry class D

(9,3)a

spontaneous breaking of time-reversal symmetry

symmetry class D

finite-temperature transition possibly interesting (beyond Ising, LGW)

(8,3)b

no breaking of time-reversal symmetry (nor inversion symmetry)

symmetry class BDI

symmetry scenario beyond electronic systems

Z₂ gauge physics

In three spatial dimensions, the spin fractionalization of the Kitaev model has a distinct (experimental) signature – the underlying **Z**₂ gauge theory generically exhibits a finite-temperature phase transition.

Going beyond the Kitaev model ...

Spiral spin liquids

J. Attig & ST, arXiv:1705.04073

Coplanar spirals typically arise in the presence of competing interactions

Elementary ingredient for

- multiferroics
- spin textures/multi-q states
 - skyrmion lattices
 - Z₂ vortex lattices
- spiral spin liquids

Description in terms of a single wavevector

 $\vec{S}(\vec{r}) = \operatorname{Re}\left(\left(\vec{S}_1 + i\vec{S}_2\right)e^{i\vec{q}\vec{r}}\right)$

Coplanar spirals typically arise in the presence of competing interactions

Familiar example

• **120° order** of Heisenberg AFM on triangular lattice

Frustrated diamond lattice antiferromagnets

A-site spinels	
MnSc ₂ S ₄	S=5/2
FeSc ₂ S ₄	S=2
$CoAl_2O_4$	S=3/2
NiRh ₂ O ₄	S=1

$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} \vec{S}_i \vec{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \vec{S}_i \vec{S}_j$$

degenerate coplanar spirals form **spin spiral surfaces** in *k*-space

 $J_2/J_1 = 0.2$

 $J_2/J_1 = 100$

Experimental observation of spin spiral surface in inelastic neutron scattering of MnSc₂S₄.

Spin spiral manifolds

Spiral manifolds are extremely reminiscent of Fermi surfaces

But:

Spiral manifolds describe ground state of classical spin system, while Fermi surfaces are features in the middle of the energy spectrum of an electronic quantum system.

Spin spiral manifolds

Spin spiral manifolds

Mapping classical to quantum

spin spirals in a nutshell

free fermions in a nutshell

with **minimal** eigenvalues

 $\lambda_i(\vec{k})$

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

mapping of a classical to quantum system (of same spatial dimensionality) via a 1:1 matrix correspondence

→ reminiscent of "topological mechanics"

Mapping classical to quantum

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

What does "**squaring**" of quantum system mean? Explicit **lattice construction**.

Mapping classical to quantum

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

What does "squaring" of quantum system mean? Explicit lattice construction.

Examples

Spectra of the kagome and extended honeycomb lattice.

© Simon Trebst

Examples

Spectra of the **pyrochlore** and **extended diamond** lattice.

Topological spin spirals?

Are **topological band structures** in free fermion systems replicating themselves in classical spin systems?

Dirac nodes edge states

zig-zag edge

120° order edge states?

"zig-zag" edge

armchair edge

"armchair" edge

Topological spin spirals?

Are **topological band structures** in free fermion systems replicating themselves in classical spin systems?

Dirac nodes edge states

zig-zag edge

120° order edge states?

"zig-zag" edge

Topological spin spirals?

Are **topological band structures** in free fermion systems replicating themselves in classical spin systems?

triaxial strain for fermions

triaxial strain for spins

pseudomagnetic field Landau level formation ground state with **topological features?** → future work ...

Summary

Spin liquids can be **dichotomous states**, where an electronic Mott **insulator** harbors emergent itinerant degrees of freedom that form a **metal**.

Majorana metals and quantum spin liquids in 3D Kitaev models.

Spiral spin liquids and metals in classical spin systems.

Classical spin system / spin spirals

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$
free fermion system / metal

arXiv:1705.04073

Thanks!

