topology and supersymmetry

Simon Trebst University of Cologne

"Quantum Fluids in Isolation" seminar, February 2021

collaborators

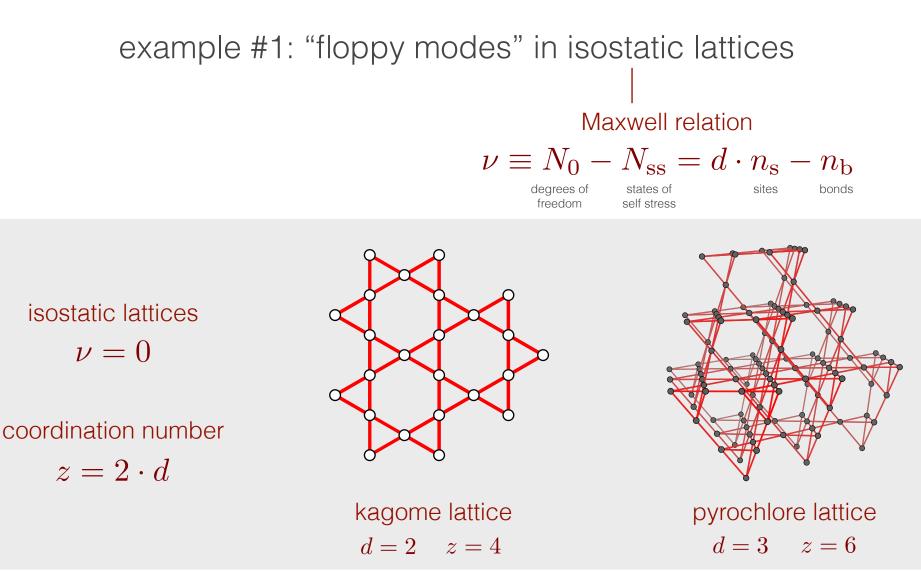
Jan Attig PhD student

Michael Lawler Cornell / Binghamton

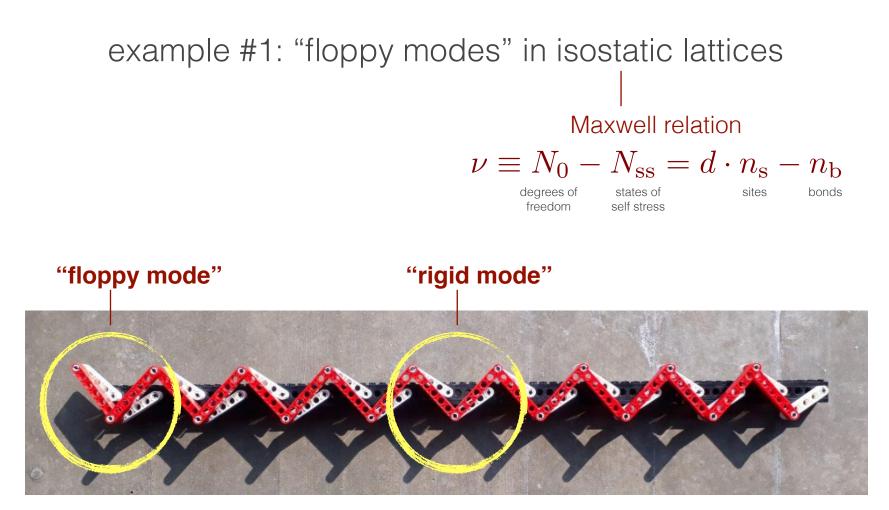
Phys. Rev. Research **1**, 032047(R) (2019) and Phys. Rev. B **96**, 085145 (2017) Editors' suggestion.

Krishanu Roychowdury Stockholm / Cornell

C.L. Kane & T.C. Lubensky, Nat. Phys. 10, 39 (2014)

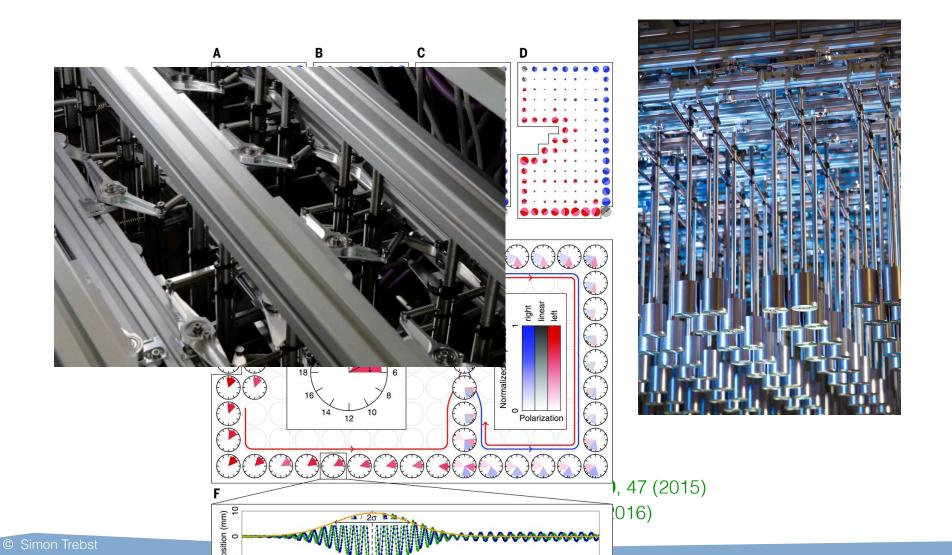


C.L. Kane & T.C. Lubensky, Nat. Phys. 10, 39 (2014)

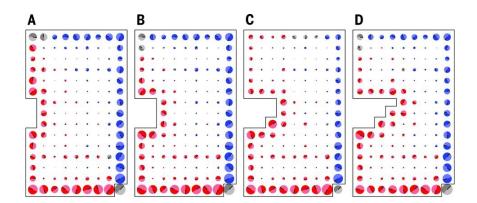


"mechanical" SSH chain

example #2: topological insulator from classical pendula



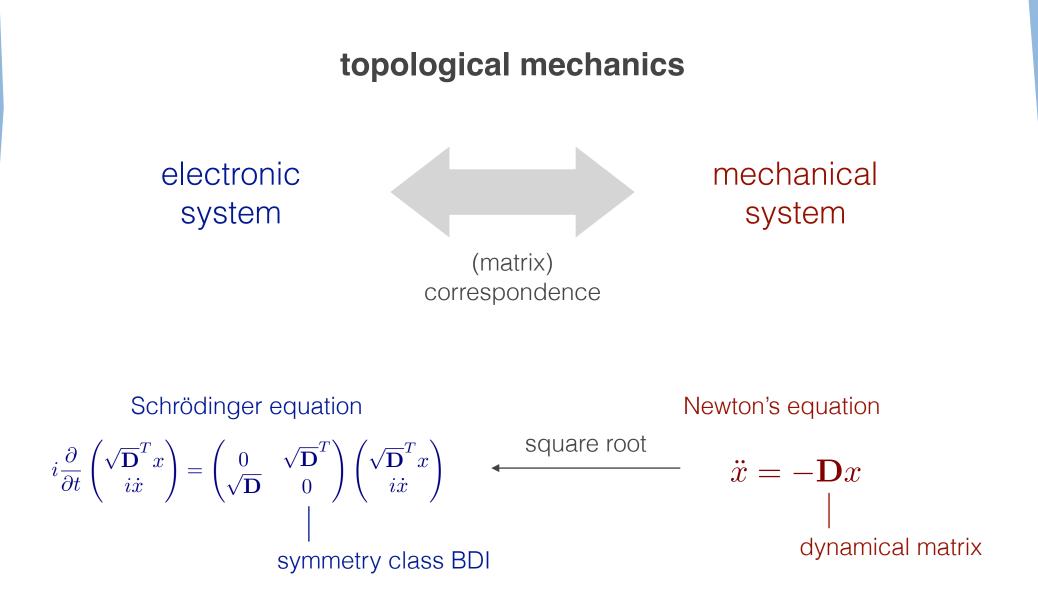
example #2: topological insulator from classical pendula



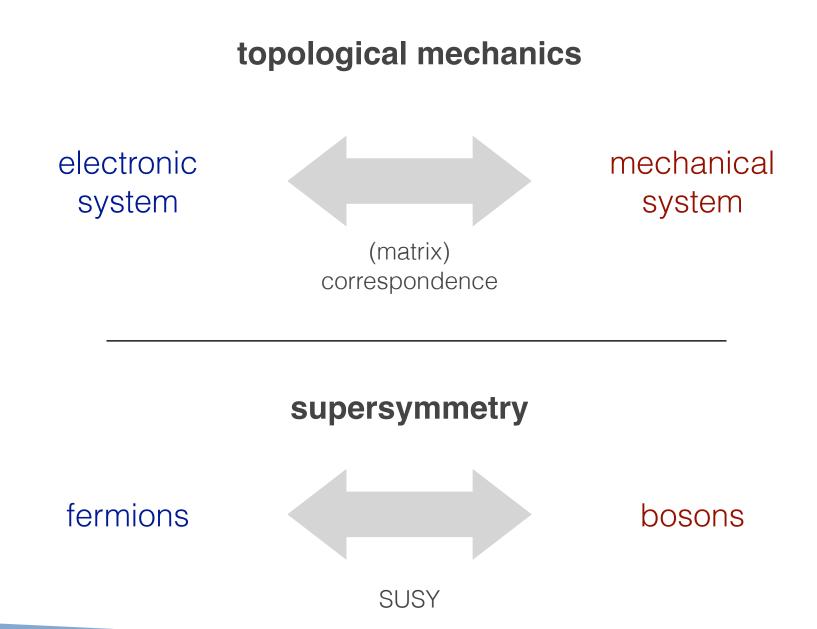
floppy modes constitute boundary mode

R. Süsstrunk and S. D. Huber, Science **349**, 47 (2015) S. D. Huber, Nature Phys. **12**, 621 (2016)

correspondence principles



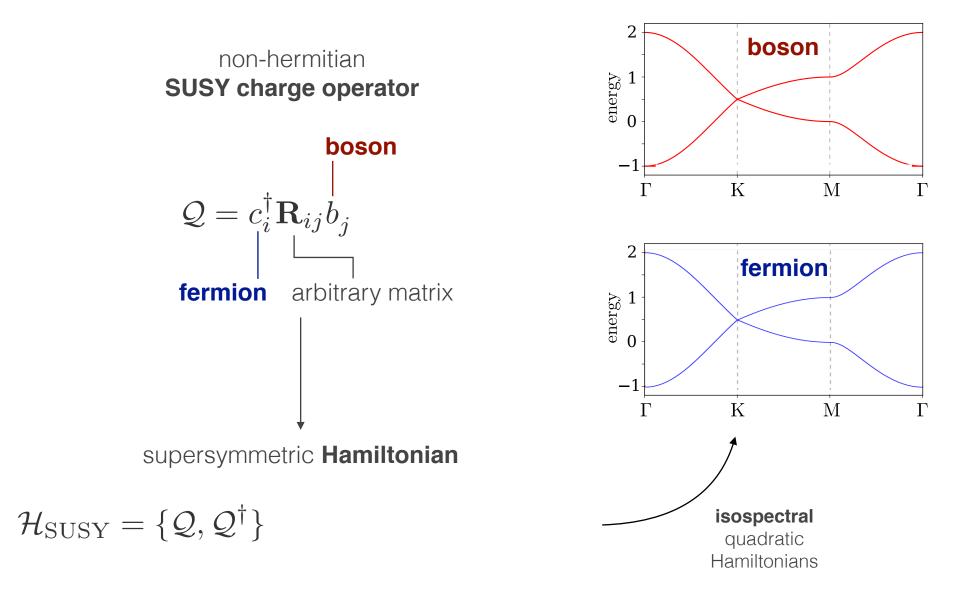
correspondence principles



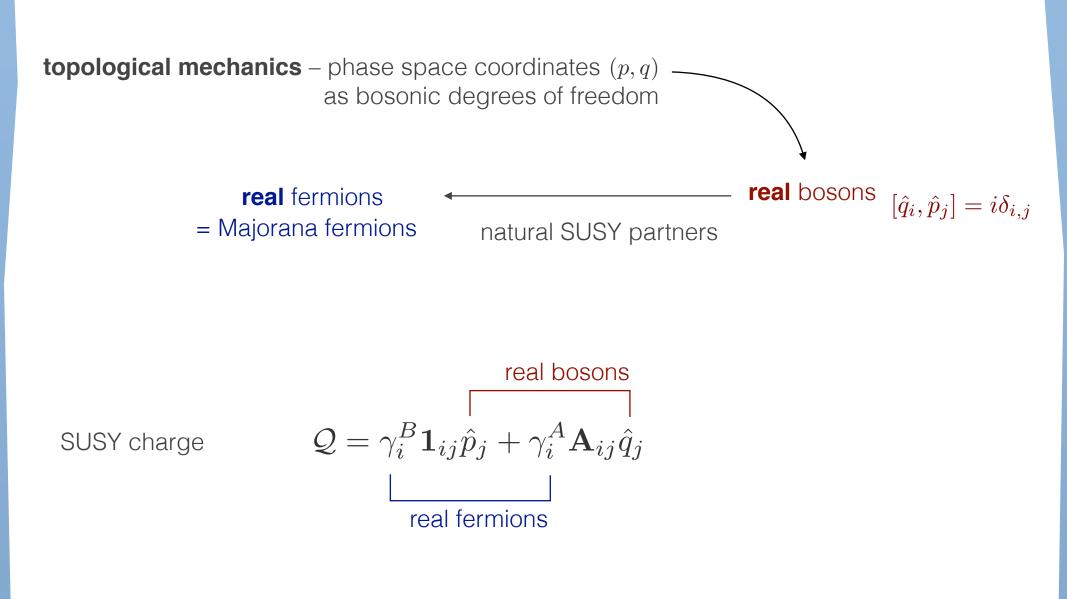
© Simon Trebst

supersymmetry

basic ingredients of SUSY



SUSY & topological mechanics



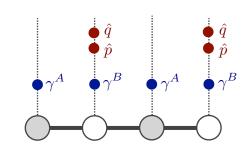
SUSY & topological mechanics

SUSY charge

$$Q = \gamma_i^B \mathbf{1}_{ij} \hat{p}_j + \gamma_i^A \mathbf{A}_{ij} \hat{q}_j$$

encodes block-diagonal form

$$\mathbf{R} = \left(\begin{smallmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} \end{smallmatrix}\right)$$



 $\mathcal{H}_{\text{fermion}} = -i\gamma_j^A \mathbf{A}_{jk} \gamma_k^B + \text{h.c.}$

 $\mathcal{H}_{\text{boson}} = \hat{p}_i \hat{p}_i + \hat{q}_i (\mathbf{A}^T \mathbf{A})_{ij} \hat{q}_j$

Majoranas hopping on two sublattices AB

bosons on one sublattice (B)

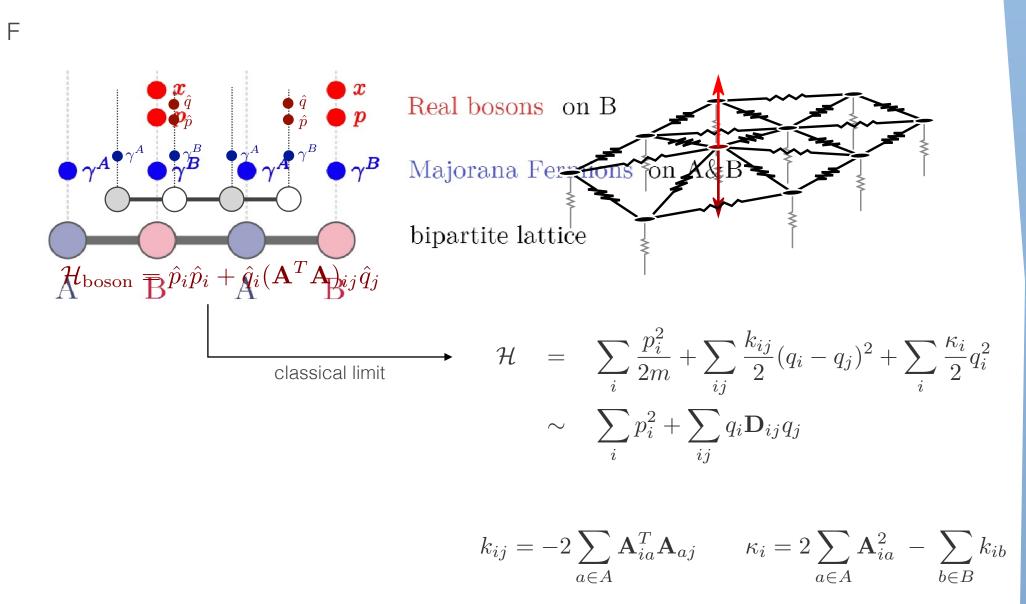
dynamical matrix

 ${f R}\,$ is the **rigidity matrix** of the mechanical system.

It allows to directly connect mechanical systems to Majorana analogues, and vice versa.

 $H_{\mathrm{SUSY}} = \{\mathcal{Q}, \mathcal{Q}^{\dagger}\}$

SUSY & topological mechanics

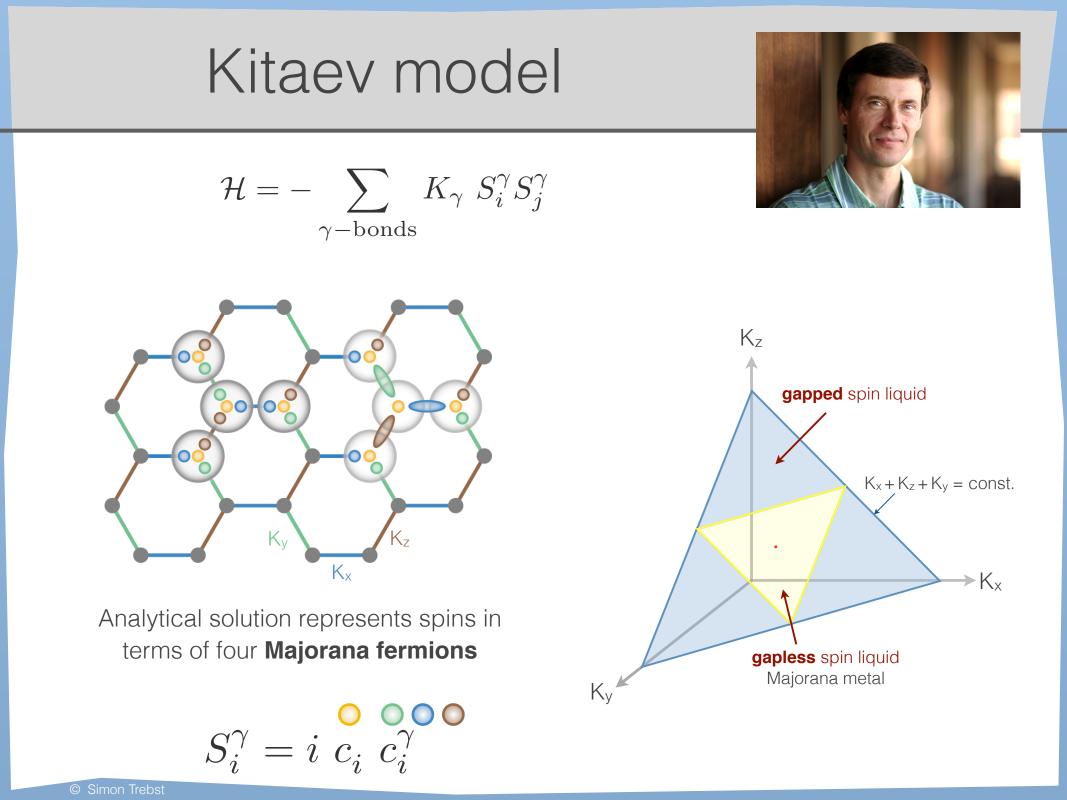


intersite springs

on-site springs

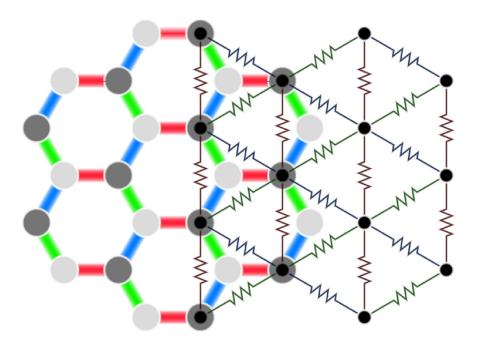
Kitaev model

mechanical analogue

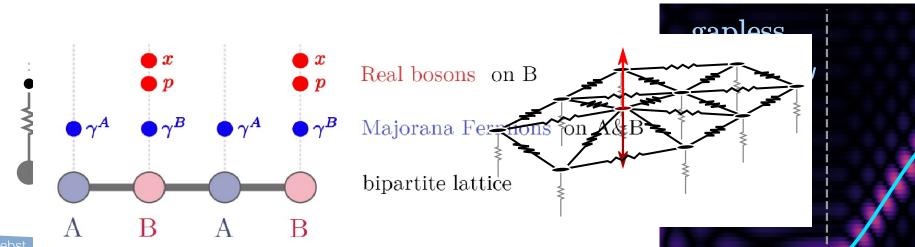


balls & springs Kitaev model

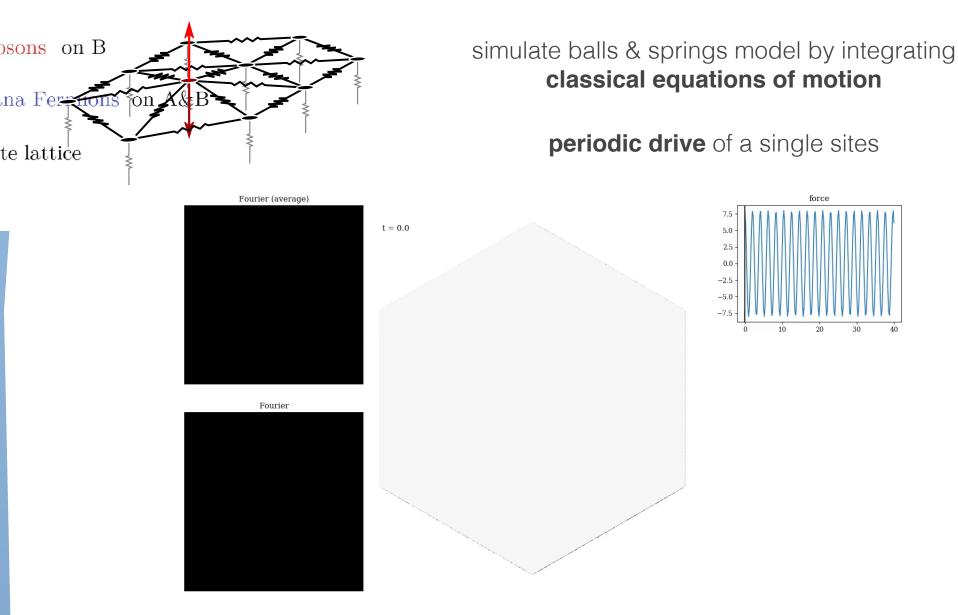
Majorana fermions on **honeycomb** lattice



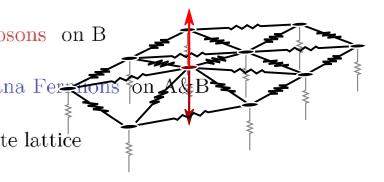
balls & springs on **triangular** lattice



balls & springs Kitaev model

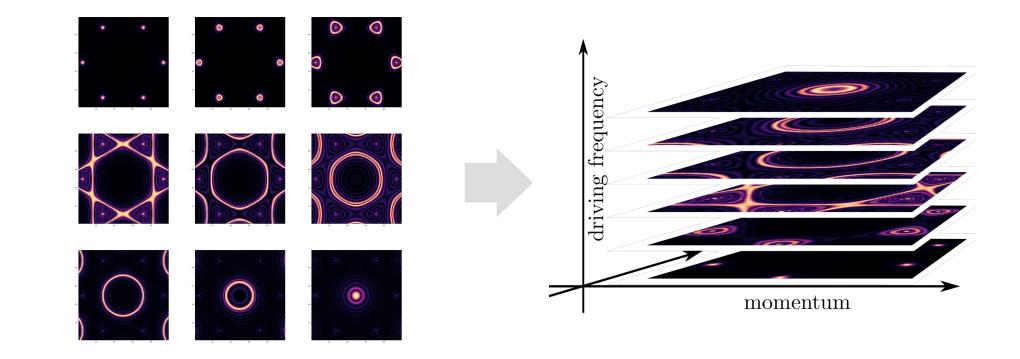


balls & springs Kitaev model



simulate balls & springs model by integrating classical equations of motion

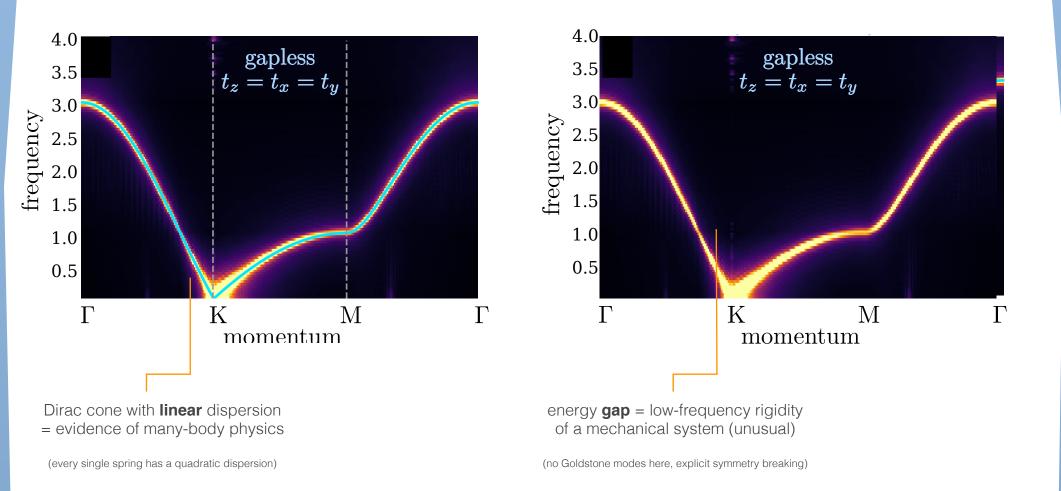
periodic drive of a single sites



balls & springs K

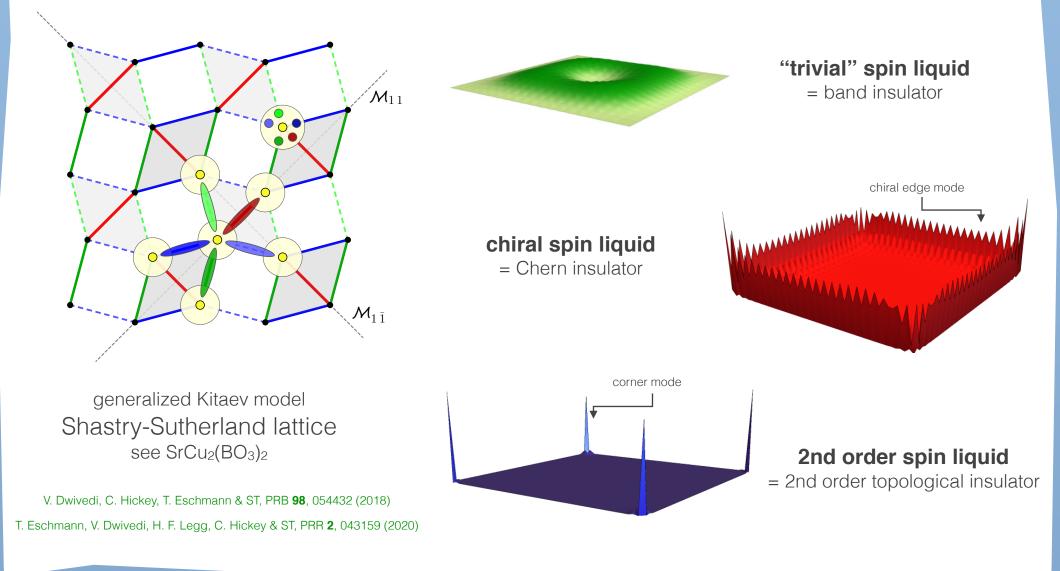
mechanical energy spectra

 $t_z = t_x = t_y$



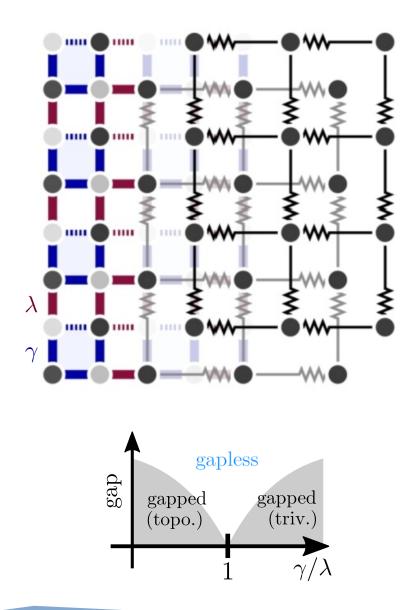
mechanical 2nd order TI

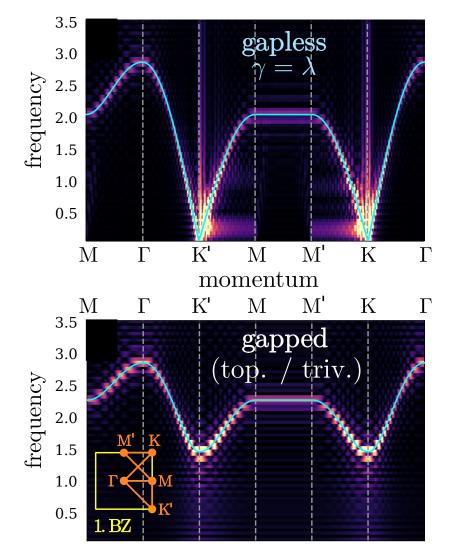
Quantum spin liquid with Majorana corner modes



mechanical 2nd order TI

Majorana spin liquid V. Dwivedi, C. Hickey, T. Eschmann & ST, PRB 98, 054432 (2018)

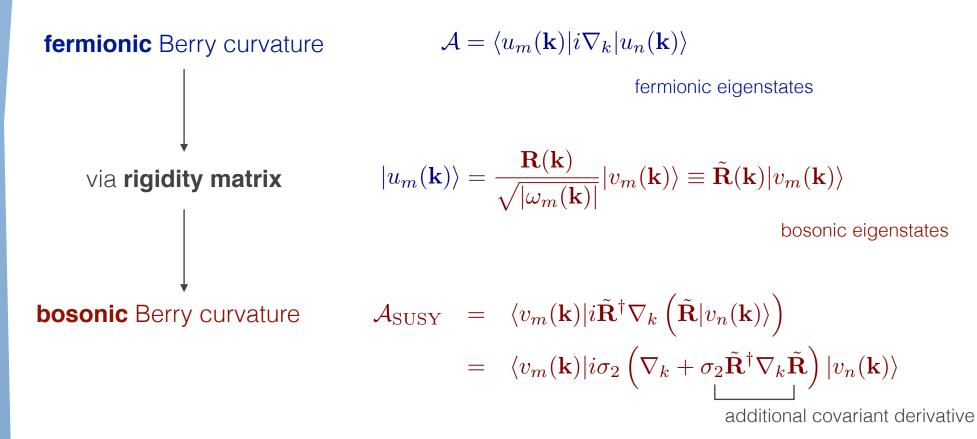




topological invariants

topological invariants

This SUSY construction allows to explore topological properties of bosonic systems by connecting the symplectic bosonic eigenfunctions with a fermionic Berry phase of its SUSY partner.



route to classify bosonic systems

This SUSY construction allows to explore **topological properties of bosonic systems** by connecting the symplectic bosonic eigenfunctions with a **fermionic Berry phase** of its SUSY partner.

SUSY Berry curvature
$$\mathcal{A}_{SUSY} = \langle v_m(\mathbf{k}) | i \tilde{\mathbf{R}}^{\dagger} \nabla_k \left(\tilde{\mathbf{R}} | v_n(\mathbf{k}) \rangle \right)$$

$$= \langle v_m(\mathbf{k}) | i \sigma_2 \left(\nabla_k + \sigma_2 \tilde{\mathbf{R}}^{\dagger} \nabla_k \tilde{\mathbf{R}} \right) | v_n(\mathbf{k}) \rangle$$

additional covariant derivative

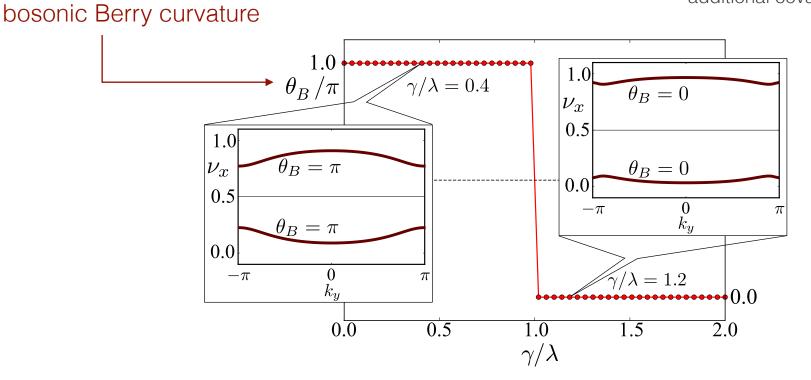
Bosonic systems that are trivial with regard to conventional definition of Berry phase can be non-trivial with regard to SUSY Berry phase!

route to classify bosonic systems

SUSY Berry curvature

$$\mathcal{A}_{\text{SUSY}} = \langle v_m(\mathbf{k}) | i \tilde{\mathbf{R}}^{\dagger} \nabla_k \left(\tilde{\mathbf{R}} | v_n(\mathbf{k}) \rangle \right)$$
$$= \langle v_m(\mathbf{k}) | i \sigma_2 \left(\nabla_k + \sigma_2 \tilde{\mathbf{R}}^{\dagger} \nabla_k \tilde{\mathbf{R}} \right) | v_n(\mathbf{k}) \rangle$$

additional covariant derivative



Bosonic systems that are trivial with regard to conventional definition of Berry phase can be non-trivial with regard to SUSY Berry phase!

© Simon Trebst

spin spirals

Dirac magnons spin liquids

. . . .

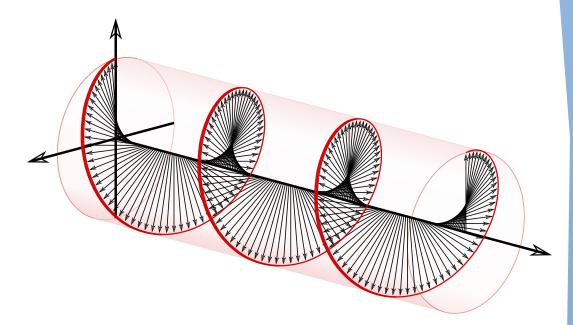
spin spirals

Coplanar spirals typically arise in the presence of competing interactions

Elementary ingredient for

- multiferroics
- spin textures/multi-q states
 - skyrmion lattices
 - Z₂ vortex lattices
- spiral spin liquids

Description in terms of a single wavevector



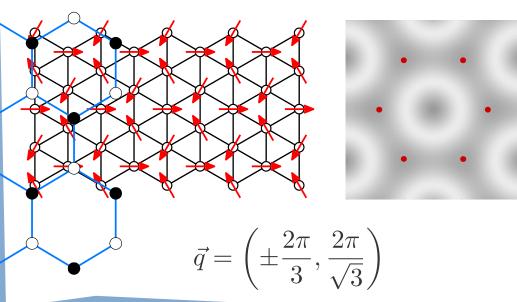
 $\vec{S}(\vec{r}) = \operatorname{Re}\left(\left(\vec{S}_1 + i\vec{S}_2\right)e^{i\vec{q}\vec{r}}\right)$

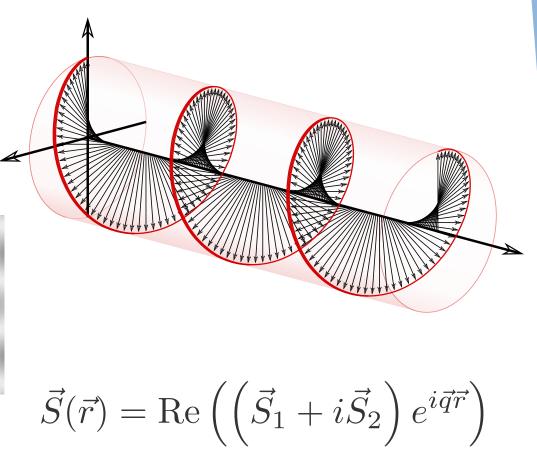
spin spirals

Coplanar spirals typically arise in the presence of competing interactions

Familiar example

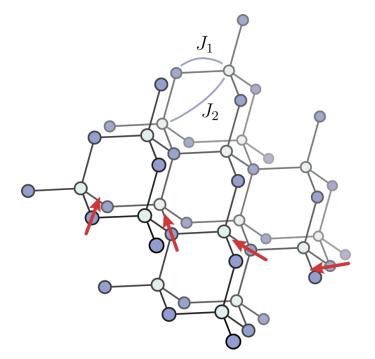
• **120° order** of Heisenberg AFM on triangular lattice





spin spiral materials

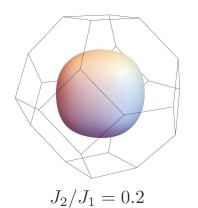
Frustrated diamond lattice antiferromagnets

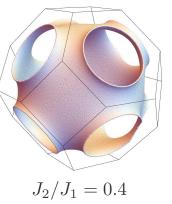


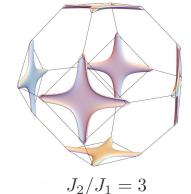
A-site spinels	
MnSc ₂ S ₄	S=5/2
FeSc ₂ S ₄	S=2
$CoAl_2O_4$	S=3/2
NiRh ₂ O ₄	S=1

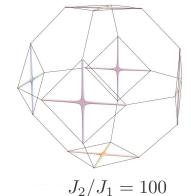
$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} \vec{S}_i \vec{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \vec{S}_i \vec{S}_j$$

degenerate coplanar spirals form **spin spiral surfaces** in *k*-space



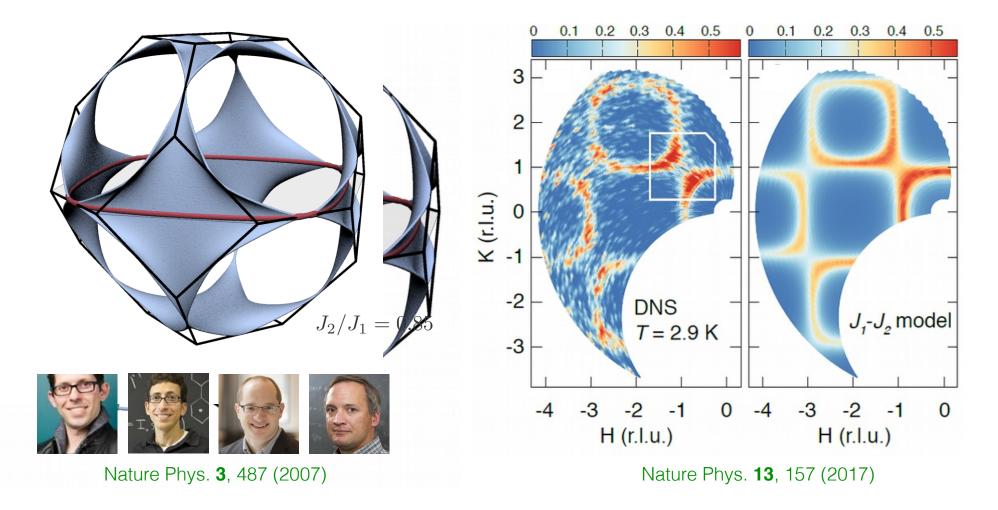






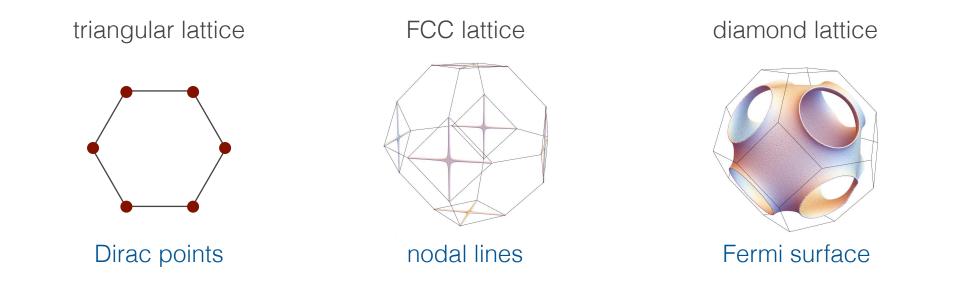
spin spiral materials

Experimental observation of spin spiral surface in inelastic neutron scattering of MnSc₂S₄.



spin spiral manifolds

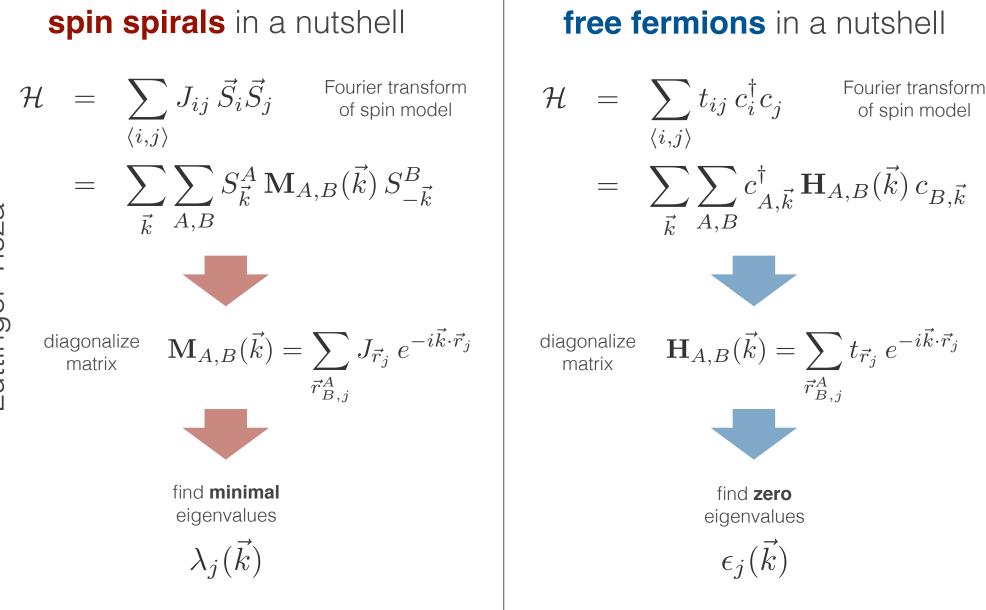
Spiral manifolds are extremely reminiscent of Fermi surfaces



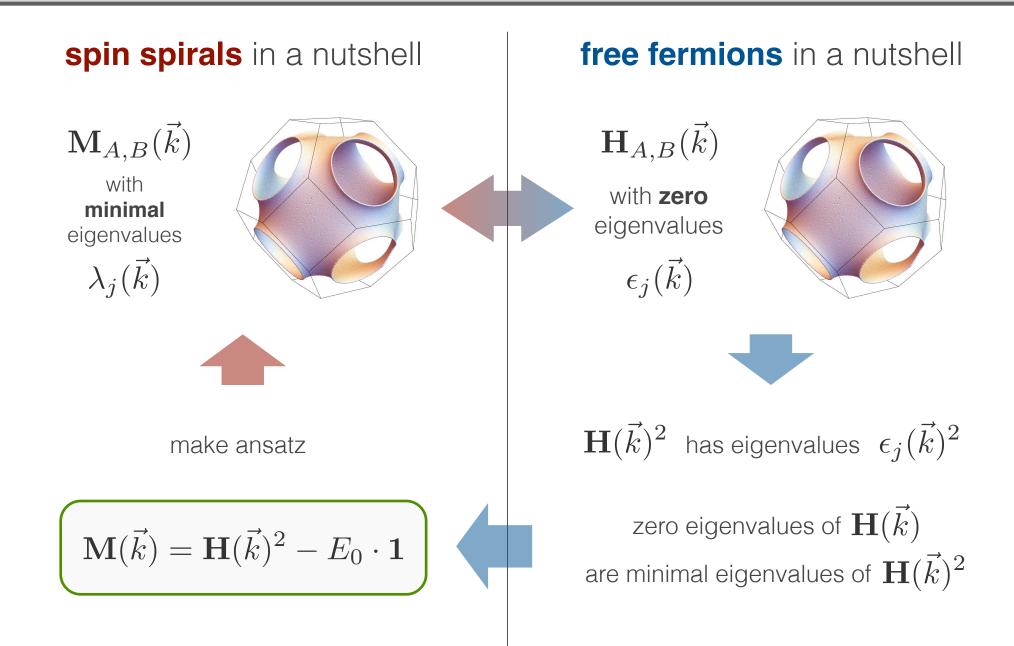
But:

Spiral manifolds describe ground state of classical spin system, while Fermi surfaces are features in the middle of the energy spectrum of an electronic quantum system.

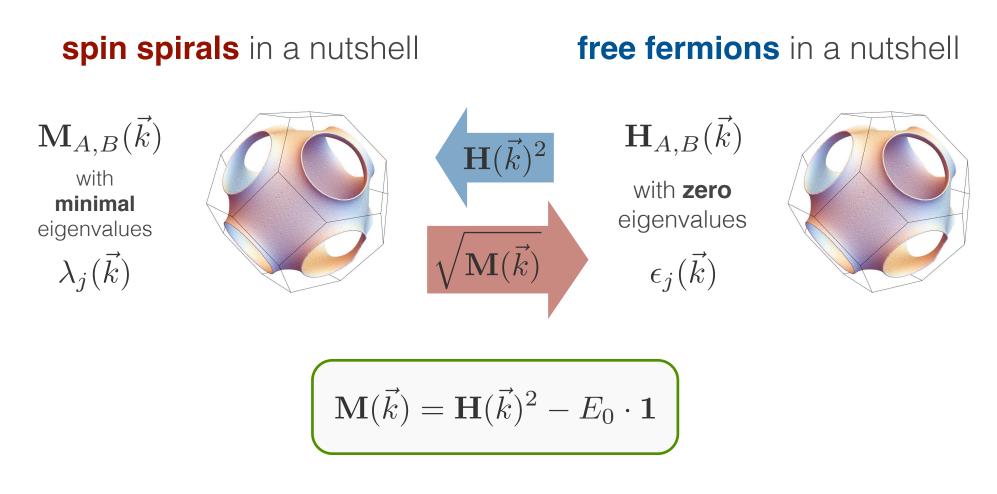
spin spiral manifolds



spin spiral manifolds



matrix correspondence

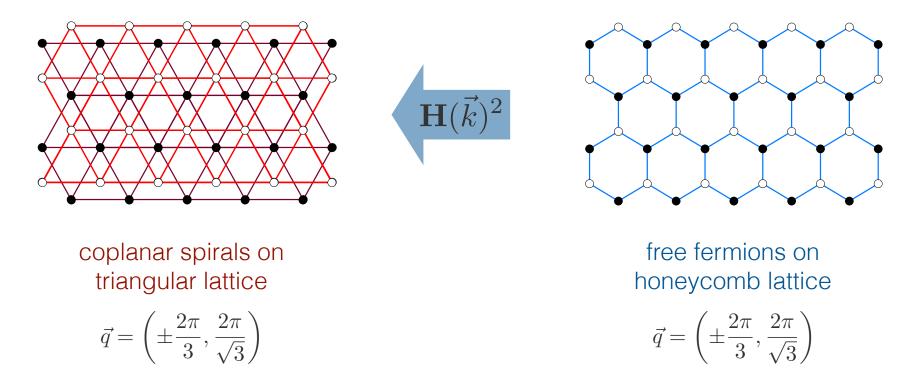


mapping of a classical to quantum system (of same spatial dimensionality) via a 1:1 matrix correspondence

lattice construction

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

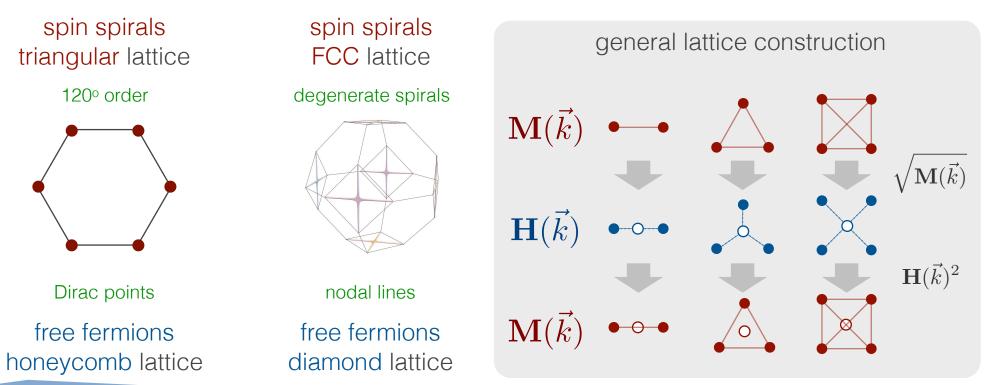
What does "**squaring**" of quantum system mean? Explicit **lattice construction**.



lattice construction

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

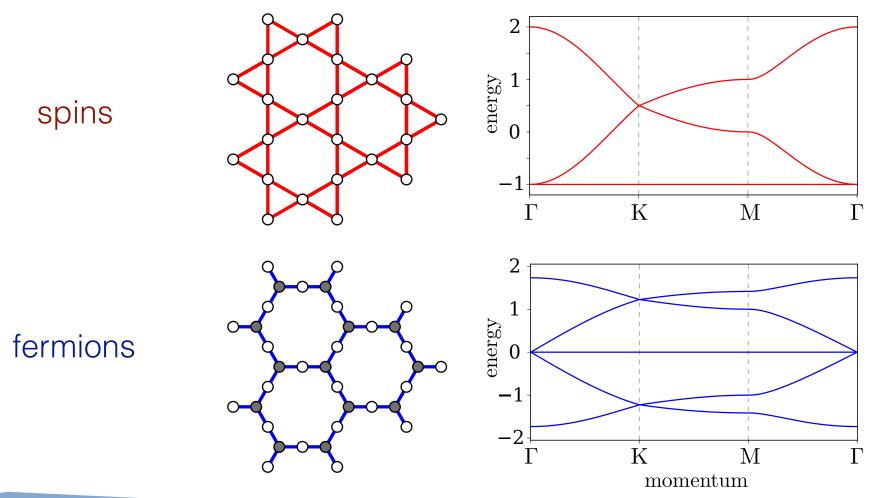
What does "**squaring**" of quantum system mean? Explicit **lattice construction**.



© Simon Trebst

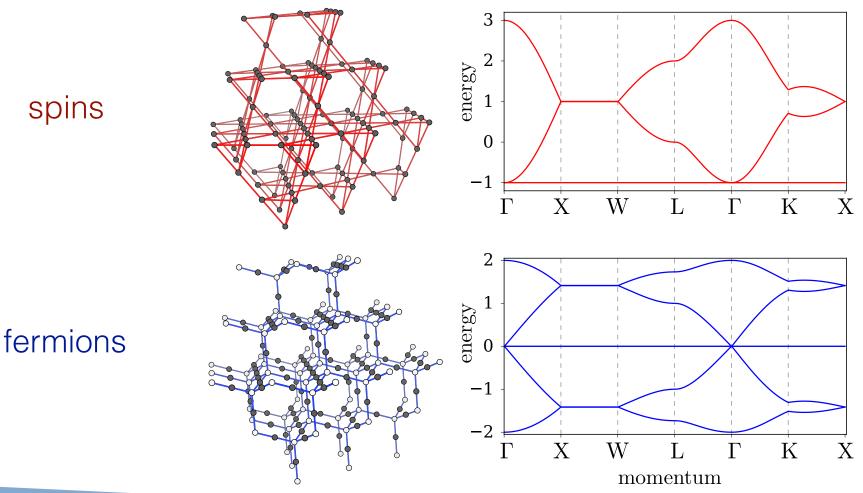
lattice construction – examples

Spectra of the kagome and extended honeycomb lattice.

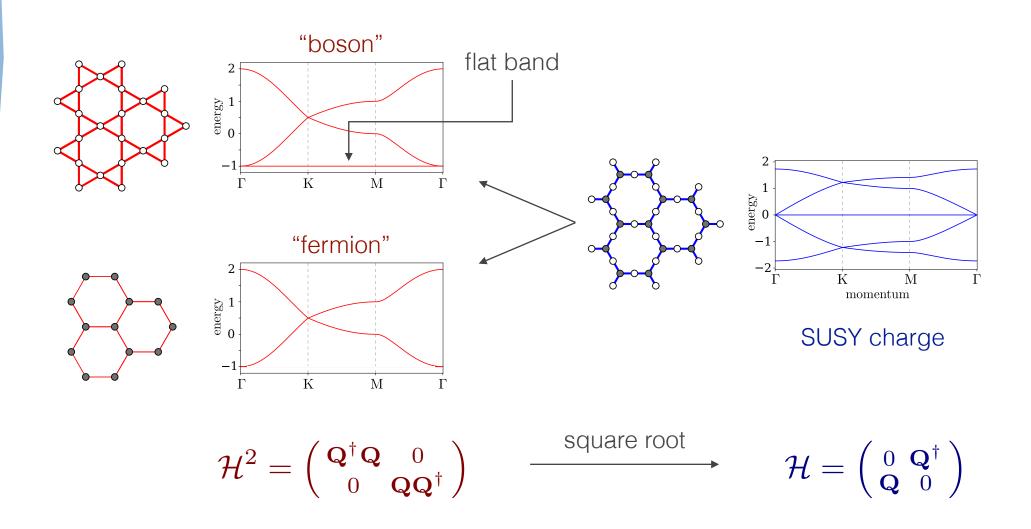


lattice construction – examples

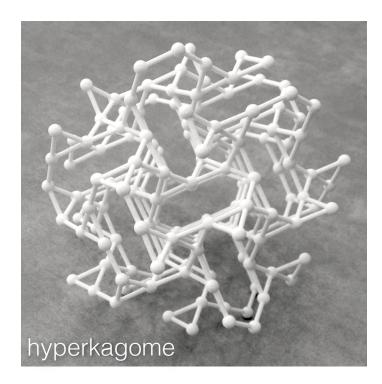
Spectra of the **pyrochlore** and **extended diamond** lattice.



SUSY formulation



parton constructions



PRL 99, 137207 (2007) PHYSICAL REVIEW LETTERS week ending 28 SEPTEMBER 2007

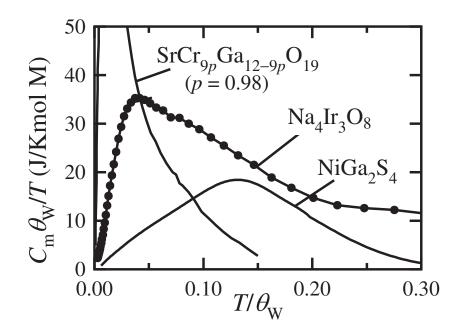
Spin-Liquid State in the S = 1/2 Hyperkagome Antiferromagnet Na₄Ir₃O₈

Yoshihiko Okamoto,^{1,*} Minoru Nohara,² Hiroko Aruga-Katori,¹ and Hidenori Takagi^{1,2} ¹RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ²Department of Advanced Materials, University of Tokyo and CREST-JST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan (Received 19 May 2007; revised manuscript received 24 July 2007; published 27 September 2007)

PRL 101, 197202 (2008)	PHYSICAL	REVIEW	LETTERS	week ending 7 NOVEMBER 2008
------------------------	----------	--------	---------	--------------------------------

Gapless Spin Liquids on the Three-Dimensional Hyperkagome Lattice of Na₄Ir₃O₈

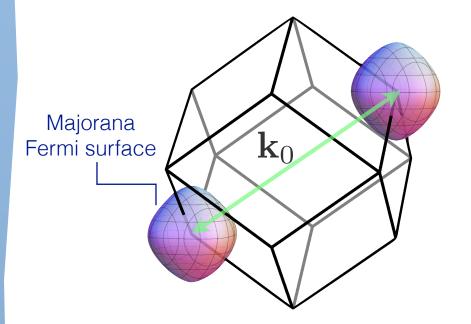
Michael J. Lawler,¹ Arun Paramekanti,¹ Yong Baek Kim,¹ and Leon Balents² ¹Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada ²Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA (Received 30 June 2008; published 3 November 2008)



Gapless quantum spin liquid with a **spinon Fermi surface**.

Parton construction with complex fermions coupled to U(1) gauge field

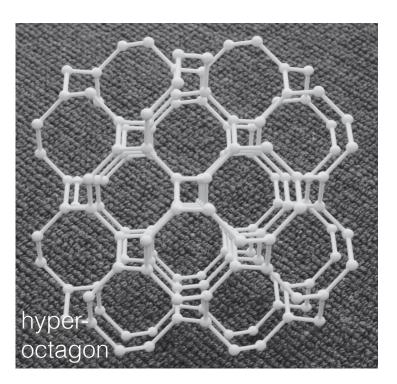
 $C(T) \propto T \ln(1/T)$



Gapless quantum spin liquid with a **Majorana Fermi surface**.

Parton construction with Majorana fermions coupled to Z₂ gauge field

 $C(T) \propto T$



 $\begin{array}{c} \mbox{PHYSICAL REVIEW B $93,085101 (2016)}\\ \ref{eq:starset}\\ \mbox{Classification of gapless \mathbb{Z}_2 spin liquids in three-dimensional Kitaev models} \end{array}$

Kevin O'Brien, Maria Hermanns, and Simon Trebst Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany (Received 17 November 2015; published 1 February 2016)

PHYSICAL REVIEW B 89, 235102 (2014)

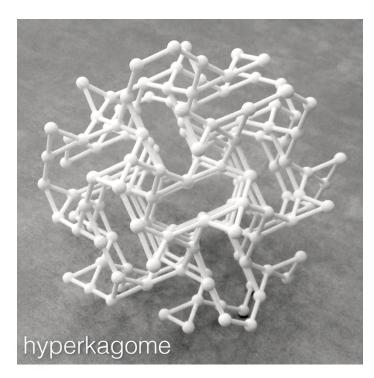
Quantum spin liquid with a Majorana Fermi surface on the three-dimensional hyperoctagon lattice

M. Hermanns and S. Trebst Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany (Received 10 April 2014; revised manuscript received 15 May 2014; published 2 June 2014)

medial

lattice

premedial



Gapless quantum spin liquid with a **spinon Fermi surface**.

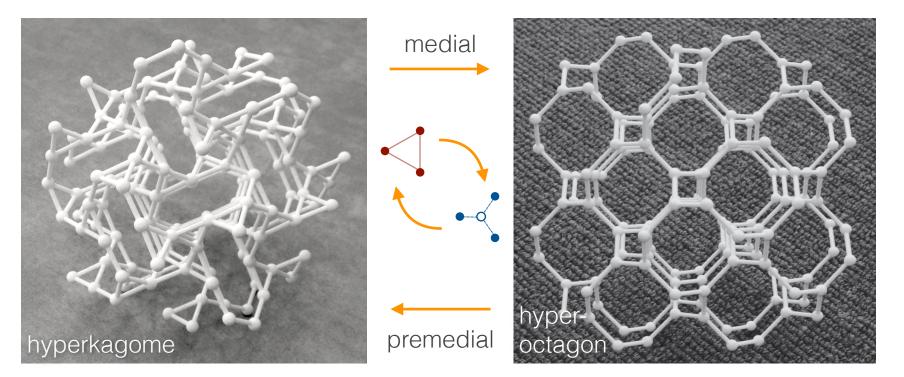
Parton construction with complex fermions coupled to U(1) gauge field

 $C(T) \propto T \ln(1/T)$

Gapless quantum spin liquid with a **Majorana Fermi surface**.

Parton construction with Majorana fermions coupled to Z₂ gauge field

 $C(T) \propto T$



Gapless quantum spin liquid with a **spinon Fermi surface**.

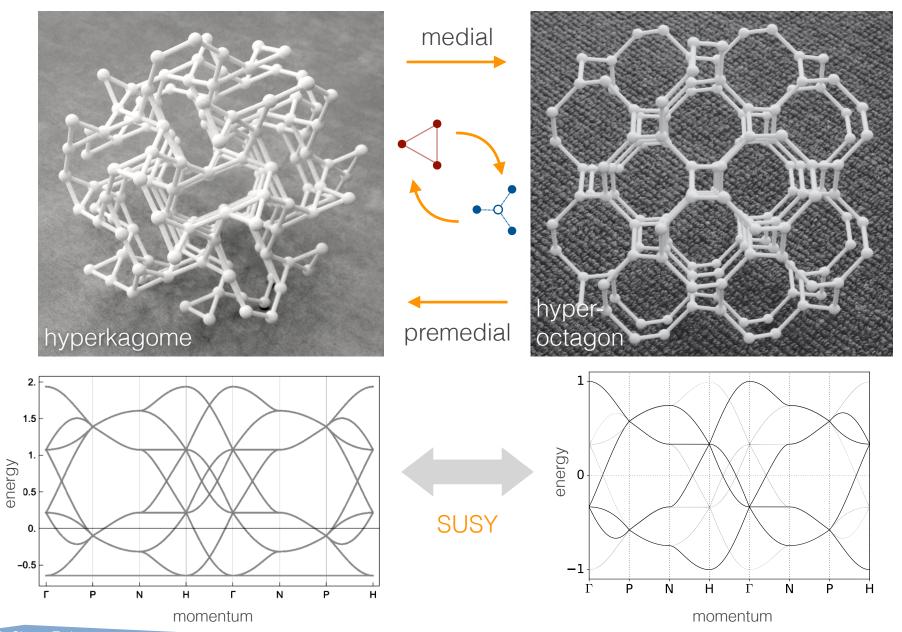
Parton construction with complex fermions coupled to U(1) gauge field

 $C(T) \propto T \ln(1/T)$

Gapless quantum spin liquid with a **Majorana Fermi surface**.

Parton construction with Majorana fermions coupled to Z₂ gauge field

 $C(T) \propto T$



Summary

topological mechanics from supersymmetry

novel topological invariant for boson systems

$$\mathcal{A}_{\text{SUSY}} = \langle v_m(\mathbf{k}) | i\sigma_2 \left(\nabla_k + \sigma_2 \tilde{\mathbf{R}}^{\dagger} \nabla_k \tilde{\mathbf{R}} \right) | v_n(\mathbf{k}) \rangle$$

additional covariant derivative

many other SUSY pairs - spin spirals & fermions, spin liquids, ...

Phys. Rev. Research 1, 032047(R) (2019) and Phys. Rev. B 96, 085145 (2017), Editors' suggestion.

© Simon Trebst

Thanks!

