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topological mechanics

example #1: “floppy modes” in isostatic lattices

C.L. Kane & T.C. Lubensky, Nat. Phys. 10, 39 (2014)

Maxwell relation
⌫ ⌘ N0 �Nss = d · ns � nb
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topological mechanics

example #1: “floppy modes” in isostatic lattices
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Talk on 2019/04/01 by Jan Attig

Topological Mechanics

Example #1:
Boundary modes in isostatic lattices

1D: Building SSH chain in isostatic lattice

[C.L. Kane & T.C. Lubensky, Nat. Phys. 10 (2014)]

“mechanical” SSH chain

“floppy mode” “rigid mode”

Maxwell relation
⌫ ⌘ N0 �Nss = d · ns � nb

C.L. Kane & T.C. Lubensky, Nat. Phys. 10, 39 (2014)
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topological mechanics
example #2: topological insulator from classical pendula 

R. Süsstrunk and S. D. Huber, Science 349, 47 (2015)

S. D. Huber, Nature Phys. 12, 621 (2016)
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Talk on 2019/04/01 by Jan Attig

Topological Mechanics

[Roman Süsstrunk, Sebastian D. Huber, Science 03 (2015)]

[Sebastian D. Huber, Nature Phys., 12, 621, (2016)]

[Videos by Sebastian D. Huber]

Example #2: 
Topological insulator
from classical pendula

Newtonian to Schrödinger equation

Matrix equivalency
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Topological Mechanics

[Roman Süsstrunk, Sebastian D. Huber, Science 03 (2015)]

[Sebastian D. Huber, Nature Phys., 12, 621, (2016)]

[Videos by Sebastian D. Huber]

Example #2: 
Topological insulator
from classical pendula

Newtonian to Schrödinger equation

Matrix equivalency

floppy modes constitute

boundary mode
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basic ingredients of SUSY

Q = c†iRijbj
<latexit sha1_base64="6BCjW1J0TJGx7f/4NpYvKONXQBc="></latexit>

non-hermitian 

SUSY charge operator

fermion

boson

arbitrary matrix

HSUSY = {Q,Q†
} = c†RR†c+ b†R†Rb

<latexit sha1_base64="tZ6KH1VUPxZ/Yd4EF6hNRwZbvtU="></latexit>

supersymmetric Hamiltonian

fermion boson

isospectral

quadratic
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Ingredients of supersymmetry (SUSY)
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SUSY & topological mechanics

topological mechanics – phase space coordinates                               
                                          as bosonic degrees of freedom

(p, q)
<latexit sha1_base64="+5HvwQFPilUeEwzaHZpFzD9lVa8=">AAAB7HicdVDLSsNAFL2pr1pfVZduBotQQUJSBbssuHFZwbSFNpTJdNIOnUzSmYlQQr/BjQtF3PpB7vwbJ20FnweGOZxzL/feEyScKe0471ZhZXVtfaO4Wdra3tndK+8ftFScSkI9EvNYdgKsKGeCepppTjuJpDgKOG0H46vcb99RqVgsbvU0oX6Eh4KFjGBtJK+anE1O++WKY9ecHOg3ce3571RgiWa//NYbxCSNqNCEY6W6rpNoP8NSM8LprNRLFU0wGeMh7RoqcESVn82XnaETowxQGEvzhEZz9WtHhiOlplFgKiOsR+qnl4t/ed1Uh3U/YyJJNRVkMShMOdIxyi9HAyYp0XxqCCaSmV0RGWGJiTb5lEwIn5ei/0mrZrvntnNzUWnUl3EU4QiOoQouXEIDrqEJHhBgcA+P8GQJ68F6tl4WpQVr2XMI32C9fgDfqo4I</latexit>

Q = �B
i 1ij p̂j + �A

i Aij q̂j
<latexit sha1_base64="E7yLvRwXCtSh/i4NB8Q4t+vr5Vg="></latexit>

SUSY charge

real fermions

real bosons

natural SUSY partners
real fermions
 real bosons [q̂i, p̂j ] = i�i,j

<latexit sha1_base64="MulObDDmV9wjLjEifF6WRdaVQn8=">AAACD3icdVDLSgNBEJz1GeNr1aOXwaB4CGHWZzwIAS8eFYwGsssyO5mYibMPZ3qFsOwfePFXvHhQxKtXb/6NkzWCihY0FFXddHcFiRQaCHm3xsYnJqemSzPl2bn5hUV7aflcx6livMliGatWQDWXIuJNECB5K1GchoHkF8HV0dC/uOFKizg6g0HCvZBeRqIrGAUj+fZG2+1RyK5zX1QLluR+38OHWGC3wyVQPxPVfu7bFVLbJc7BHsGkRgoUpO5sO9gZKRU0wolvv7mdmKUhj4BJqnXbIQl4GVUgmOR52U01Tyi7ope8bWhEQ669rPgnx+tG6eBurExFgAv1+0RGQ60HYWA6Qwo9/dsbin957RS6dS8TUZICj9jnom4qMcR4GA7uCMUZyIEhlClhbsWsRxVlYCIsmxC+PsX/k/OtmrNdI6c7lUZ9FEcJraI1tIkctI8a6BidoCZi6Bbdo0f0ZN1ZD9az9fLZOmaNZlbQD1ivH9HInHs=</latexit>= Majorana fermions 
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SUSY & topological mechanics

Q = �B
i 1ij p̂j + �A

i Aij q̂j
<latexit sha1_base64="E7yLvRwXCtSh/i4NB8Q4t+vr5Vg="></latexit>

SUSY charge

R = ( 1 0
0 A )

<latexit sha1_base64="Xljr641yXEgTyUf9iMWNU6vg7cE="></latexit>

encodes block-diagonal form

R
<latexit sha1_base64="sKRNjxrC8nFRYJSw/VINSMEuA8g=">AAAB8nicdVDLSgMxFL1TX7W+qi7dBIvgapipgl0W3LisYh8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaSv4PBByOOde7r0nSjnTxvPendLK6tr6RnmzsrW9s7tX3T/oaJkpQttEcql6EdaUM0HbhhlOe6miOIk47UaTy8Lv3lGlmRS3ZprSMMEjwWJGsLFSgFDej2J0M6ugQbXmuXWvAPpNfHf+ezVYojWovvWHkmQJFYZwrHXge6kJc6wMI5zOKv1M0xSTCR7RwFKBE6rDfL7yDJ1YZYhiqewTBs3Vrx05TrSeJpGtTLAZ659eIf7lBZmJG2HORJoZKshiUJxxZCQq7kdDpigxfGoJJorZXREZY4WJsSlVbAifl6L/Safu+meud31eazaWcZThCI7hFHy4gCZcQQvaQEDCPTzCk2OcB+fZeVmUlpxlzyF8g/P6ATe7j94=</latexit>

is the rigidity matrix of the mechanical system.
It  allows to directly connect mechanical systems to Majorana analogues, and vice versa.

dynamical matrix

Hfermion = �i�A
j Ajk �B

k + h.c.
<latexit sha1_base64="jCPPbCYxTcdcVRh9vSRyOMQ9alM="></latexit>

Hboson = p̂ip̂i + q̂i(A
TA)ij q̂j

<latexit sha1_base64="COpJdZycxmWdPLj0vAWet9bpAGc=">AAACTXicdZHPSxwxFMczW3+urW7bo5fgIlgKS0b7Y3soWLx4VHBV2FmHTDbjRjPJNHlTuoT5B3sp9Nb/wosHSxEzs2urog8Cn3zfe7yXb5JcCguE/A4az2Zm5+YXFptLz18sr7Revjq0ujCM95iW2hwn1HIpFO+BAMmPc8Nplkh+lJzvVPmjb9xYodUBjHM+yOipEqlgFLwUt4ZRRmHEqHS7ZRwB/w4u0VarEn/GOBpRcHkZizv0dsJfK96om5PUfSlPDvD/y5vYibPyX+FZ3GqTznsSfvpAMOmQOmrohlshDqdKG01jL279ioaaFRlXwCS1th+SHAaOGhBM8rIZFZbnlJ3TU973qGjG7cDVbpR43StDnGrjjwJcq3c7HM2sHWeJr6w2tg9zlfhYrl9A2h04ofICuGKTQWkhMWhcWYuHwnAGcuyBMiP8rpiNqKEM/Ac0vQm3L8VPw+FmJ9zqkP137e3u1I4FtIrW0AYK0Ue0jXbRHuohhn6gC3SF/gQ/g8vgb3A9KW0E057X6F405m8AOba1pw==</latexit>

HSUSY = {Q,Q†}
<latexit sha1_base64="MazMYoFkgsqguNaLf8mojS7CoNE=">AAACHnicdVDLSgMxFM34rPU16tJNsAgupEyrYjdCwU2XLbUP6YxDJk2nocnMkGSEMsyXuPFX3LhQRHClf2OmrVBfB0JOzrmX3Hu8iFGpLOvDWFhcWl5Zza3l1zc2t7bNnd22DGOBSQuHLBRdD0nCaEBaiipGupEgiHuMdLzRZeZ3bomQNAyu1DgiDkd+QAcUI6Ul1zyruYktOGy2mtcpvIB2YnOkhhixpJHCYzj3urH7yPeJgHbqmgWrWLYywN+kVJzcVgHMUHfNN7sf4piTQGGGpOyVrEg5CRKKYkbSvB1LEiE8Qj7paRogTqSTTNZL4aFW+nAQCn0CBSfqfEeCuJRj7unKbFr508vEv7xerAYVJ6FBFCsS4OlHg5hBFcIsK9ingmDFxpogLKieFeIhEggrnWheh/C1KfyftMvF0knRapwWqpVZHDmwDw7AESiBc1AFNVAHLYDBHXgAT+DZuDcejRfjdVq6YMx69sA3GO+fLi+h5A==</latexit>

Majoranas hopping

on two sublattices AB

bosons

on one sublattice (B)

�A �A�B �B

p̂ p̂
q̂ q̂
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SUSY & topological mechanics
From real bosons to classical balls and springs.
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Talk on 2019/04/01 by Jan Attig

From real bosons to balls and springs

Real Boson model on B sublattice Model of Classical balls and 
springs on B sublattice
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<latexit sha1_base64="erxonSQS9tcRlmSBQmra1PZL13U="></latexit>

classical limit

Hboson = p̂ip̂i + q̂i(A
TA)ij q̂j

<latexit sha1_base64="COpJdZycxmWdPLj0vAWet9bpAGc=">AAACTXicdZHPSxwxFMczW3+urW7bo5fgIlgKS0b7Y3soWLx4VHBV2FmHTDbjRjPJNHlTuoT5B3sp9Nb/wosHSxEzs2urog8Cn3zfe7yXb5JcCguE/A4az2Zm5+YXFptLz18sr7Revjq0ujCM95iW2hwn1HIpFO+BAMmPc8Nplkh+lJzvVPmjb9xYodUBjHM+yOipEqlgFLwUt4ZRRmHEqHS7ZRwB/w4u0VarEn/GOBpRcHkZizv0dsJfK96om5PUfSlPDvD/y5vYibPyX+FZ3GqTznsSfvpAMOmQOmrohlshDqdKG01jL279ioaaFRlXwCS1th+SHAaOGhBM8rIZFZbnlJ3TU973qGjG7cDVbpR43StDnGrjjwJcq3c7HM2sHWeJr6w2tg9zlfhYrl9A2h04ofICuGKTQWkhMWhcWYuHwnAGcuyBMiP8rpiNqKEM/Ac0vQm3L8VPw+FmJ9zqkP137e3u1I4FtIrW0AYK0Ue0jXbRHuohhn6gC3SF/gQ/g8vgb3A9KW0E057X6F405m8AOba1pw==</latexit>

�A �A�B �B

p̂ p̂
q̂ q̂

kij = �2
X

a2A

AT
iaAaj

<latexit sha1_base64="sYx8rMSCUlZuaYUPD3e/a1Gv9lo="></latexit>

i = 2
X

a2A

A2
ia �

X

b2B

kib
<latexit sha1_base64="xINv0kyD4ToZbezmv/CfG6LCKQU="></latexit>

intersite springs on-site springs
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Kitaev model

gapped spin liquid

gapless spin liquid
Majorana metal

Kz

Ky

Kx

Kx + Kz + Ky =  const.

KzKy

Kx

Analytical solution represents spins in 
terms of four Majorana fermions

S�
i = i ci c

�
i

<latexit sha1_base64="1A+gO7Ow3Kq428iA0kkitmsIC2E=">AAACHnicdVDLSgMxFM34rPVVdekmWAQXpUyLohuh6MZlRfuATjvcSdM2NMkMSUYoQ7/Ejb/ixoUigiv9GzNtBZ8HQk7OuZebe4KIM21c992Zm19YXFrOrGRX19Y3NnNb23UdxorQGgl5qJoBaMqZpDXDDKfNSFEQAaeNYHie+o0bqjQL5bUZRbQtoC9ZjxEwVvJzR1cdrw9CgM/wKWZewStg4rNO4kUDkCYUU3eMvUIqT1/Yz+XdYtlNgX+TUnFyu3k0Q9XPvXrdkMSCSkM4aN0quZFpJ6AMI5yOs16saQRkCH3aslSCoLqdTNYb432rdHEvVPZIgyfq144EhNYjEdhKAWagf3qp+JfXik3vpJ0wGcWGSjId1Is5NiFOs8JdpigxfGQJEMXsXzEZgAJibKJZG8Lnpvh/Ui8XS5ZfHuYrZ7M4MmgX7aEDVELHqIIuUBXVEEG36B49oifnznlwnp2XaemcM+vZQd/gvH0ApxqhlA==</latexit><latexit sha1_base64="1A+gO7Ow3Kq428iA0kkitmsIC2E=">AAACHnicdVDLSgMxFM34rPVVdekmWAQXpUyLohuh6MZlRfuATjvcSdM2NMkMSUYoQ7/Ejb/ixoUigiv9GzNtBZ8HQk7OuZebe4KIM21c992Zm19YXFrOrGRX19Y3NnNb23UdxorQGgl5qJoBaMqZpDXDDKfNSFEQAaeNYHie+o0bqjQL5bUZRbQtoC9ZjxEwVvJzR1cdrw9CgM/wKWZewStg4rNO4kUDkCYUU3eMvUIqT1/Yz+XdYtlNgX+TUnFyu3k0Q9XPvXrdkMSCSkM4aN0quZFpJ6AMI5yOs16saQRkCH3aslSCoLqdTNYb432rdHEvVPZIgyfq144EhNYjEdhKAWagf3qp+JfXik3vpJ0wGcWGSjId1Is5NiFOs8JdpigxfGQJEMXsXzEZgAJibKJZG8Lnpvh/Ui8XS5ZfHuYrZ7M4MmgX7aEDVELHqIIuUBXVEEG36B49oifnznlwnp2XaemcM+vZQd/gvH0ApxqhlA==</latexit><latexit sha1_base64="1A+gO7Ow3Kq428iA0kkitmsIC2E=">AAACHnicdVDLSgMxFM34rPVVdekmWAQXpUyLohuh6MZlRfuATjvcSdM2NMkMSUYoQ7/Ejb/ixoUigiv9GzNtBZ8HQk7OuZebe4KIM21c992Zm19YXFrOrGRX19Y3NnNb23UdxorQGgl5qJoBaMqZpDXDDKfNSFEQAaeNYHie+o0bqjQL5bUZRbQtoC9ZjxEwVvJzR1cdrw9CgM/wKWZewStg4rNO4kUDkCYUU3eMvUIqT1/Yz+XdYtlNgX+TUnFyu3k0Q9XPvXrdkMSCSkM4aN0quZFpJ6AMI5yOs16saQRkCH3aslSCoLqdTNYb432rdHEvVPZIgyfq144EhNYjEdhKAWagf3qp+JfXik3vpJ0wGcWGSjId1Is5NiFOs8JdpigxfGQJEMXsXzEZgAJibKJZG8Lnpvh/Ui8XS5ZfHuYrZ7M4MmgX7aEDVELHqIIuUBXVEEG36B49oifnznlwnp2XaemcM+vZQd/gvH0ApxqhlA==</latexit><latexit sha1_base64="1A+gO7Ow3Kq428iA0kkitmsIC2E=">AAACHnicdVDLSgMxFM34rPVVdekmWAQXpUyLohuh6MZlRfuATjvcSdM2NMkMSUYoQ7/Ejb/ixoUigiv9GzNtBZ8HQk7OuZebe4KIM21c992Zm19YXFrOrGRX19Y3NnNb23UdxorQGgl5qJoBaMqZpDXDDKfNSFEQAaeNYHie+o0bqjQL5bUZRbQtoC9ZjxEwVvJzR1cdrw9CgM/wKWZewStg4rNO4kUDkCYUU3eMvUIqT1/Yz+XdYtlNgX+TUnFyu3k0Q9XPvXrdkMSCSkM4aN0quZFpJ6AMI5yOs16saQRkCH3aslSCoLqdTNYb432rdHEvVPZIgyfq144EhNYjEdhKAWagf3qp+JfXik3vpJ0wGcWGSjId1Is5NiFOs8JdpigxfGQJEMXsXzEZgAJibKJZG8Lnpvh/Ui8XS5ZfHuYrZ7M4MmgX7aEDVELHqIIuUBXVEEG36B49oifnznlwnp2XaemcM+vZQd/gvH0ApxqhlA==</latexit>
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<latexit sha1_base64="7Rxl2bMA/79sBWVlGgynjwFGRCQ="></latexit><latexit sha1_base64="7Rxl2bMA/79sBWVlGgynjwFGRCQ="></latexit><latexit sha1_base64="7Rxl2bMA/79sBWVlGgynjwFGRCQ="></latexit><latexit sha1_base64="7Rxl2bMA/79sBWVlGgynjwFGRCQ="></latexit>

gapped spin liquid

gapless spin liquid
Majorana metal

Kz

Ky

Kx

Kx + Kz + Ky =  const.

KzKy

Kx
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balls & springs Kitaev model
Majorana fermions


on honeycomb lattice 
balls & springs


on triangular lattice 
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From real bosons to balls and springs

Real Boson model on B sublattice Model of Classical balls and 
springs on B sublattice
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balls & springs Kitaev model
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Talk on 2019/04/01 by Jan Attig

From real bosons to balls and springs

Real Boson model on B sublattice Model of Classical balls and 
springs on B sublattice

simulate balls & springs model by integrating

classical equations of motion

periodic drive of a single sites
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balls & springs Kitaev model
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Dirac cone with linear dispersion

= evidence of many-body physics 

 
(every single spring has a quadratic dispersion)

energy gap = low-frequency rigidity 
of a mechanical system (unusual) 

 
(no Goldstone modes here, explicit symmetry breaking)

mechanical energy spectra

http://www.thp.uni-koeln.de/trebst/
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mechanical 2nd order TI
Quantum spin liquid with Majorana corner modes

V. Dwivedi, C. Hickey, T. Eschmann & ST, PRB 98, 054432 (2018)

�1 1

�
1 1

_

generalized Kitaev model 
Shastry-Sutherland lattice


see SrCu2(BO3)2

chiral spin liquid

= Chern insulator

2nd order spin liquid

= 2nd order topological insulator

T. Eschmann, V. Dwivedi, H. F. Legg, C. Hickey & ST, PRR 2, 043159 (2020)

TIM ESCHMANN et al. PHYSICAL REVIEW RESEARCH 2, 043159 (2020)

FIG. 1. Variable-order spin liquids can be conceptualized via the formation of (topological) band structures of emergent partons. Shown
here is the reflection of these band structures in the ground-state parton wave function |ψi j |2 for different settings with (a) trivial topology,
(b) conventional (first-order) topology with gapless (chiral) edge modes, and (c) second-order topology with localized corner modes. The
actual calculations have been performed in the Majorana representation of model (1) on a 16 × 16 lattice.

insulators (TIs), whose topological features are protected by
time reversal and/or charge conjugation symmetries, from
crystalline TIs whose topology is endowed by certain lattice
symmetries. A particular example of such crystalline TIs are
second-order topological insulators, an instance of higher-
order topology [22]. An nth-order TI in d spatial dimensions
exhibits (d − n)-dimensional topologically protected gapless
modes that are localized at the intersection of n boundary
planes, while the boundaries of codimension less than n
remain fully gapped. A second-order TI in two spatial di-
mensions thus exhibits topologically protected corner modes,
i.e., zero-dimensional gapless modes at the intersection of two
boundaries giving rise to a corner. Such higher-order topology
can also play out in the context of a quantum spin liquid—
with the itinerant fractionalized parton degrees of freedom
forming a nontrivial topological band structure. The example
of a second-order spin liquid with topologically protected
Majorana corner modes has been discussed in the context
of an exactly solvable spin-3/2 generalization of the Kitaev
model [23]. Within this same framework, the chiral spin liquid
can be thought of as a first-order spin liquid, since a Chern
insulator can be considered an example of a first-order topo-
logical insulator.2

In this manuscript, we study the thermodynamic precursors
and symmetry-breaking thermal phase transitions leading to
the formation of a family of spin liquid ground states which
exhibit the full range of parton band topology, second-order,
conventional (first-order), and trivial topology, in a general-
ized Kitaev model. We employ sign-problem free quantum
Monte Carlo simulations in the parton basis [24]. These
numerically exact calculations allow us to track the fractional-
ization of the original spin degrees of freedom, the formation
of gauge order, and the spontaneous breaking of time-reversal
symmetry upon entering the different flavors of spin liquid
ground states. Our main results include (i) the observation
that the thermal stability of the chiral spin liquid in our model
is enhanced by almost an order of magnitude in comparison
with other chiral spin liquid models, with the highest transi-
tion temperatures reaching about 1/10 of the bare coupling
strength; (ii) the emergence of partial flux order in an inter-
mediate temperature range, accompanied by a characteristic
three-peak signature in the specific heat; and (iii) the for-

2Note that, though all of the spin liquid ground states spontaneously
break time-reversal symmetry, we reserve the term “chiral spin liq-
uid” for those that exhibit chiral edge states (or, more technically,
those that possess a nonzero chiral central charge).

mation of a gapless phase at finite temperatures that is best
described as a thermal Majorana metal.

Our discussion of these results in the remainder of the
manuscript is structured as follows. In Sec. II, we briefly
introduce a generalized spin-3/2 Kitaev model, its "-matrix
representation, and the underlying five-coordinated Shastry-
Sutherland lattice. In discussing its analytical solution at zero
temperature, we also introduce the parton basis relevant to our
sign-free QMC simulations to explore the thermodynamics at
finite temperatures. The formation of a conventional (first-
order) chiral spin liquid is discussed in Sec. III. Our main
results on thermal stability, partial flux ordering, and thermal
metal formation are all discussed in detail here. In Sec. IV,
we then turn to the formation of a second-order spin liquid,
whose zero-temperature properties we previously discussed in
Ref. [23]. Our focus here is on its thermodynamic properties.
We conclude with an outlook in Sec. V.

II. THE SHASTRY-SUTHERLAND KITAEV MODEL

We start our discussion with a brief review of the general-
ization of the Kitaev model to the Shastry-Sutherland lattice
[23,25], its fundamental (lattice) symmetries, the formation of
spin liquid ground states of various levels of topology, and its
numerical representation in sign-free quantum Monte Carlo
simulations.

A. The model: spin-3/2 and Gamma matrices

The Kitaev honeycomb model is the paradigmatic exam-
ple of an exactly solvable quantum spin liquid model. The
model consists of spin-1/2 degrees of freedom on the sites
of a honeycomb lattice interacting via bond-dependent Ising
interactions. By representing the spin operators in terms of
Majorana fermions, the model can be reduced to a nearest-
neighbor hopping model of noninteracting fermions coupled
to a static Z2 gauge field. The Kitaev model and its exact
solution can be straightforwardly generalized to other lattices
with an odd coordination number, z = 2n − 1, wherein the
local “spins” are decomposed into 2n Majorana fermions.

Here, we study such a generalization of Kitaev’s hon-
eycomb model to the pentacoordinated Shastry-Sutherland
lattice, previously introduced in Refs. [23,25] (see Fig. 2). The
lattice is most well-known for the orthogonal dimer model,
which was solved by Shastry and Sutherland [26] and serves
as an effective low-temperature model for the transition metal
oxide SrCu2(BO3)2 [27]. The generalized Kitaev model is
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FIG. 1. Mechanical Kitaev model. a) and b) Realization
in the form of a classical balls & springs model (see also main
text). c) The phase diagram of the classical model exhibits
a gapless region (blue) and three gapped phases (grey). The
excitation spectra of the classical model extracted from nu-
merical simulations for the d) gapless and e) gapped phases.

the balls and springs configuration (for drives of dif-
ferent frequencies !), which we subsequently Fourier-
transform. This allows us to recover the full energy
dispersion of the classical system as shown in Figs. 1 d)
and e) for two sets of coupling parameters. In Fig. 1 d)
we probe the isotropically coupled Kitaev model and re-
cover the well known Dirac cone spectrum of the quan-
tum system. Obtaining such a linear low-energy spec-
trum in a spring system (which on the level of indi-
vidual springs always exhibits quadratic energy disper-
sions) is striking evidence of the many-body physics at
play. In Fig. 1 e) we show an energy spectrum for a
situation where one of the three coupling parameters
dominates and the spectrum exhibits a well-defined low-
energy gap, i.e. the mechanical system remains rigid for
low frequency drives up to a threshold given by the gap.
While this is imposed from the physics of the quantum
system, it is again an unusual situation for a classical
system, which typically defy a small-frequency rigidity
(in particular on the level of individual springs)15.

The propagating phonon modes constitute the clas-
sical analogs of the Majorana fermions in the Kitaev
model, with their energy spectra being in one-to-one
correspondence. Note that also the underlying Z2 gauge
structure of the Kitaev spin liquid is fully present in the
mechanical model. A pair of gauge excitations – visons
in the language of Z2 spin liquids – can be excited by
flipping the sign of an intersite spring constant16, in di-
rect analogy to flipping the hopping on a bond in the

quantum model. In total, our SUSY construction allows
to build a full mechanical analog of the Z2 quantum
spin liquid of the Kitaev model, complete with classical
analogs of both the fractional quasiparticles (Majorana
fermions) and the underlying Z2 lattice gauge structure.
Mechanical second-order TI.– As a second example, we
apply our SUSY construction to derive a classical balls
and springs model of the “octupolar insulator” intro-
duced in Refs. 17 and 18 as a principal example of a
second-order topological insulator (SOTI) with topolog-
ically protected, gapless corner modes19. The original
formulation17 of the SOTI is based on a square lattice
tight-binding model whose hopping strengths are stag-
gered for the elementary square plaquettes of the lattice
(which each encompasses a ⇡-flux). While the original
model is not sensitive to whether the underlying de-
grees of freedom are complex or real fermions, we again
take the real-fermion formulation as principal input for
our SUSY construction. Going through the two steps of
first constructing the SUSY-related real boson model (6)
and then taking its classical limit (7), we arrive at the
balls and springs model illustrated in Figs. 2 a) and b).
The mechanical system is composed of two square lat-
tices of coupled balls and springs (denoted B1 and B2 in
the figure). The two lattices turn out to be decoupled,
since any interlattice coupling always arises from two
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FIG. 2. Balls & springs model of a second-order topo-

logical insulator. Mechanical realization shown in a) side
view and b) top view. As discussed in the main text the sys-
tem decouples into two independent systems, denoted here
by B1 and B2. c) Schematic phase diagram for a stagger-
ing of the coupling constants around the isotropic coupling
point. The excitation spectra of the classical model ex-
tracted from numerical simulations for the d) gapless and
e) gapped (both topological and trivial) phase.
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dominates and the spectrum exhibits a well-defined low-
energy gap, i.e. the mechanical system remains rigid for
low frequency drives up to a threshold given by the gap.
While this is imposed from the physics of the quantum
system, it is again an unusual situation for a classical
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The propagating phonon modes constitute the clas-
sical analogs of the Majorana fermions in the Kitaev
model, with their energy spectra being in one-to-one
correspondence. Note that also the underlying Z2 gauge
structure of the Kitaev spin liquid is fully present in the
mechanical model. A pair of gauge excitations – visons
in the language of Z2 spin liquids – can be excited by
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rect analogy to flipping the hopping on a bond in the

quantum model. In total, our SUSY construction allows
to build a full mechanical analog of the Z2 quantum
spin liquid of the Kitaev model, complete with classical
analogs of both the fractional quasiparticles (Majorana
fermions) and the underlying Z2 lattice gauge structure.
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apply our SUSY construction to derive a classical balls
and springs model of the “octupolar insulator” intro-
duced in Refs. 17 and 18 as a principal example of a
second-order topological insulator (SOTI) with topolog-
ically protected, gapless corner modes19. The original
formulation17 of the SOTI is based on a square lattice
tight-binding model whose hopping strengths are stag-
gered for the elementary square plaquettes of the lattice
(which each encompasses a ⇡-flux). While the original
model is not sensitive to whether the underlying de-
grees of freedom are complex or real fermions, we again
take the real-fermion formulation as principal input for
our SUSY construction. Going through the two steps of
first constructing the SUSY-related real boson model (6)
and then taking its classical limit (7), we arrive at the
balls and springs model illustrated in Figs. 2 a) and b).
The mechanical system is composed of two square lat-
tices of coupled balls and springs (denoted B1 and B2 in
the figure). The two lattices turn out to be decoupled,
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logical insulator. Mechanical realization shown in a) side
view and b) top view. As discussed in the main text the sys-
tem decouples into two independent systems, denoted here
by B1 and B2. c) Schematic phase diagram for a stagger-
ing of the coupling constants around the isotropic coupling
point. The excitation spectra of the classical model ex-
tracted from numerical simulations for the d) gapless and
e) gapped (both topological and trivial) phase.
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topological invariants
This SUSY construction allows to explore 


topological properties of bosonic systems 

by connecting the symplectic bosonic eigenfunctions 


with a fermionic Berry phase of its SUSY partner.

fermionic Berry curvature
fermionic eigenstates

A = hum(k)|irk|un(k)i
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route to classify bosonic systems
This SUSY construction allows to explore 


topological properties of bosonic systems 

by connecting the symplectic bosonic eigenfunctions 


with a fermionic Berry phase of its SUSY partner.
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Bosonic systems that are trivial with regard to conventional definition of Berry phase

can be non-trivial with regard to SUSY Berry phase!
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Why Coplanar Spirals?

● Typically arise from magnetic 

frustration

● Prominent examples:

– multiferroics

– spin textures / multi-q states

● Skyrmions (3 spirals)

● Z2 vortex crystals (3 spirals)

– spiral spin liquids

Description only needs one wavevector

Coplanar spirals typically arise in the presence of 
competing interactions

Familiar example 

• 120o order of Heisenberg 

AFM on triangular lattice

~S(~r) = Re
⇣⇣

~S1 + i~S2

⌘
ei~q~r

⌘
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Example: Square of honeycomb lattice

fermion

matrix

spin

matrix

triangular lattice x2honeycomb lattice

Fermi surface: Dirac cones Groundstate: 120 degree order
~q =

✓
±2⇡

3
,
2⇡p
3

◆
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spin spiral materials
Frustrated diamond lattice antiferromagnets

A-site spinels

  MnSc2S4
  FeSc2S4


   CoAl2O4


   NiRh2O4

S=5/2

S=2

S=3/2

S=1

H = J1
X

hi,ji

~Si
~Sj + J2

X

hhi,jii

~Si
~Sj

J2/J1 = 0.2 J2/J1 = 0.4 J2/J1 = 3 J2/J1 = 100

degenerate coplanar spirals form

spin spiral surfaces in k-space
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Experimental observation of spin spiral surface in 

inelastic neutron scattering of MnSc2S4.
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Spin spirals on the diamond lattice

Manifold of degenerate

groundstate wavevectors

Order by disorder at finite temperature[1]

Experimentally confirmed[2]

[1] Balents, Trebst et al., Nature Phys. (2007)

[2] Rüegg et al.,  Nature Phys. 2017

Nature Phys. 3, 487 (2007) Nature Phys. 13, 157 (2017)

J2/J1 = 0.85

spin spiral materials

http://www.thp.uni-koeln.de/trebst/
http://www.nature.com/nphys/journal/v3/n7/abs/nphys622.html
http://www.nature.com/nphys/journal/v13/n2/full/nphys3914.html
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spin spiral manifolds
Spiral manifolds are extremely reminiscent of Fermi surfaces

triangular lattice FCC lattice diamond lattice

Dirac points nodal lines Fermi surface

But: 

Spiral manifolds describe ground state of classical spin system,


while Fermi surfaces are features in the middle of the energy 
spectrum of an electronic quantum system.
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spin spiral manifolds
spin spirals in a nutshell

H =
X

hi,ji

Jij ~Si
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X

~k

X

A,B

SA
~k
MA,B(~k)S

B
�~k

Fourier transform

of spin model

Lu
tti

ng
er

-T
is

za

diagonalize 
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find minimal 
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free fermions in a nutshell

H =
X

hi,ji

tij c
†
i cj

=
X

~k

X

A,B

c†
A,~k

HA,B(~k) cB,~k
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find zero 
eigenvalues
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spin spiral manifolds
spin spirals in a nutshell free fermions in a nutshell

MA,B(~k)
with 

minimal 
eigenvalues

�j(~k)

HA,B(~k)

with zero 
eigenvalues

✏j(~k)

H(~k)2 ✏j(~k)
2has eigenvalues

zero eigenvalues of H(~k)

are minimal eigenvalues of H(~k)2

make ansatz

M(~k) = H(~k)2 � E0 · 1
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matrix correspondence
spin spirals in a nutshell free fermions in a nutshell

MA,B(~k)
with 

minimal 
eigenvalues

�j(~k)

HA,B(~k)

with zero 
eigenvalues

✏j(~k)

H(~k)2

q
M(~k)

mapping of a classical to quantum system

(of same spatial dimensionality)

via a 1:1 matrix correspondence

→  reminiscent of “topological mechanics”

M(~k) = H(~k)2 � E0 · 1
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M(~k) = H(~k)2 � E0 · 1

What does “squaring” of quantum system mean?

lattice construction

free fermions on

honeycomb lattice

Explicit lattice construction.

H(~k)2

coplanar spirals on

triangular lattice

~q =

✓
±2⇡

3
,
2⇡p
3

◆
~q =

✓
±2⇡

3
,
2⇡p
3

◆
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M(~k) = H(~k)2 � E0 · 1

What does “squaring” of quantum system mean?

lattice construction

Explicit lattice construction.

spin spirals 

triangular lattice

Dirac points

free fermions 
honeycomb lattice

120o order

spin spirals

FCC lattice

nodal lines

free fermions

diamond lattice

degenerate spirals

general lattice construction

q
M(~k)

H(~k)2

H(~k)

M(~k)

M(~k)

http://www.thp.uni-koeln.de/trebst/
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lattice construction – examples

Spectra of the kagome and extended honeycomb lattice.

2

1

0

1

2

1

0

2

1

spins

fermions
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lattice construction – examples

Spectra of the pyrochlore and extended diamond lattice.

spins

fermions

1

0

1

2

3

2

1

0

1

2
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SUSY formulation
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Example: Spins on the honeycomb lattice

Fermion model
Fermion spectrum

Spin model
Luttinger Tisza spectrum

replace

take next-nearest neighbors A & B
replace extended honeycomb

honeycomb

Kagome 2

1

0

1

2

1

0

2

1

“boson”

“fermion”

SUSY charge

square root
H

2 =
⇣

Q†Q 0

0 QQ†

⌘
H =

⇣
0 Q†

Q 0

⌘

flat band
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quantum spin liquids

Spin-Liquid State in the S ! 1=2 Hyperkagome Antiferromagnet Na4Ir3O8

Yoshihiko Okamoto,1,* Minoru Nohara,2 Hiroko Aruga-Katori,1 and Hidenori Takagi1,2

1RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
2Department of Advanced Materials, University of Tokyo and CREST-JST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

(Received 19 May 2007; revised manuscript received 24 July 2007; published 27 September 2007)

A spinel related oxide, Na4Ir3O8, was found to have a three dimensional network of corner shared Ir4"

(t2g
5) triangles. This gives rise to an antiferromagnetically coupled S ! 1=2 spin system formed on a

geometrically frustrated hyperkagome lattice. Magnetization M and magnetic specific heat Cm data
showed the absence of long range magnetic ordering at least down to 2 K. The large Cm at low
temperatures is independent of applied magnetic field up to 12 T, in striking parallel to the behavior
seen in triangular and kagome antiferromagnets reported to have a spin-liquid ground state. These results
strongly suggest that the ground state of Na4Ir3O8 is a three dimensional manifestation of a spin liquid.

DOI: 10.1103/PhysRevLett.99.137207 PACS numbers: 75.40.Cx, 75.47.Pq

The experimental realization of a quantum spin liquid in
geometrically frustrated magnets has been one of the big-
gest challenges in the field of magnetism since Anderson
proposed resonating valence bond theory [1] for antiferro-
magnetically coupled S ! 1=2 spins on a triangular lattice.
Geometrical frustration in magnets arises from the incom-
patibility of local spin-spin interactions, which gives rise to
macroscopic degeneracy of the ground state. Possible play-
grounds for this include triangular, kagome, pyrochlore,
and garnet lattices essentially consisting of networks of
triangles. In real materials, however, it is not easy to
prevent spin ordering at substantially lower temperatures
than the Curie-Weiss temperature !W . This is because the
spin degeneracy can be lifted by coupling with the other
degrees of freedom such as the orbitals, lattice, and
charges. Such an interplay between the frustrated spins,
orbitals and lattice, for example, can be realized in the
trimer singlet formation in the S ! 1 triangular LiVO2
[2,3] with orbital ordering or the spin-Jahn-Teller transition
in the S ! 3=2 pyrochlore ZnCr2O4 [4]. In addition, only a
minute amount of disorder can strongly influence the spin-
liquid state in geometrically frustrated magnets and may
give rise to the formation of a glassy state of spins.

The most likely candidate for the realization of a spin-
liquid ground state has been the two dimensional kagome
antiferromagnet SrCr9pGa12#9pO19 (S ! 3=2) [5,6]. It
does not show any evidence for long range ordering
down to 100 mK, and a large and field independent mag-
netic specific heat was observed which was ascribed to
spin-liquid contributions. Nevertheless, the strong spin
glasslike behavior at low temperatures instills a certain
ambiguity in identifying the spin-liquid state. Recently, a
new generation of spin-liquid compounds has emerged, the
S ! 1=2 triangular magnet "-$ET%2Cu2$CN%3 [7], an or-
ganic Mott insulator, and the S ! 1 triangular magnet
NiGa2S4 [8]. They were reported to have a spin-liquid
ground state or at least a robust liquid phase down to
100 mK. Their magnetic and thermal properties are in
striking parallel to those of SrCr9pGa12#9pO19 but the
disorder effect appears to be much weaker.

Here we report on a three dimensional analogue of these
two dimensional spin liquids. Na4Ir3O8 was first reported
as an unidentified phase in the Na-Ir-O ternary system by
McDaniel [9]. We find that it is isostructural to Na4Sn3O8
[10] and that a S ! 1=2 hyperkagome system, consisting
of low spin d5 Ir4" ions, is realized in Na4Ir3O8. The
magnetization and specific heat measurements on the ce-
ramic samples indicate that S ! 1=2 spins are highly frus-
trated and remain in a liquid state down to the lowest
temperature measured.

Polycrystalline samples of Na4Ir3O8 were prepared by a
solid-state reaction. Stoichiometric amounts of Na2CO3
and IrO2 were mixed, and the mixture was calcined at
750 &C for 18 h. We added 5% excess of Na2CO3 to
compensate the loss of Na during the calcination. The
product was finely ground, pressed into a pellet, sintered
at 1020 &C for 22 h on gold foil, and then quenched in air.
Powder x-ray diffraction (XRD) data showed that the
powders were single phase. The crystal structure was de-
termined by performing Rietveld analysis on the powder
XRD data using the RIETAN-2000 program [11].
Thermodynamic and magnetic properties were measured
by a physical properties measurement system (Quantum
Design) and a magnetic properties measurement system
(Quantum Design).

We were able to refine the powder XRD pattern with the
cubic Na4Sn3O8 structure (P4132 or P4332) [10]. The
result of this refinement is summarized in Table I and
Fig. 1(b). The structure of Na4Ir3O8, shown in Fig. 1(a),
is derived from those of spinel oxides (AB2O4), which can
be intuitively demonstrated by rewriting the chemical for-
mulae as $Na1:5%1$Ir3=4;Na1=4%2O4. The B-sublattice of spi-
nel oxides forms the so-called pyrochlore lattice, a network
of corner shared tetrahedra. In Na4Ir3O8, each tetrahedron
in the B-sublattice is occupied by three Ir and one Na
(Na1). These Ir and Na atoms form an intriguing ordering
pattern as shown in Fig. 1(c), giving rise to a network of
corner shared Ir triangles, called a hyperkagome lattice
[12]. All the Ir sites and Ir-Ir bonds are equivalent and,
therefore, strong geometrical frustration is anticipated. The

PRL 99, 137207 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
28 SEPTEMBER 2007

0031-9007=07=99(13)=137207(4) 137207-1  2007 The American Physical Society

the observation of a magnetization linear with magnetic
field at least up to 40 T without any sign of saturation at
4.2 K [13].

The geometrical frustration in the S ! 1=2 hyperka-
gome antiferromagnet is extremely strong and, indeed,
we do not find any anomaly indicative of long range order-
ing in the susceptibility at least down to 2 K, which is
2 orders of magnitude lower than !W " 650 K. We also
note that a neutron diffraction measurement at 10 K did not
detect any signature of ordering [14]. These strongly sug-
gest that a spin-liquid state is indeed realized in this three
dimensional S ! 1=2 frustrated magnet. As shown in the
inset of Fig. 2(a), a trace of spin glasslike contribution with
Tg ! 6 K is observed. The difference between zero-field
cooling and field cooling magnetization, however, is less
than 10% of the total magnetization. This hysteresis does
not represent a contribution from the majority of spins. The
glassy component becomes negligibly small at high fields
above 1 T, relative to the other contributions. In the high
field susceptibility data that most likely represents the bulk,
we see the susceptibility tend to saturate and approach a
finite value as T ! 0. This strongly suggests that the
majority of the system remains a paramagnetic spin liquid
at least down to 2 K.

The specific heat data provides further evidence for a
spin-liquid state. The magnetic specific heat was estimated
by subtracting the specific heat of nonmagnetic Na4Sn3O8

as a lattice contribution. Because of the subtraction, the
data at high temperatures above"100 K, where the lattice
contribution dominates the specific heat, are subject to
certain ambiguity. The T-dependent magnetic specific
heat Cm of Na4Ir3O8 is plotted as Cm=T in Fig. 2(b). We
observe only a broad peak with its maximum around
"30 K and any anomaly indicative of long range
ordering is absent. The magnetic entropy, estimated by
integrating Cm=T-T data shown in Fig. 2(c), is as large
as "4:5 J=mol K per Ir at 100 K (# !W ! 650 K),
which is 70%–80% of the total spin entropy R ln2 !
5:7 J=mol K. The quenching of spin entropy at lower tem-
perature than the Weiss temperature !W is a hallmark of
frustrated systems, often referred to as a downshift of
entropy. Comparing with other frustrated systems in
Fig. 3, the downshift with respect to the Curie-Weiss
temperature is much more significant than in the two
dimensional S ! 1 NiGa2S4 [8] but less significant
than in the two dimensional S ! 3=2 kagome
SrCr9pGa12$9pO19 [6].

As seen in the inset of Fig. 2(b), the magnetic specific
heat was found to be surprisingly independent of applied
magnetic fields up to H ! 12 T, which corresponds to
"BH=kB " 8 K. This suggests that the low energy spin
excitation, seen as a large magnetic specific heat at low
temperature, has nothing to do with the glassy contribution
with the characteristic energy scale of Tg " 6 K but de-
rives from frustrated spins strongly coupled antiferromag-
netically. This field independence is universally observed

in geometrically frustrated magnets proposed to have a
spin-liquid ground state [6,8], providing a further support
for a similar state in Na4Ir3O8.

We also found that nonmagnetic Ti4% can be substituted
partially for Ir4%. As shown in Fig. 4, the introduction of
‘‘nonmagnetic’’ Ti4% impurities gives rise to a localized
magnetic moment, which manifests itself as a Curie-like
contribution in the susceptibility, roughly scaled by the
number of Ti4% (S ! 1=2 per 3Ti4%). This is induced by
the so-called orphan spin, and is again analogous to the
other spin-liquid systems [15]. These localized magnetic
moments simultaneously give rise to a drastic shift of the
magnetic specific heat to even lower temperatures as
shown in Fig. 4(b). This low-temperature specific heat in
Ti4% doped samples, however, is strongly magnetic field
dependent [Fig. 4(b)], indicating that it has a physically
distinct origin from those of the nominally pure compound.
Incidentally, the Curie-like contribution induced by Ti4% is
accompanied by an enhanced hysteresis at low tempera-
tures [Fig. 4(a)], which may support the idea that the glassy
contribution seen in the nominally pure compound origi-
nates from a small amount of impurity or disorder.

These experimental results all point to a spin-liquid
ground state in Na4Ir3O8. Recent theoretical calculations
using the large N mean field theory indeed support spin-
liquid formation on a hyperkagome lattice [16]. However,
there remain many issues and puzzles on the novel spin-
liquid state of Na4Ir3O8 which should be tackled urgently.
Firstly, the orbital state of Ir4% should be clarified in under-
standing the spin-liquid state of Na4Ir3O8, because orbital
ordering often results in anisotropic spin coupling and
hence suppresses frustration. Taking a close look at the
atomic coordination in Table I, one notices that, because of
chemical pressure from the large Na% ion in Ir3Na tetrahe-
dron, the IrO6 octahedra are distorted and elongate towards
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FIG. 3. Comparison of the normalized magnetic specific heat
of Na4Ir3O8 with those of other frustrated antiferromagnets
SrCr9pGa12$9pO19 (p ! 0:98) [6] and NiGa2S4 [8]. M in the
unit of vertical axis denotes magnetic element Ir, Cr and Ni for
Na4Ir3O8, SrCr9pGa12$9pO19 and NiGa2S4, respectively. Tem-
perature T is normalized by the Curie-Weiss constant !W for
comparison.
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Gapless Spin Liquids on the Three-Dimensional Hyperkagome Lattice of Na4Ir3O8

Michael J. Lawler,1 Arun Paramekanti,1 Yong Baek Kim,1 and Leon Balents2
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Recent experiments indicate that Na4Ir3O8, a material in which s ¼ 1=2 Ir local moments live on a

three-dimensional ‘‘hyperkagome’’ lattice of corner-sharing triangles, may have a quantum spin liquid

ground state with gapless spin excitations. Using a combination of exact diagonalization, symmetry

analysis of fermionic mean field ground states and Gutzwiller projected variational wave functions

studies, we propose a quantum spin liquid with spinon Fermi surfaces as a favorable candidate for the

ground state of the Heisenberg model on this lattice. We point out implications of this proposal for

thermodynamic properties and discuss possible weak instabilities of the spinon Fermi surfaces.

DOI: 10.1103/PhysRevLett.101.197202 PACS numbers: 75.10.Jm

Introduction.—Na4Ir3O8 is a recently discovered three-
dimensional (3D) frustrated quantum magnet [1]. The Ir
atoms in this insulating compound have s ¼ 1=2 local
moments and form a 3D network of corner-sharing tri-
angles called a ‘‘hyperkagome’’ lattice [1], a cubic lattice
whose unit cell is shown in Fig. 1. High temperature
magnetic susceptibility (!) measurements in this material
suggest that the Ir moments have strong antiferromagnetic
correlations with a Curie-Weiss temperature !W "
#650 K. The observation of a large ! and entropy at low
temperature indicates that gapless spinful excitations sur-
vive for T $ !W . At the same time, ! and specific heat
measurements reveal no signatures of magnetic order or
any other symmetry breaking down to T " 0:5 K, nearly
3 orders of magnitude lower than !W , suggesting that
Na4Ir3O8 may be the first example of a 3D quantum spin
liquid which does not order down to T ¼ 0. It joins a small
but growing list of recently discovered frustrated s ¼ 1=2
quantum magnets [2] which appear to have quantum dis-
ordered ground states.

These experiments motivated a study of the classical
Heisenberg antiferromagnet on the hyperkagome lattice
[3]. This model was found to order into a coplanar ‘‘clas-
sical nematic’’ state at low temperatures, T & J=1000,
where J is the nearest neighbor antiferromagnetic ex-
change coupling. However, quantum effects are clearly
significant at such low temperatures. A subsequent study
of the quantum Heisenberg model, using an SpðNÞ mean
field theory, uncovered a candidate quantum spin liquid
ground state with Z2 topological order [4]. However, this
‘‘bosonic’’ spin liquid has a nonzero spin gap which is at
odds with recent observations, that gapless spin excitations
survive down to T " 0:5 K [5], unless the spin gap is
anomalously small. Another difficulty of this proposal is
that there should be a finite temperature transition from the
Z2 spin liquid to the higher temperature paramagnetic
phase while there is no signature of such a phase transition
in thermodynamic measurements [1].

Here we pursue a completely different line of attack and
attempt to build a ‘‘fermionic’’ spin liquid theory of the
hyperkagome Heisenberg model. This formulation has the
virtue that gapless spin liquids emerge as stable phases at
mean field level and beyond without any need for fine
tuning [6,7]. The main results of our Letter are as follows.
(i) We find that of a number of candidate spin liquid ground
states we have explored, a particularly simple fermionic
spin liquid state, one which supports Fermi surfaces of
spinons, emerges as a promising candidate for the ground
state of the nearest neighbor Heisenberg model on the
hyperkagome lattice. This result is obtained by a combi-
nation of exact diagonalization, a projective symmetry
group (PSG) analysis [6] of mean field ground states, and
Gutzwiller projected variational wave function calcula-
tions. (ii) We then show, using a Gutzwiller renormalized
mean field theory [8], that the specific heat of this spin
liquid state is quite similar to the experimentally observed
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FIG. 1 (color online). Exact diagonalization (ED) results (solid
line) for the inverse uniform magnetic susceptibility 1=! com-
pared with experiments (open circles). The ED was done on a
single unit cell of the hyperkagome lattice (inset) with J ¼
304 K chosen to reproduce the high temperature experimental
1=!.
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Gapless quantum spin liquid 
with a spinon Fermi surface.

Parton construction with 
complex fermions


coupled to U(1) gauge field

C(T ) / T ln(1/T )

hyperkagome
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PHYSICAL REVIEW B 89, 235102 (2014)

Quantum spin liquid with a Majorana Fermi surface
on the three-dimensional hyperoctagon lattice

M. Hermanns and S. Trebst
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

(Received 10 April 2014; revised manuscript received 15 May 2014; published 2 June 2014)

Motivated by the recent synthesis of β-Li2IrO3—a spin-orbit entangled j = 1/2 Mott insulator with a three-
dimensional lattice structure of the Ir4+ ions—we consider generalizations of the Kitaev model believed to
capture some of the microscopic interactions between the iridium moments on various trivalent lattice structures
in three spatial dimensions. Of particular interest is the so-called hyperoctagon lattice—the premedial lattice of
the hyperkagome lattice, for which the ground state is a gapless quantum spin liquid where the gapless Majorana
modes form an extended two-dimensional Majorana Fermi surface. We demonstrate that this Majorana Fermi
surface is inherently protected by lattice symmetries and discuss possible instabilities. We thus provide the first
example of an analytically tractable microscopic model of interacting SU(2) spin- 1

2 degrees of freedom in three
spatial dimensions that harbors a spin liquid with a two-dimensional spinon Fermi surface.

DOI: 10.1103/PhysRevB.89.235102 PACS number(s): 71.20.Be, 75.25.Dk, 75.30.Et, 75.10.Jm

I. INTRODUCTION

Frustrated quantum magnets can exhibit highly unconven-
tional ground states in which local moments are highly corre-
lated but nevertheless evade a conventional ordering transition
and remain strongly fluctuating down to zero temperature.
These unusual states are commonly referred to as quantum spin
liquids [1]—despite their rather diverse physical properties
ranging from gapped states with an emergent topological order
to gapless states with an emergent spinon Fermi surface.
A common motif in the search for quantum spin liquids
has been to look for quantum antiferromagnets on geomet-
rically frustrated lattices, i.e., lattices where the elementary
building blocks prohibit the formation of a conventional
Néel state. Paradigmatic examples of geometric frustration
include lattices formed by corner-sharing tetrahedra such as the
pyrochlore lattice, or by corner-sharing triangles such as the
kagome lattice in two spatial dimensions and the hyperkagome
lattice in three spatial dimensions. An alternative route to
induce frustration in a quantum magnet is to look for systems
in which competing interactions cannot be simultaneously
satisfied. Archetypal examples of such exchange frustration
are given by the quantum compass models [2], in which the
easy axis of an anisotropic spin exchange strongly depends
on the spatial orientation of the exchange path—a scenario
which can prohibit even a ferromagnet on a bipartite lattice
from undergoing a finite-temperature ordering transition. The
best-known example in this class of compass models is the
Kitaev model [3] on the honeycomb lattice, in which the easy
axis of an Ising-like spin exchange points along the x, y, and
z directions for the three different bond types of the hexagonal
lattice, which is captured by the Hamiltonian

HKitaev =
∑

γ links

Jγ σ
γ
i σ

γ
j , (1)

where SU(2) spins σ on sites i and j are connected via a bond in
the γ = x,y,z directions. The Kitaev model is quintessential in
that it harbors three different types of quantum spin liquids—a
gapped, Z2 topological spin liquid if one of the three exchange
couplings is significantly larger than the couplings associated
with the two other bond directions (i.e., Jz > 2Jx, 2Jy), and a

gapless spin liquid in the vicinity of equal-strength exchange
couplings (Jx ≈ Jy ≈ Jz). If an external magnetic field is
applied along the 111 direction, the latter can be gapped
out into a topological spin liquid with non-Abelian vortex
excitations. The Kitaev model not only stands out for the
unusual richness of its ground states, but the fact that it is
one of the very few examples of an interacting spin model that
can be rigorously solved. It should, however, be pointed out
that the Kitaev model has not only attracted the imagination
of phenomenologically inclined theorists, but has also stirred
some excitement in the materials-oriented community after
it was pointed out that the significantly enhanced spin-orbit
coupling in 5d transition-metal oxides and, in particular,
certain iridates can give rise to unconventional Mott insulators
where the local moment is a spin-orbit entangled j = 1

2
moment [4,5]. The orbital contribution to these moments
results in a highly anisotropic, spatially oriented exchange [6],
which can in fact mimic those of the Kitaev model (1). In
terms of actual materials the layered iridates Na2IrO3 and
Li2IrO3 have attracted much recent interest and are intensely
discussed [7–12] as possible candidate materials for realizing
the two-dimensional honeycomb Kitaev model.

In this manuscript, we turn to generalizations of the Kitaev
model on three-dimensional lattices—a move that is prompted
by the recent synthesis of β-Li2IrO3 [13,14], which forms a
truly three-dimensional lattice structure of the Ir4+ ions. This
structure, which has quickly been dubbed a hyperhoneycomb
lattice [13], keeps the trivalent vertex structure of the hexag-
onal lattice and thereby the essential feature allowing for an
analytical solution of the Kitaev model. In fact, the Kitaev
model on the hyperhoneycomb lattice had been identified and
studied before by Mandal and Surendran [15] who reported
the occurrence of a gapless spin liquid with an emergent
spinon Fermi surface on a line in momentum space for
approximately-equal-strength interactions (Jx ≈ Jy ≈ Jz) as
well as the occurrence of a gapped topological spin liquid for
anisotropic exchange strength [16]. More recently, extensions
to a Heisenberg–Kitaev model [7] have established the stability
of this gapless phase in the presence of weak isotropic spin
exchange [17–19].
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Frustrated quantum magnets can harbor unconventional spin-liquid ground states in which the elementary
magnetic moments fractionalize into new emergent degrees of freedom. While the fractionalization of quantum
numbers is one of the recurring themes in modern condensed matter physics, it often remains a challenge to
devise a controlled analytical framework tracking this phenomenon. A notable exception is the exactly solvable
Kitaev model, in which spin degrees of freedom fractionalize into Majorana fermions and a Z2 gauge field.
Here, we discuss the physics of fractionalization in three-dimensional Kitaev models and demonstrate that the
itinerant Majorana fermions generically form a (semi)metal which, depending on the underlying lattice structure,
exhibits Majorana Fermi surfaces, nodal lines, or topologically protected Weyl nodes. We show that the nature
of these Majorana metals can be deduced from an elementary symmetry analysis of the projective time-reversal
and inversion symmetries for a given lattice. This allows us to comprehensively classify the gapless spin liquids
of Kitaev models for the most elementary tricoordinated lattices in three dimensions. We further expand this
classification by addressing the effects of time-reversal symmetry breaking and additional interactions.
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I. INTRODUCTION

The low-temperature collective physics of interacting quan-
tum many-body systems often calls for a novel description in
terms of emergent degrees of freedom that are not only distinct
from those of the original constituents of the system, but
describe certain “fractions” thereof. Familiar examples include
the spin-charge separation in one-dimensional metals [1], the
electron fractionalization in fractional quantum Hall states of
two-dimensional electron gases [2], as well as the emergence
of monopoles in spin ice [3] or chiral magnets [4]. Quantum
spin liquids in frustrated quantum magnets [5] provide another
important venue for such quantum number fractionalization.
For these spin liquids, the theoretical formulation of this
phenomenon is often closely linked to a lattice gauge theory
description of the quantum magnet; the spin degrees of
freedom typically decompose into spinons coupled to an
emergent U(1) or Z2 gauge field whose elementary excitations
remain deconfined [6–8]. One of the paradigmatic examples
of a model harboring a Z2 spin-liquid ground state is Kitaev’s
exactly solvable honeycomb model [9]. It describes a spin- 1

2
quantum magnet subject to strong exchange frustration arising
from bond-directional interactions of the form

HKitaev = −
∑

γ bonds

Jγ σ
γ
i σ

γ
j , (1)

where γ = x,y,z labels the three different bond directions
of the honeycomb lattice. The low-energy physics of this
spin model can be captured in terms of Majorana degrees
of freedom and a Z2 gauge field. Crucially, the gauge field
remains static for the pure Kitaev model (1), and identifying
the ground-state configuration of the gauge field reduces
to an essentially classical problem. Typically, this yields a
unique ground state with a finite gap for the elementary
vison excitations of the Z2 gauge field. Fixing the gauge
structure then allows to recast the original spin model as
a free Majorana fermion model and thus paves the way to
a full analytical solution. The phase diagram of the Kitaev
model generically exhibits two types of spin-liquid phases.
Around the limits where one of the three couplings dominates

over the other two one finds a gapped spin liquid which, for
the two-dimensional honeycomb model, is known to exhibit
Abelian topological order [9]. The second phase, which is
found for roughly isotropic couplings (i.e., Jx ∼ Jy ∼ Jz), is
gapless and can generically be understood as a metallic state
of the itinerant Majorana fermions. For the two-dimensional
honeycomb model, the itinerant Majorana fermions form a
graphenelike band structure with two Dirac cones [9].

In this paper, we comprehensively classify the nature
of the gapless spin liquids and their underlying Majorana
metals for three-dimensional Kitaev models. Our motivation
has been rooted in the mounting experimental evidence that
spin-orbit entangled Mott insulators can provide solid-state
realizations of the Kitaev model following the theoretical
guidance by Khaliullin and co-workers [10]. This materials-
oriented search [11,12] has produced various candidate 4d and
5d compounds, most notably Na2IrO3, α-Li2IrO3, and RuCl3,
which realize hexagonal arrangements of local, spin-orbit
entangled j = 1

2 moments that are indeed subject to strong
bond-directional exchanges as indicated by recent experiments
[13]. A byproduct of this experimental search has been the
discovery [14,15] of the polymorphs β-Li2IrO3 and γ -Li2IrO3,
which realize three-dimensional arrangements of the spin-orbit
entangled moments which retain the tricoordination familiar
from the hexagonal lattice. This has sparked a surge of
interest in three-dimensional variants of the Kitaev model
which, hitherto, had evaded the attention of the broader
community [16]. It was quickly recognized that the analytical
tractability of the two-dimensional Kitaev model largely
carries over to the three-dimensional variants, and it has
recently been demonstrated that such three-dimensional Kitaev
models harbor a rich variety of gapless Z2 spin liquids in
which the emergent Majorana metals form nodal structures
which include Majorana Fermi surfaces [19], nodal lines
[20], as well as topologically protected Weyl nodes [21].
The purpose of this paper is to go beyond these initial
examples and to impart a more systematic classification of
gapless Kitaev spin liquids in three spatial dimensions. In
particular, we comprehensively discuss how the nature of the
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topological mechanics from supersymmetry

Hfermion = �i�A
j Ajk �B

k + h.c.
<latexit sha1_base64="jCPPbCYxTcdcVRh9vSRyOMQ9alM="></latexit>

Hboson = p̂ip̂i + q̂i(A
TA)ij q̂j

<latexit sha1_base64="COpJdZycxmWdPLj0vAWet9bpAGc=">AAACTXicdZHPSxwxFMczW3+urW7bo5fgIlgKS0b7Y3soWLx4VHBV2FmHTDbjRjPJNHlTuoT5B3sp9Nb/wosHSxEzs2urog8Cn3zfe7yXb5JcCguE/A4az2Zm5+YXFptLz18sr7Revjq0ujCM95iW2hwn1HIpFO+BAMmPc8Nplkh+lJzvVPmjb9xYodUBjHM+yOipEqlgFLwUt4ZRRmHEqHS7ZRwB/w4u0VarEn/GOBpRcHkZizv0dsJfK96om5PUfSlPDvD/y5vYibPyX+FZ3GqTznsSfvpAMOmQOmrohlshDqdKG01jL279ioaaFRlXwCS1th+SHAaOGhBM8rIZFZbnlJ3TU973qGjG7cDVbpR43StDnGrjjwJcq3c7HM2sHWeJr6w2tg9zlfhYrl9A2h04ofICuGKTQWkhMWhcWYuHwnAGcuyBMiP8rpiNqKEM/Ac0vQm3L8VPw+FmJ9zqkP137e3u1I4FtIrW0AYK0Ue0jXbRHuohhn6gC3SF/gQ/g8vgb3A9KW0E057X6F405m8AOba1pw==</latexit>

HSUSY = {Q,Q†}
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novel topological invariant for boson systems

ASUSY = hvm(k)|i�2

⇣
rk + �2R̃

†rkR̃
⌘
|vn(k)i

additional covariant derivative

many other SUSY pairs – spin spirals & fermions, spin liquids, …
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