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Translation invariance, topology, and protection of criticality in chains of interacting anyons
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Using finite-size scaling arguments, the critical properties of a chain of interacting anyons can be extracted
from the low-energy spectrum of a finite system. Feiguin et al. [Phys. Rev. Lett. 98, 160409 (2007)] showed
that an antiferromagnetic chain of Fibonacci anyons on a torus is in the same universality class as the tricritical
Ising model and that criticality is protected by a topological symmetry. In the present paper we first review the
graphical formalism for the study of anyons on the disk and demonstrate how this formalism may be consistently
extended to the study of systems on surfaces of higher genus. We then employ this graphical formalism to study
finite rings of interacting anyons on both the disk and the torus and show that analysis on the disk necessarily
yields an energy spectrum which is a subset of that which is obtained on the torus. For a critical Hamiltonian, one
may extract from this subset the scaling dimensions of the local scaling operators which respect the topological
symmetry of the system. Related considerations are also shown to apply for open chains.
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I. INTRODUCTION

The study of collective states of anyonic excitations is an
exciting and yet relatively unexplored area of condensed-
matter physics. The nontrivial exchange behavior of non-
Abelian anyons may be exploited for universal quantum
computation,1–5 with the simplest suitable model being that
of Fibonacci anyons. It has been suggested that, as the non-
Abelian component of the k = 3 Zk-parafermion Read-Rezayi
state,6 they may appear in the fractional quantum Hall state
with filling fraction ν = 12/5.7 These systems are therefore
presently of intense theoretical and experimental interest.

Feiguin et al. recently initiated the study of interacting
non-Abelian anyons with the analysis of nearest-neighbor
interactions, in Ref. 8, for Fibonacci and, more generally,
also SU(2)k anyons. This work was later extended to next-
to-nearest-neighbor interactions in Refs. 9 and 10, to higher-
spin anyons in Ref. 11, and to two-dimensional systems in
Refs. 12 and 13. These papers identified numerous critical
phases, and scaling dimensions of the local scaling operators
were extracted using exact diagonalization by matching the
numerically obtained finite-size energy spectra against exact
predictions from conformal field theory (see Refs. 14 and 15;
also reviewed in Ref. 16). Local scaling operators are of
interest as they may appear as perturbations of the critical
Hamiltonian, and may be classified by whether they respect
the topological symmetry of the system.8,11 For Fibonacci
anyons undergoing an antiferromagnetic (AFM) interaction,
the authors of Ref. 8 show that this topological symmetry
protects the criticality of the system against all translation-
invariant perturbations of the Hamiltonian which are “relevant”
in the renormalization group sense.

In this paper we characterize the differences between peri-
odic chains of anyons on the torus and on the disk and introduce
mappings of these systems to equivalent “spin chains.” We
show that while the natural definition of translation for a ring

of anyons on the torus is closely related to that of a specific
spin chain model, there are subtleties with the natural definition
of translation on the disk. As a result, a Hamiltonian which
is translation invariant on the disk will only be translation
invariant up to a defect on the corresponding spin chain. The
energy spectra of the same local Hamiltonian acting on two
periodic chains of anyons, one on a torus and one on a disk, will
therefore not, in general, coincide, highlighting the topological
nature of many-body anyon systems. We further show that the
energy spectrum obtained on the disk always constitutes a
subset of the spectrum obtained on the torus and that, for
a critical theory, the local scaling operators which may be
identified from this subset are precisely those operators which
respect the topological symmetry defined in Ref. 8. We also
show that similar considerations apply to open chains, where
the spectrum of the theory, and for critical theories also the
inferred local scaling operator content, is once again affected
by the topology of the surface on which the anyons are found.

We begin in Sec. II by reviewing the influence of manifold
topology on the degrees of freedom of an anyonic system
and show how considerations from topological quantum field
theory (TQFT) permit us to extend the popular fusion-tree
representation for systems of anyons on a disk (see, e.g.,
Refs. 17–19) to surfaces of arbitrary genus, including the
derivation of an inner product which is consistent with the
chosen vertex normalization scheme on the sphere. Particular
attention is paid to the construction of translation operators
for rings of anyons on surfaces of various genera. Following
this overview of the diagrammatic formalism, in Sec. III we
then employ the formalism to compare the behavior of rings
of interacting Fibonacci anyons on surfaces of different genus,
namely the torus and the disk, specializing to the study of
the AFM nearest-neighbor interaction for a chain of Fibonacci
anyons. We show that at criticality, changing the topology
of the manifold on which the anyons are located affects the
spectrum of scaling operators having local representations.
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By explicit construction, we also show that on the disk
one may obtain an energy spectrum corresponding to the
scaling operator spectrum on the torus by introducing an
appropriate set of boundary conditions, and similarly on the
torus one may obtain an energy spectrum corresponding to the
scaling operator spectrum on the disk. The necessary boundary
conditions may always be realized as a local modification of
the Hamiltonian on the anyon ring, and thus calculations on the
disk may be used to compute the local scaling operator content
on the torus, and vice versa. Considering the topological
symmetry referred to as the “flux through the torus” in Ref. 8,
we see that the subset of local scaling operators realized on
the disk (with trivial boundary charge) constitutes those which
carry trivial charge associated with this symmetry. Related
considerations apply for systems of anyons forming open
chains, and these are discussed in Sec. IV.

An important consequence of these results is that the
topological protection of criticality described in Ref. 8 for
a ring of Fibonacci anyons on the torus is also seen to extend
to an equivalent ring of Fibonacci anyons on the disk.

II. ANYONIC STATES AND OPERATORS

Although many papers have been published which study
the behavior of anyonic systems on surfaces of various
topologies,4,8–13,20–33 little attention has been paid to how the
diagrammatic formalism may be used to explicitly develop the
relationship between states on surfaces of various genera. In
this section we address this topic, beginning with a review of
the origin and formulation of the diagrammatic representation
of states and operators for systems of anyons on surfaces of
genus 0 (e.g., sphere, finite disk, infinite disk) in Sec. II A. This
material may be familiar to many readers. However, we present
it here in a manner intended to emphasize the relationship
between anyon models and TQFTs,23,26,34–38 as we exploit this
relationship to generalize the formalism to surfaces of higher
genus in Sec. II B. We also explicitly examine the construction
of the translation operator on surfaces of genus 0 and 1, as
this proves important to the study of translation invariant local
Hamiltonians on the disk and the torus in Secs. III and IV.

Note that in this paper we only consider anyons on two-
dimensional (2D) manifolds which are closed, oriented, non-
self-intersecting, and embedded in R3. References to anyons
on a disk are therefore taken to imply that this is a closed disk
(i.e., that the definition of the disk includes the points on the
boundary). Similarly, references to anyons on the infinite disk
are taken to imply inclusion of the point at infinity, so that the
infinite disk is then seen to be closed by its isomorphism to the
sphere S2.

A. Anyons on surfaces of genus 0 (disk, sphere)

1. Diagrammatic representation of states

A system of anyons may be considered to consist of
a collection of localized quasiparticle excitations in a 2D
medium, for example, the topological liquid of a fractional
quantum Hall (FQH) state.5–7,38–47 In general, a system may
be considered anyonic if its quasiparticles may be described
in terms of a unitary braided tensor category (UBTC).48 In
this paper we concern ourselves only with anyon models

which may be defined on the torus, known as modular anyon
models (see, e.g., Refs. 17–19 and 25), for which the properties
of the quasiparticles admit description in terms of both a
unitary braided modular tensor category (UBMTC) and a
2 + 1D TQFT23,26,34–38 of the Schwarz type.50,51 Each of the
quasiparticle excitations, or anyons, may then be characterized
by a label, or charge, which corresponds to a label of the
UBMTC.

However, providing a full description of such a system
is, in general, more complicated than simply cataloguing the
value and location of each nontrivial charge. This is because
specifying the individual charges of two anyons, a and b,
does not necessarily uniquely determine the total charge of the
pair (a × b). These total charges are constrained by the fusion
rules of the UBMTC, which may be written in terms of the
multiplicity tensor Nc

ab as

a × b →
∑

c

Nc
abc, (1)

but when there exist nonzero entries in Nc
ab such that multiple

terms appear on the right-hand side of this equation, the total
charge of a and b may correspond to any of these values c such
that Nc

ab �= 0. To specify these products, we represent the state
of a system of anyons by means of a fusion tree (Fig. 1). Labels
on the interior edges of the fusion-tree graph correspond to the
results which would be obtained on measuring the total charge
of multiple anyons. For example, in Fig. 1(i), x1 is the total
charge of anyons a1 and a2 together, x2 is the total charge
of anyons a1, a2, and a3 together, and so on. The set of valid
labelings of a single fusion tree constitutes an orthogonal basis
for the Hilbert space of a system of fixed anyons, and a labeling
is deemed valid if all fusion vertices correspond to processes
associated with nonzero entries in the multiplicity tensor Nc

ab.
In this paper we normalize all fusion-tree bases using factors
appropriate to the diagrammatic isotopy convention given in
Refs. 17 and 18. For mobile anyons, the coordinates of each
anyon must be specified in addition to the fusion tree.

Although a single fusion tree does not explicitly state
the outcome of all possible measurements, it is possible to
convert between different fusion trees using procedures known
as F moves and braiding (Fig. 2). In constructing a fusion
tree, we have imposed a (possibly arbitrary) linear ordering
on the anyons of the system. An F move [Fig. 2(i)] alters
the structure of the fusion tree while preserving that linear
ordering, permitting the computation of additional fusion
products [e.g., x̃2 in Fig. 1(ii) is the combined charge of a3 and
a4], while braiding [Fig. 2(ii)] permits conversion between
different linear orderings.52 Using these two operations it is
possible to determine the probability amplitudes of different
outcomes when measuring the total charge of any group of
anyons regardless of the fusion tree structure on which the
state is initially described. The tensors (Fa1a2a3

a4
)(a5u1u2)(a6u3u4)

and Ra1a2
a3

are specified by the UBMTC to which the system of
anyons corresponds.

While the associated UBMTC describes a system of anyons
in terms of individual quasiparticles, an equivalent description
may also be made in terms of the diffeomorphism-invariant
fields of a Schwarz-type 2 + 1D TQFT. Here, the 2D manifold
on which the anyons exist becomes the spatial manifold of the
TQFT, with individual anyons corresponding to punctures in
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FIG. 1. Diagrams (i)–(iii): Some possible fusion trees for a chain
of six anyons with charges a1 to a6 on a surface of genus 0 (disk or
sphere). Labels xi denote intermediate fusion products which may
not be uniquely determined by the fusion rules, and labels ui are
associated with vertices and serve to enumerate multiple copies of a
given charge for anyon models having some Nc

ab > 1. Note that no
vertex index is required for fusion to the vacuum state. A barred label
āi denotes the charge dual to ai , such that āi × ai � I. Tree (ii) is
constructed from tree (i) by means of an F move [Fig. 2(i)], and tree
(iii) is constructed from tree (i) by recognizing that fusion with the
vacuum state I is trivial. Diagram (iv): Example fusion tree suitable
for specifying a state |ψ〉 of n anyons on the disk or sphere.

this manifold (Fig. 3) and the anyon charges corresponding
to the individual punctures’ boundary charges. One may then
construct a basis for the system in terms of the outcomes of
a complete set of commuting Wilson loop operators, whose
expectation values may be identified with the labels of the
UBMTC. In a TQFT, a pair of Wilson loop operators which are
topologically equivalent necessarily constitute a measurement
of the same observable. Furthermore, the outcome of a
Wilson loop measurement which may be contracted to a
point is necessarily trivial. Consequently, we may identify

FIG. 2. Manipulations capable of performing a change of basis
on a fusion tree: (i) F move; (ii) braiding.

the expectation value of an appropriate Wilson loop operator
(of specified orientation, to allow for charges which are not
self-dual) with measurement of the total charge on the anyons,
or punctures, which it encloses. Where degeneracies exist (i.e.,
Nc

ab > 1 for some a,b,c), the different copies of a particular
charge label in the UBMTC can be associated with different
expectation values of the Wilson loop operator. At a slightly
less abstract level, when the Wilson loop operator encircles
exactly one puncture, the resulting label from the UBMTC
may be understood as an (anyonic) charge associated with the
boundary of the puncture.

We therefore see that we may map between the TQFT
and the UBMTC fusion tree as follows: First, perform a
pairs-of-pants decomposition of the punctured 2D spatial
manifold of the TQFT. Then, take one specific pair of pants
(or 3-punctured 2-sphere), declare that this 2-sphere has an
inside and an outside, and specify which is which. Extend
this definition of inside and outside consistently over all pairs
of pants (this is always possible for a non-self-intersecting,
closed, orientable 2-manifold embedded in R3). Having done
this, construct the fusion tree by drawing lines inside each
pair of pants as shown in Fig. 4. Now associate a Wilson
loop operator which measures charge with each opening of
each pair of pants, up to topological equivalence. Specifically,
where two pairs of pants connect together, we find two charge
measurement operators which are topologically equivalent
and so only one of these need be retained. Each line of the
fusion-tree graph now passes through exactly one Wilson
loop, and we label the lines of the graph with the outcome
of these charge measurements. Finally, if there exist entries in
the multiplicity tensor Nc

ab which are greater than 1, then it is
also necessary to associate a degeneracy index with the fusion
vertices to enumerate these outcomes, which are also assumed
to be specified by the outcomes of appropriate measurements.

FIG. 3. Anyonic quasiparticles carrying labels from the UBMTC
(denoted ×) map to punctures in the manifold when the system is
represented by a TQFT.
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FIG. 4. Construction of a fusion-tree graph from a pair of pants.

So far, this fusion tree has been constructed in the space R3

in which the 2D spatial manifold is embedded. When repre-
senting this 3D construction on paper, it is customary to employ
a diagrammatic convention whereby the 2D manifold on which
the punctures exist is mapped onto a plane perpendicular to the
page, and whose projection onto that page forms a horizontal
line at the top of the fusion-tree diagram (for systems of anyons
on the sphere, this is achieved by first identifying that sphere
with the Riemann sphere and then mapping to the infinite
plane). Noting that a disk manifold with nontrivial boundary
charge is topologically equivalent to a sphere with a large
puncture at the south pole, if all punctures with nontrivial
charges are brought to lie on the line at the top of the fusion-tree
diagram, then the vertical axis of fusion trees drawn in this way
(e.g., Fig. 1) may be interpreted as a possible history whereby
the present physical state may be obtained from the vacuum
(i.e., a state with no punctures) and corresponds to the timelike
dimension of the TQFT. The lines of the fusion tree correspond
to world lines for the quasiparticles presently observed on the
manifold, and a charge label I is placed at the bottom of the
fusion-tree diagram, representing an initial vacuum state.53

(Note that for any system of anyons, it is always possible to
set the charge at the bottom of the fusion tree to I, as described
above. This is because there are no fundamental anyonic
particles, and thus any system of anyons must always initially
be created from a state with trivial anyonic charge. However,
when some anyons are then removed by an arbitrarily large
distance, leaving behind a subsystem with nontrivial total
charge, this may be represented either by explicitly including
a branch of the fusion tree corresponding to these distantly
removed anyons or by assigning a fixed, nontrivial total charge
to the fusion tree. In this paper, we find it appropriate to keep
track of the location of all anyons, and therefore we consider
only systems of anyons with a total charge I.)

We now observe that by adopting different pairs-of-pants
decompositions of the spatial manifold of the TQFT, it is
possible to recover all different fusion-tree bases of the
UBMTC. It is also possible to interchange the definitions of
“inside” and “outside” when constructing the fusion tree from
the pairs-of-pants decomposition, but for surfaces of genus 0
this has no effect on the basis obtained. In Fig. 5 we give a
simple example of the pairs-of-pants construction, showing
the decomposition of a 6-punctured finite disk with trivial
charge on the boundary which corresponds to the fusion tree
of Fig. 1(ii).

We conclude this section with a couple of remarks about
specific systems of genus 0. First, to extend the pairs-of-pants
construction to surfaces having less than three punctures, such
as the 2-punctured 2-sphere, we note that fusion with the
identity label I is trivial. For such a system we may therefore
freely introduce additional trivial punctures to obtain a single
3-punctured 2-sphere from which we construct the fusion tree.
Similarly, lines carrying trivial charge may be freely added

FIG. 5. (i) A sample pairs-of-pants decomposition for a 6-
punctured finite disk: The manifold is decomposed into pairs of pants
by cutting along the dotted lines. When the charge associated with
the boundary is I, the construction described in Sec. II A1 yields
the fusion tree of Fig. 1(i). (ii) Relationship of the fusion tree to the
manifold of diagram (i).

to or removed from any fusion-tree diagram [e.g., to obtain
Fig. 1(iii) from Fig. 1(i)]. Second, we note that there exists
an important relationship between the sphere and the finite
disk. While the infinite disk is topologically equivalent to the
Riemann sphere, the finite disk may be treated as the Riemann
sphere with a puncture at infinity. The edge of this puncture
then constitutes the edge of the disk. The charge associated
with the edge of the disk is measured by a Wilson loop of
the usual orientation enclosing this puncture on the Riemann
sphere, or equivalently, one of reversed orientation enclosing
all other punctures on the disk. When the charge associated
with this puncture on the Riemann sphere is (and remains)
trivial, we may delete the associated line from the fusion-tree
diagram and therefore ignore the existence of the boundary
when studying anyon behavior on the finite disk. Third, we
note that in the study of lattice models with n sites, we may treat
the system as always containing n anyons at fixed locations,
even if some of these anyons have trivial charge. The states of
these systems can therefore always be represented by a fusion
tree with n leaves. The enumeration of the leaves of the fusion
tree then corresponds to an enumeration of the lattice sites, and
consequently for such a system it is not necessary to separately
state the coordinates of the individual anyons.

2. Inner product

Next, we introduce the diagrammatic representation of
the dual space and the inner product. In the diagrammatic
representation of the space of states, the conjugation operation
† is implemented by vertically reflecting a fusion tree to obtain
a splitting tree, taking the complex conjugate of all fusion-tree
coefficients ca1,...,a2n and reversing the direction of all arrows
on the tree. In this paper, we prefer lower indices for the
coefficients of a splitting tree, for example, c′

a1,...,a2n
. The inner

product of two diagrams is then performed by connecting
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FIG. 6. Elimination of loops during evaluation of the inner prod-
uct. The numerical factor given is appropriate to the diagrammatic
isotopy convention.

the leaves of the fusion and the splitting tree, subject to the
requirement that leaves which are connected represent anyons
(or punctures) at the same location on the manifold and that
the charges of the connected leaves coincide. Where these
conditions do not hold, the inner product of two diagrams
is zero. Recall that the fusion tree is a 2 + 1-dimensional
structure projected onto a 2D page, and thus when performing
this connection, both trees must be represented in equivalent
projections. Conversion between projections may be achieved
by a sequence of appropriately oriented braids.

Assuming that the inner product has not yet been found to
be zero, then once the trees have been connected, F moves are
performed, loops are eliminated according to the rule given
in Fig. 6, and trivial punctures are removed until the resulting
diagram has been reduced to a number. This number is then the
value of the inner product. Extension to states represented by
a weighted sum over multiple labeled diagrams follows from
bilinearity.

3. Diagrammatic representation of operators

Now that we have presented the diagrammatic formulation
for anyonic states and for the inner product, we are in a position
to construct anyonic operators. Where these operators act on
the entire system, the construction is trivial as an operator is
constructed in the usual manner, as a sum over bras and kets:

Ô =
∑
i,j

Oij |ψi〉〈ψj |. (2)

For anyons the bra is replaced with a splitting tree, the ket
is replaced with a fusion tree, and the coefficient bears indices
corresponding to all labels on the splitting and fusion trees
[e.g., Fig. 7(i)]. However, we may also wish to define operators
which act only on a finite subregion of the disk. In the same
way that the fusion tree specifies how all the anyons in the
system may be obtained starting from the vacuum state, in an
appropriate basis we may interpret a portion of the fusion tree
as specifying how all the anyons within a physically localized
subregion may be obtained from a single initial charge. For
example, in Fig. 1(i), we see that charges a1, a2, and a3 are
obtained by splitting an initial charge of x2, and in diagram
(ii), charges a3 and a4 are obtained from x̃2. We require that
our operators respect superselection rules associated with the
charge labels of the UBMTC, and consequently they cannot
change this total charge, but their action within this region is
otherwise unconstrained. A completely general local operator
acting on r sites on the disk may therefore be written in the
form of Fig. 7(ii), where the description of the operator as

(ii)

(i)

(iii)

(iv)

FIG. 7. Examples of anyonic operators on the disk with n

punctures. (i) A global operator, acting on the total Hilbert space
of the system. (ii) A local operator, acting on r adjacent anyons. (iii)
The braid operator. (iv) The periodic translation operator T̂ D for a
ring of anyons on fixed lattice sites on the disk, closing away from
the observer.

“local” means that the r sites are consecutive in the adopted
fusion-tree basis. As with the state of a system, the choices
of fusion and splitting trees employed in this figure merely
represent a choice of basis in which to represent the operator,
and any alternative choice would have been equally valid. We
also note that this construction includes the definition of a
global operator on the disk, as the special case r = n.

Finally, we note that while any operator on the disk may
be represented in the form of Fig. 7(ii), it may frequently
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FIG. 8. Application of the translation operator T̂ D to a state of n

anyons on the disk. The untranslated state |ψ〉 is given in Fig. 1(iv).

be advantageous to represent certain special operators in
other forms. Thus, for example, while the braid operator
corresponding to the oriented exchange of a pair of anyons
may be represented in the form of Fig. 7(ii) for r = 2, it
is usually more convenient to represent it in the form of
Fig. 7(iii), from which its unitarity is obvious by diagrammatic
isotopy. Similarly, consider a ring of anyons occupying fixed
lattice sites on the disk. Exploiting topological invariance, we
may construct our fusion tree such that these lattice sites
lie in a line at the top of the diagram, and the closure of
the ring is implicit, being either towards or away from the
observer. If, for definiteness, we assume that the ring closes
away from the observer, then we may expediently represent
the operator corresponding to periodic translation by one site
using the diagram of Fig. 7(iv). Note that this operator may be
constructed by composing a series of braids [Fig. 7(iii)] and
also that it respects the interpretation of the vertical axis as a
fictional time line for the creation of the state, as the motions
of the anyons under the action of this operator are strictly
monotonic in time. When this operator is applied to a state, the
resulting diagram then describes a process whereby particles
are created, migrate to their initial lattice sites, and then all
move one site periodically around the lattice (Fig. 8).

B. Anyons on surfaces of higher genus (e.g., torus)

Having reviewed the diagrammatic formulation for systems
of anyons on the disk or sphere, we now extend this formulation
to surfaces of higher genus by exploiting the association
between modular anyon models and 2 + 1D TQFTs.

1. Diagrammatic representation of states

Extension to surfaces of higher genus is achieved by means
of manifold surgery, performed on the punctured manifold
inhabited by the 2 + 1D TQFT. We are particularly interested
in a specific example, the n-punctured torus, but the techniques
which we develop are entirely general and thus may be applied
to construct diagrammatic representations for states of anyonic
systems on surfaces of arbitrary genus.

We begin by noting that the torus may be constructed from
the sphere by introducing punctures at the north and south
poles, then distorting the sphere so that the puncture at the
north pole descends vertically and the puncture at the south

FIG. 9. (i) Construction of the torus from the sphere by intro-
ducing two punctures, deforming the resulting punctured sphere
by migrating the punctures towards the center, and suturing.
(ii) Construction of an outside fusion tree for the (n − 2)-punctured
torus, starting from a fusion tree outside the n-punctured sphere.

pole rises vertically. When these punctures come into contact,
they are sutured [Fig. 9(i)].

Now, we wish to repeat this process for a manifold on
which there exists a TQFT. We recognize that through the
use of Wilson loop operators, charge labels may be associated
with the punctures aN and aS at the north and south poles of
the sphere, respectively. On the sphere, prior to performing the
suturing, these observables are independent. On the torus, after
suturing, they are topologically equivalent up to a reversal in
orientation. Importantly, these observables may be computed
purely from the fields on the path of the loop itself, and
thus their calculation proceeds identically whether or not the
punctures are sutured. From this we infer two important results.
First, suturing of these punctures only yields a consistent TQFT
on the torus if the values of all Wilson loop observables on the
north puncture are the duals of the same observables evaluated
on the south puncture. Second, the space of states for the
TQFT on the torus is isomorphic to the space of states on the 2-
punctured sphere subject to this constraint. In Fig. 10 we see the
operator P̂T which projects from the Hilbert space of the n + 2-
punctured sphere to a reduced Hilbert space isomorphic to the
Hilbert space of the n-punctured torus. If we now describe
the Hilbert space on the n + 2-punctured sphere in terms of a
fusion tree in the region ofR3 colloquially described as outside
the sphere (i.e., extending from the surface of the unpunctured
sphere to infinity), then we may use the surgical procedure
described to construct a fusion tree for the n-punctured torus.
Bringing together and suturing the punctures at the north and
south poles corresponds to bringing together the equivalent
branches of the fusion tree to form a loop [Fig. 9(ii)].

FIG. 10. Operator P̂T (in the diagrammatic isotopy convention).
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FIG. 11. (i) Alternative procedure to construct a torus from the
2-punctured sphere. The procedure presented here is compatible with
a fusion tree constructed inside the torus, whereas the procedure
presented in Fig. 9 is compatible with a fusion tree constructed outside
the torus. (ii) Construction of an inside fusion tree for the (n − 2)-
punctured torus from a fusion tree inside the n-punctured sphere.

It is important to note that when constructing the torus from
the sphere by means of the surgery procedure described, one
necessarily obtains a fusion tree in the region which is again
outside the torus. This is because the branches of the fusion
tree on the sphere which terminate in the north pole and south
pole punctures must close to form a nontrivial cycle around the
torus, and this can only occur if the fusion tree on the sphere
inhabits the outside space. A fusion tree inside the torus may
be obtained by the alternative procedure of first constructing
a fusion tree inside the sphere, lengthening the sphere into
a hollow cylinder with the polar punctures at its ends and
then bending this cylinder around into a loop and suturing
(Fig. 11).

Given the existence of this relationship between anyon
models on surfaces of higher genus and anyon models on
the sphere, we see that on surfaces of higher genus we
may employ the pairs-of-pants decomposition approach to
construct a fusion tree in R3 in precisely the same way as
we did for the sphere. For diagrammatic isotopy conventions
to apply, we must now map this fusion tree to the plane of the
page in a manner such that the vertical axis corresponds to the
time dimension of the 2 + 1D TQFT and the horizontal axis
is a projection of the spatial degrees of freedom, just like we
did on the disk.

We begin by mapping the surface of the torus to an annulus
on R2, such that the map will be topology preserving if
the inner and outer borders of the annulus are identified
(Fig. 12). We also require that the mapping be chosen so that
when the annulus is viewed from above as in Fig. 12, the fusion
tree may be drawn so that it does not pass under the borders of
the annulus. For a fusion tree constructed inside the torus, the
borders of the annulus are therefore topologically equivalent to
the line of suturing in Fig. 9, and for a fusion tree constructed
outside the torus, they are equivalent to the line of suturing in
Fig. 11. We now expand the annulus to cover all of the plane
R2 except for arbitrarily small disks enclosing the points at
the origin and at infinity, marking these points with a star (∗)
and subtending from each of them a line perpendicular to the
plane.54 Viewing the annulus from the side, so that the copy of

FIG. 12. (Color online) (i) Mapping from the torus to an annulus
embedded in R2. Note that this map is topology-preserving if the
points on the inner and outer edges of the annulus are identified.
(ii) A fusion tree constructed inside the torus is mapped into a fusion
tree for the annulus with identifications.

R2 into which it is embedded appears as a line, we now project
this diagram onto the page to obtain the fusion tree.

Some example fusion trees for the n-punctured torus are
shown in Figs. 13(i) and 13(ii). Note the presence of the
line labeled ∗, corresponding to the position of the center
of the annulus. This line may be thought of as tracking the
location of an obstruction in R2 as a function of time. By
virtue of the mapping to the annulus used in the construction
of the fusion tree, an arbitrarily small ring encircling this
point may be identified with a similarly arbitrarily small ring
encircling the point at infinity (which is not shown, but could
be brought in to lie on the edge of the diagram by means of an
appropriate topology-preserving map and would then likewise
be labeled ∗). Because of this identification, it is impossible to
smoothly deform the labeled lines of the fusion tree through
the line marked ∗ according to the usual rules of diagrammatic
isotopy. Consequently, loops which encircle this obstruction
cannot be contracted and eliminated using the identity given
in Fig. 6. More generally, the embedding for a surface of
genus g will result in 2g such pairs of identifications in R2.

The unpunctured torus has a fusion tree which is given
in Fig. 13(iii), and may be obtained using the pairs-of-pants
approach by introducing a trivial puncture on the torus,
constructing the fusion tree (where the puncture with the
inward arrow in Fig. 4 is sutured to one of the punctures
with an outward arrow), and then deleting the line carrying
charge I which is associated with the trivial puncture. Again
in these examples, each line on the fusion-tree diagram may
be associated with the outcome of a particular Wilson loop
operation in the TQFT. However, on this occasion in addition
to the measurements associated with punctures on the surface
of the torus, there are also two measurements associated with
the nontrivial cycles of the torus [Fig. 13(iv)], and in a given
basis, only one of these will encircle a line of the fusion tree.
For example, consider the torus with no punctures. The fusion
tree may be constructed either outside the torus (in the region
of R3 which extends to infinity), or inside the torus (in the
region of R3 which does not extend to infinity). The labelings
of these two fusion trees both constitute a basis of states, and
they are related by means of the topological S matrix,
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FIG. 13. (Color online) (i),(ii) Fusion trees for systems of n anyons on the torus. The corresponding bases are related by means of a series
of F moves and are denoted B1 and B2, respectively. A line marked ∗ constitutes a topological obstruction to the contraction of loops in
the fusion tree, indicating that the loop encircles a nontrivial cycle on the torus. Such loops constitute an important part of the description of
the state and cannot be eliminated using Fig. 6. It is important to recognize that bases of types B1 and B2 may be constructed using either the
inside or the outside space of the torus, with the relevant constructions being indicated in the accompanying illustrations. Note that for any
given state, the value of xn is unaffected by changing between a basis of form B1 and one of form B2, and this is reflected in the labeling of the
diagrams. (iii) Fusion tree for the unpunctured torus. (iv) Measurements Ŵa and Ŵb are associated with nontrivial cycles on the torus.

Sab = 1

D , (3)

D =
√∑

a

d2
a , (4)

according to

=
∑

b

Sab (5)

(Note that an anyon model can consequently only be consis-
tently defined on the torus if and only if the topological S

matrix is unitary. This property is the defining characteristic
of a modular anyon model.)

In one of these bases, the fusion tree is encircled by Wilson
loop operator ŴA of Fig. 13(iv) and in the other basis by
operator ŴB . Thus, by describing a state in one of these bases,

we specify the probability amplitudes for the outcomes of
measurements around both nontrivial cycles of the torus.

We note that for the torus without punctures, the fusion
tree admits as many different labelings as there are species
of anyons in the model. The Hilbert space of the unpunctured
torus is thus |U |-dimensional, where |U | represents the number
of inequivalent labels in a UBMTC U . As an example,
consider Kitaev’s toric code, which is commonly understood as
exhibiting independent electric and magnetic charges and has
fusion rules corresponding to the quantum double ofZ2. As the
fusion rules of D(Z2) are Abelian, the elements of D(Z2) are in
1:1 correspondence with its representations, and consequently
we may associate the charges of the corresponding UBMTC
to the elements of D(Z2). Following convention, we may
denote these charges I, e, m, and em. In the language of
electric and magnetic charges, I is the uncharged vacuum
state, e corresponds to the presence of an electric charge, m

corresponds to a magnetic charge, and em corresponds to the
presence of both. For the toric code, all states without punctures
are ground states, and thus on the torus the ground-state
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subspace has dimension 4; equivalently, we may say that the
ground state on the torus is fourfold degenerate. Similarly, the
dimension of the Hilbert space of states on an unpunctured
manifold of genus g can easily be seen to be |U |g , and this
reproduces the well-known ground-state degeneracy of 4g for
the toric code on a surface of genus g.

Finally, we draw attention to charge x̃n−1 in Fig. 13(ii).
Due to the presence of the topological obstruction denoted
by ∗, the loop in this fusion tree is not subject to the
δ-function constraints of Fig. 6, which prohibit the existence
of tadpole diagrams on the disk. On the torus, charge x̃n−1 is
not constrained to be I.

2. Inner product

We now introduce a process for computing the inner product
on the torus, which is derived from the inner product on the
sphere by means of the process of manifold surgery described
in Sec. II B1. This construction generalizes immediately to all
orientable non-self-intersecting surfaces of higher genus.

Consider the inner product 〈ψ ′T|ψT〉 between two states
|ψT〉 and |ψ ′T〉 on the torus. For each state in turn we reverse
the construction given in Sec. II B1, cutting the torus so that
it is transformed into a surface isomorphic to the sphere with
punctures at north and south poles and then mapping each
state |ψT〉, |ψ ′T〉 on the torus to an equivalent state |ψD〉,
|ψ ′D〉 lying within the support of P̂T on the disk. As a notation
convention, superscripts of T and D in this paper are used to
indicate that a particular state or operator lives on the torus or
sphere/disk respectively. In contrast, the “T” on P̂T is written in
subscript and so is just part of the name we have chosen for this
operator and does not denote the topology of the manifold on
which the operator exists. The inner product between two states
on the torus is now simply taken to be the inner product
between the two equivalent states on the disk,

〈ψ ′T|ψT〉 = 〈ψ ′D|ψD〉. (6)

We may therefore summarize the computation of the inner
product on the torus as follows: First, the fusion and splitting
trees are connected at their leaves, as described for the sphere,
and any mismatch between charges results in an inner product
of zero. If the inner product has not yet been found to be
zero, then F moves and Fig. 6 are applied repeatedly until
the diagram is reduced to a sum of terms having the form
shown in Fig. 14(i). These are then evaluated as shown in
Figs. 14(ii) and 14(iii) to obtain the value of the inner product
(a generalization of the topological S matrix25 may be used
to convert between inside and outside bases for the torus, by
means of the relationship given in Fig. 15).

It is instructive to compare this formulation of the inner
product with that presented in Appendix A of Ref. 30. The
formulation of the inner product introduced by König and
Bilgin similarly guarantees that the physically permissible
unique labelings of the fusion tree of the punctured torus yield
an orthogonal basis for the Hilbert space and differs only in
the normalization factors which must be associated with some
of the diagrams (see Table I).

FIG. 14. Evaluation of the inner product on the singly punctured
torus, in the diagrammatic isotopy convention. (i) Opposition of torus
fusion and splitting trees. (ii) Equivalent diagram on the sphere.
(iii) Numerical value. Note that in the diagrammatic isotopy conven-
tion, mapping states on the torus to states on the sphere effectively
amounts to the removal of two vertices, along with their associated
numerical factors. This introduces a factor of

√
dx1dx′

1
in step (ii).

3. Operators on surfaces of higher genus

As with the sphere, we now address the diagrammatic
representation of operators on surfaces of higher genus. We
begin with a general discussion and once again examine
explicit examples on the torus.

On a surface of genus g (where g is taken to correspond to
the genus of the surface in the absence of punctures), operators
may correspond to physical processes acting either on the
entire manifold or on a finite subregion of the manifold. Where
operators act on the entire manifold, a completely general
construction may once again be achieved by replacing the bras
and kets of Eq. (2) with fusion and splitting tree diagrams for
states of the appropriate genus. However, for operators acting
on a finite subregion of the manifold the situation may be
simplified somewhat. Momentarily neglecting the existence of
punctures on the physical manifold, we examine the topology
of the area of support of the operator. If this area of support now
lies entirely within a submanifold of genus g′ < g, then the
operator may be represented using fusion and splitting trees of
genus g′. For example, if we consider an operator on the torus
whose support lies within a region which is (again momentarily
ignoring any anyons within it) topologically the unpunctured
disk, then by locality we need only consider the portion of the
fusion tree corresponding to any anyons which do lie within
that disk. We then choose a basis where this portion of the tree
connects to the rest of the fusion tree via only a single line,

FIG. 15. The generalization of the topological S matrix, (Sc)ab,
enables us to evaluate the inner product of two states when one of
these states is written in a basis constructed inside the torus, and one is
written in a basis constructed outside the torus. Using this relationship
it is possible to convert between bases constructed inside the torus and
bases constructed outside the torus. D is the total quantum dimension
given by Eq. (4).
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TABLE I. Inner products of un-normalized diagrams on the 1-
punctured torus, for Fibonacci anyon statistics. Labels a1, x1, and x ′

1

refer to diagram (i) of Fig. 14, and a′
1 is set equal to a1. All inner

products not listed below are zero in both conventions.

x1, a1, x ′
1 Convention of Sec. II B2 Convention of Ref. 30

I, I, I 1 1
τ , I, τ φ2 1
τ , τ , τ φ5/2

√
φ

such that if we excised this disk from the manifold as a whole,
that line would describe the charge on the resulting puncture
and be dual to that on the boundary of the excised disk. We
may now represent the operator in the form of an operator on
the disk as described in Sec. II A3 and apply it by connecting
it with the relevant portion of the fusion tree, as shown in the
example of Fig. 16. We do, however, make one warning: If the
operator shown in Fig. 16 were to be applied to anyons a6 and
a1, then transformation from the basis shown into one in which
a6 and a1 were adjacent would require the application of the
periodic translation operator, which is a nonlocal operator and
is discussed in Sec. II B4.

Extension of this approach to surfaces and operators of
higher genus is straightforward.

There exists one further observation to be made with respect
to surfaces of higher genus. Much as the torus admits operators
of genus 0 and genus 1, a surface of genus g will admit
operators whose support is a region of genus g′, for any
g′ � g. We are not aware of any notation convention for the

FIG. 16. An operator ÔT acts on a region of the 6-punctured
torus which contains two anyons, and which, if these anyons were
not present, would be topologically an unpunctured disk. The above
diagrams represent an expression of the form |ψ ′T〉 = ÔT|ψT〉, and
the basis on the torus has been chosen for convenience.

description of such operators, and on surfaces having genus
higher than 1 there is the potential for ambiguity as a given
operator diagram of genus g′ may conceivably refer to any
of g′ · ( g

g′ ) different physical processes, depending on which
handles of the manifold are associated with the handles implicit
in the operator diagram. Using a unique label for the pair
of obstructions associated with each handle of the manifold
serves to alleviate this ambiguity.

4. Periodic translation on the torus

We now consider a specific example system which is of
interest in Sec. III. Suppose we have a system of anyons on a
torus, arranged on a chain which encircles either the large or the
small nontrivial cycle of the torus.55 As these two situations are
topologically equivalent, we choose it to encircle specifically
the large nontrivial cycle with no loss of generality. (It is
anticipated that we may also evaluate rings which twist around
both nontrivial cycles of the torus using a Dehn twist, but these
are not considered in the present paper.)

How can we, in the diagrammatic notation, most efficiently
represent the process of simultaneously translating each anyon
around the torus by one site?

If we construct our fusion tree inside the torus, advance
each anyon one site around the torus, and project onto the
page, then the periodic translation operator is seen to act on
the torus as shown in Fig. 17. We may, therefore, write the
torus translation operator simply as

T̂ T =
.

(7)

Note the presence of the star in the diagrammatic represen-
tation of the translation operator, reflecting that the periodic
translation passes around a nontrivial cycle on the torus, as
opposed to merely cyclically permuting the anyons locally on
a disklike region of the torus-shaped manifold.

Evaluation of cyclic permutation on the torus in the inside
basis poses an interesting challenge. In contrast with the
cyclic translation operator on the disk [T̂ D, Fig. 7(iv)], the
operator T̂ T cannot be constructed from local operations by
composing a series of braids. Instead, we must introduce
another new operator, given in Fig. 18, which we call the mod-
ified translation operator, T̂ T

M. By diagrammatic isotopy and
topology-preserving deformations of the manifold (Fig. 19),
we see that the action of this operator T̂ T

M in basis B1 is
to cyclically permute the degrees of freedom a1, . . . ,an and
x1, . . . ,xn.

We may further use diagrammatic isotopy to redraw T̂ T
M in

the form

T̂ T
M = , (8)

and this may be rewritten using Fig. 2(ii) as

T̂ T
M = (

R
anan

I

)−1

.

(9)
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FIG. 17. The translation operator T̂ T on the torus, (i) represented as an operator in the bra-ket form of Eq. (2), and (ii) represented as a
mapping between a state |ψ〉 and the translated state |ψ ′〉 = T̂ T|ψ〉.

Comparing with Eq. (7), we see that T̂ T and T̂ T
M differ only

by the charge-dependent phase R
anan

I . We therefore conclude
that the application of the periodic translation operator on the
torus to a labeled fusion tree in basis B1 constructed inside
the torus is equivalent to multiplication by R

anan

I followed by
cyclic permutation of all anyon indices a1, . . . ,an and internal
indices x1, . . . ,xn.

To construct a diagrammatic representation of the periodic
translation operator in an outside basis, we proceed somewhat
differently. This time, let us begin with a state written in basis

B2 and constructed in the region outside the torus. First, we
map this state to the n + 2-punctured sphere. We then perform
a further mapping of this sphere to the infinite plane, to obtain
the situation depicted in Fig. 20(i) where the arrangement of
punctures is shown on the plane of the page. Introducing a
fusion tree for this arrangement of punctures, as shown in
Fig. 20(ii), it is easy to construct the appropriate translation
operator on the infinite plane [Fig. 20(iii)]. This operator
maps states in the basis of Fig. 20(ii) to states in the basis
of Fig. 20(iv), in which the anyon an is explicitly braided

FIG. 18. Definition of an operator T̂ T
M on the torus, which cyclically permutes the degrees of freedom a1, . . . ,an and x1, . . . ,xn in basis B1.
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FIG. 19. Evaluation of the action of T̂ T
M as defined in Fig. 18. (i),(iii) Application of diagrammatic isotopy. (ii),(iv) Topology-preserving

deformation of the manifold. Recall that * represents the location of an arbitrarily small ring on the 2D spatial manifold which is identified with
a similar ring encircling the point at infinity, and thus shifting the trajectory of * as shown in steps (ii) and (iv) just corresponds to performing
an entirely local, topologically trivial deformation of the manifold. As both the manifold topology and the fusion tree are unaffected by this
local deformation, it has no effect on our definition of the state, and no numerical factors are acquired as a result of these actions.

around the south polar puncture. The equivalent operator on
the torus in the outside version of basis B2 is given in Fig. 21,
where anyon an is seen to braid through the loop which carries
the flux through the torus.

This may also be intuitively understood by explicitly
constructing the fusion tree in the outside space, as shown
in Fig. 22, and observing that during periodic translation of
the punctures, one anyon is necessarily threaded through the
loop of the fusion tree. Interestingly, and in contrast with
bases constructed inside the torus, the translation operator
for a basis outside the torus can be implemented entirely in

terms of local operations once the state has been mapped
to the equivalent sphere. This approach cannot be applied
to inside bases, as reversing the surgery process given in
Fig. 11 involves cutting the ring of anyons, and this leaves
the process of periodic translation on the equivalent sphere
undefined.

Once again, notice that in either basis, the translation
operator on the torus respects the arrow of time of the
associated 2 + 1D TQFT: In Figs. 17 and 21 the trajectories
of the punctures during periodic translation are all monotonic
in the vertical direction.
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FIG. 20. (i) Aerial view of n + 2 punctures on the infinite plane
equivalent to n punctures in a nontrivial ring on the torus. The fusion
tree on the plane imposes a linearization on these punctures, and we
may choose this to be as given by the black line. (ii) The corresponding
fusion tree. We may assume this fusion tree to inhabit the curved
plane obtained by extending the black line of diagram (i) into the
plane of the page. The gray arrows in (i) indicate the process of
periodic translation of the anyons on the ring. Note that during the
process of translation, one anyon crosses the plane of the fusion tree
while passing between the punctures aN and aS. This is reflected in the
periodic translation operator, labeled (iii). Application of the operator
(iii) to states in the form of fusion tree (ii) yields states expressed in
the fusion-tree basis of diagram (iv).

FIG. 21. Periodic translation operator around the larger nontrivial
cycle of the torus, expressed in basis B2 constructed in the outside
space, and represented as a mapping between a state |ψ〉 and the
translated state |ψ ′〉 = T̂ T|ψ〉.

5. Topological symmetry operators

Finally, we find it useful to introduce one more class
of operator on the torus which admits a special graphical
representation. Consider now a torus with a ring of punctures
around the large nontrivial cycle. These operators, which we
denote Ŷ T

b , describe a process whereby a pair of anyons
carrying charges b and b̄ are created from the vacuum, travel
around opposite sides of a nontrivial cycle on the torus coplanar

FIG. 22. In this diagram we see the process of periodic translation
represented schematically on the actual toroidal manifold, with the
fusion tree visible in the outside region of R3. It is seen that, in bases
constructed in the outside space, periodic translation on the torus
threads an anyon through the nontrivial loop of the fusion tree.
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FIG. 23. Operator Ŷ T
b acts on a state on the torus. In diagram (i), the anyon pair b and b̄ travel around the large nontrivial cycle, and the

fusion tree is constructed in the inside space. In diagram (ii), the anyon pair still travel around the large nontrivial cycle, but the fusion tree
[which may represent the same state as in diagram (i)] is now constructed in the outside space. To aid in understanding of the physical process
described by Ŷ T

b , diagrams (iii) and (iv) illustrate how the resulting fusion trees may be related to the manifold when this is represented explicitly
as a torus embedded in R3. Note that although in each instance operator Ŷ T

b admits an interpretation as being equivalent to an anyon pair b and
b̄ passing around the great cycle of the torus and annihilating, in diagrams (i) and (iii) this process is represented in the inside space, and in
diagrams (ii) and (iv) it is constructed in the outside space. This is because, although the anyons themselves live on the surface of the manifold,
when we choose to construct a fusion tree in the inside or outside space we associate a direction in that region with the timelike dimension of
the TQFT. As charges b and b̄ are created, pass around the torus, and then annihilate one another again, their histories then correspondingly
trace out loops in the inside or outside space as appropriate.

with the ring of punctures and without braiding, and then
annihilate back to the vacuum. Expressed as a map from a
state |ψ〉 to a state |ψ ′〉 where |ψ〉 and |ψ ′〉 are written in a
fusion-tree basis in the inside space, an operator Ŷ T

b may be
written as shown in Fig. 23(i). If we now reexpress the state |ψ〉
in a basis constructed outside the torus using Eq. (5), operator
Ŷ T

b takes the form shown in Fig. 23(ii). Using the identity

= Sab

SIb
(10)

we can see from Fig. 23(ii) that Ŷ T
b will have eigenvalues

Sbxn
/SbI in the physical portion of the Hilbert space, and a

state will be an eigenvector of Ŷ T
b if and only if it is not in a

superposition over label xn.
In the present notation, the Ŷ operator employed in Ref. 8

would be denoted Ŷ T
τ and is constructed in the inside basis, as

per Fig. 23(i).

III. PERIODIC BOUNDARY CONDITIONS

In this section we consider periodic chains of anyons first
on the torus (Sec. III C) and then on the disk (Sec. III D).
We further specialize to models in which every site in the
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chain carries a fixed, identical charge, and consequently in
this section, and also in the next, we set a1 = a2 = · · · = an.
For each topology (torus and disk) we introduce a translation-
invariant local Hamiltonian written as a sum of local terms,
and take as a specific example the AFM nearest-neighbor
interaction for a chain of Fibonacci anyons. We assume that
an operator which is local acts only on a disklike subregion
of the manifold (i.e., if it is an operator acting on the torus, it
does not include any nontrivial cycles). Consequently, such an
operator may be written in terms of a fusion tree defined on
the disk, as per Fig. 7(ii).

To express the states of our system, on the disk we use the
basis given in Fig. 1(iv), and on the torus we use a basis of the
form given in Fig. 13(i) (basis B1). The ring of punctures is
taken as encircling the large nontrivial cycle of the torus, and
the fusion tree is constructed in the inside space.

For the Fibonacci AFM interaction, which is a nearest-
neighbor interaction, all terms of the Hamiltonian take the form
of Fig. 7(ii) for r = 2. For clarity, from this point forwards
we only provide explicit treatments for nearest-neighbor
Hamiltonians, though most of the arguments and techniques
presented readily generalize to r > 2.

A. Mapping to spins

In studying 1D systems of anyons using numerical tech-
niques, it may frequently be favorable to map the anyon chain
to a spin chain model with constraints. We therefore map the
degrees of freedom for a 1D system of Fibonacci anyons onto
a spin chain.

In the basis of Fig. 1(iv) for the sphere and in basis
B1 for the torus [Fig. 13(i)], for a system of n anyons
the Hilbert space of the system is spanned by the p free
parameters of the fusion tree, x1, . . . ,xp, where p = n − 3 on
the disk and p = n on the torus. We now construct a second,
independent quantum system whose Hilbert space H admits
a tensor product decomposition into p “sites,” each of local
dimension |U |,

H = (H1)⊗p, dim(H1) = |U |, (11)

which we term a “spin chain.” On this spin chain we may now
construct a local orthonormal basis on each site, identifying
the elements of this basis with the charges of the UBMTC. We
then map the value of each label xi on the fusion tree to the
state of a corresponding spin (which we also denote xi) on the
spin chain.

The Hilbert space of the resulting spin chain is larger than
that of the associated anyon chain, and so is then restricted to
admit only those states which correspond to valid fusion trees
under the anyonic fusion rules.

It is important to recognize that under this mapping, the
process of translation on the anyon chain does not, in general,
correspond to the natural definition of translation on the spin
chain. This is particularly evident when examining the process
of periodic translation on anyon rings, which we consider now
in some detail.

B. Periodic translation of anyons, implemented
on a chain of spins

We note that there exists a special relationship between the
process of periodic translation on a chain of spins and periodic
translation on a ring of anyons encircling a nontrivial cycle
of the torus. Under the mapping of Sec. III A, each degree of
freedom x1, . . . ,xn on the torus is mapped to a site on the spin
chain, and periodic translation on the system of spins, which
we denote T̂ S, cyclically permutes these labels by one place.
For a state satisfying a1 = a2 = · · · = an, an equivalent effect
may be obtained for the fusion diagram of the torus by applying
the operator T̂ T

M discussed in Sec. II B4. Furthermore, for fixed
anyon charges a1, . . . ,an, the factor (Ranan

I )−1 in Eq. (9) is a
constant. Consequently, for a ring of fixed, identical anyons on
the torus, periodic translation of the ring of anyons is equivalent
up to a phase to periodic translation on the associated spin
chain, with this phase given by R

anan

I , the value of which is
specified in the UBMTC describing the anyons.

Note that for Fibonacci anyons, there are two different
possible UBMTCs based on the Fibonacci fusion rules. In
one of these the phase Rττ

I takes on the value e4π i/5, while in
the other it is e−4π i/5. The existence of this pair of Fibonacci
UBMTCs differing only by complex conjugation of Rab

c is
discussed further in Sec. III C and Appendix B, but for now it
suffices to note that because R

anan

I is just a phase, we have the
identity

T̂ TÔ T̂ T† = T̂ T
M Ô T̂

T†
M = T̂ SÔ T̂ S† (12)

for any operator Ô which acts on a periodic chain of fixed
identical anyons.

Although the translation of operators is therefore relatively
simple, some care is required when computing the momenta
of translation-covariant states: If translation by one site on
the torus introduces a phase of eiθT

, then translation of the
equivalent state by one site on the spin chain will introduce a
phase of eiθS = (Ranan

I )−1eiθT
.

C. Hamiltonian with periodic boundary conditions on the torus

We now introduce a translation-invariant anyonic Hamil-
tonian, Ĥ A,P,T. The superscripts A, P, and T indicate that the
Hamiltonian is anyonic, periodic, and constructed on the torus,
respectively. For r = 2 (nearest neighbor), we may write

Ĥ A,P,T =
n−1∑
i=0

(T̂ T)i
(
ĥA

1,2

)
(T̂ T†)i =

n∑
i=1

ĥA
i,i+1, (13)

where local operator ĥA
i,i+1 acts on lattice sites i and i + 1

and takes the form of Fig. 24. Unless otherwise stated, the
evaluation of position indices such as i + 1 is assumed to be
periodic in the range 1, . . . ,n, so (for example) site n + 1 is
identified with site 1.

As a specific example, we consider the AFM interaction
on the golden chain, for which all anyons ai on the lattice are
constrained to have charge τ . Because the charges ai , ai+1, a′

i ,
and a′

i+1 are fixed and there are no degeneracy indices, we may
denote the elements of ĥA

i,i+1 by (hA
i,i+1)x , where x corresponds

to the fusion product of the Fibonacci anyons on sites i and
i + 1, respectively. The AFM Hamiltonian favors the fusion
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FIG. 24. Form of the two-site local operator used as a term in the
local Hamiltonians Ĥ A,P,T (13) and Ĥ A,P,D (23). Charges ai , a′

i , ai+1,
and a′

i+1 are assumed to be fixed.

path τ × τ → 1, and we therefore assign (hA
i,i+1)1 = −1 and

(hA
i,i+1)τ = 0.
As demonstrated by Feiguin et al.,8 a two-body operator ĥA

acting on two adjacent sites (ai and ai+1) of the golden chain
may, in an appropriate basis, also be understood as acting on
three of the internal degrees of freedom on the fusion tree [e.g.,
xi−1, xi , xi+1 in the basis of Fig. 13(i)]. Using this information,
we can construct a three-body operator ĥS on the spin chain
whose action is locally equivalent to the two-body operator
ĥA on the system of anyons. We first introduce the spin chain
equivalent of applying an F move at sites i and i + 1 of basis
B1, for i < n:

F̂ S
i−1,i,i+1|xi−1xixi+1〉 =

∑
x̃i

(
Faiai+1xi+1

xi−1

)
xi x̃i

|xi−1x̃ixi+1〉,

(14)

where the superscript “S” indicates an operator acting on the
spin chain. We then write

ĥS
i−1,i,i+1 = (

F̂ S
i−1,i,i+1

)†
ĥ′S

i F̂ S
i−1,i,i+1, (15)

where

ĥ′S
i | . . . ,xi, . . .〉 = (

hA
i,i+1

)
xi
| . . . ,xi, . . .〉. (16)

For a chain of Fibonacci anyons, ai = τ for all values of i,
and the above construction yields ĥS

i−1,i,i+1, corresponding to
ĥA

i,i+1 for all i < n. To construct the final term we exercise some
caution, as an and a1 are presently located at opposite ends of
the fusion diagram. We therefore begin with the expression

ĥA
n,1 = T̂ TĥA

n−1,nT̂
T†. (17)

Since we have fixed the charges of all punctures ai to be
equivalently τ , we may apply Eq. (12) to obtain

ĥA
n,1 = T̂ T

MĥA
n−1,nT̂

T
M†. (18)

As T̂ M is equivalent to translation on the chain of spins, T̂ S,
we see that

ĥS
n−1,n,1 = T̂ SĥS

n−2,n−1,nT̂
S†, (19)

as might have been expected. The total spin-chain Hamiltonian
may therefore be written

Ĥ S,P,T =
n−1∑
i=0

(T̂ S)i
(
ĥS

1,2,3

)
(T̂ S†)i =

n∑
i=1

ĥS
i−1,i,i+1 (20)

on a periodic spin chain of length n.
For Fibonacci anyons with nearest-neighbor interactions,

Hamiltonian (13) is a quantum critical Hamiltonian, and thus,
by their equivalence, so is (20). The low-energy properties
of such systems are described by a conformal field theory
(CFT), and the scaling dimensions of the local primary
fields can be extracted from the low-energy spectrum of the

TABLE II. Energy spectra for rings of (i) 24 and (ii) 25 Fibonacci
anyons interacting via an AFM nearest-neighbor interaction on
the torus, shifted and rescaled to yield scaling dimensions for the
associated conformal field theory. For even numbers of anyons, this
is the minimal model M(5,4), associated with the tricritical Ising
model (TIM). For an odd number of anyons, we obtain the spectrum
of those operators in M(5,4) which incorporate a Z2 twist in the
boundary conditions of the TIM (Ref. 60). As noted in Ref. 8 the
scaling dimensions for odd numbers of anyons may be obtained from
those for even numbers of anyons by fusing the corresponding scaling
fields with the holomorphic field ε′′. 0 ≡ (I,I), 3

40 ≡ (σ,σ ), 1
5 ≡ (ε,ε),

7
10 ≡ (ε,ε′) or (ε′,ε), 7

8 ≡ (σ ′,σ ′), 6
5 ≡ (ε′,ε′), 3

2 ≡ (ε′′,I) or (I,ε′′).

Numerics Prediction from CFT Flux through torus

(i) 24 Anyons
0.0000 0 I

0.0750 0.0750 ( 3
40 ) τ

0.1989 0.2000 ( 1
5 ) τ

0.8826 0.8750 ( 7
8 ) I

1.0622a 1.0750 ( 3
40 + 1) τ

1.1784a 1.2000 ( 1
5 + 1) τ

1.1841 1.2000 ( 6
5 ) τ

1.8540a 1.8750 ( 7
8 + 1) I

1.9469a 2.0000 (0 + 2) I

1.9843a 2.0750 ( 3
40 + 2) τ

2.0180a 2.0750 ( 3
40 + 2) τ

(ii) 25 Anyons
0.0750 0.0750 ( 3

40 ) τ

0.7000a 0.7000 ( 7
10 ) τ

0.8587 0.8750 ( 7
8 ) I

1.0662a 1.4750 ( 3
40 + 1) τ

1.4887a 1.5000 ( 3
2 ) I

1.6641a 1.7000 ( 7
10 + 1) τ

1.6863a 1.7000 ( 7
10 + 1) τ

1.8163a 1.8750 ( 7
8 + 1) I

2.0008a 2.0000 (0 + 2) I

2.0176a 2.0750 ( 3
40 + 2) τ

2.0516a 2.0750 ( 3
40 + 2) τ

aEigenvalue is twofold degenerate.

translation invariant critical model on a finite lattice with
periodic boundary conditions (see Refs. 14 and 15; also
reviewed in Ref. 16). The results from numerically exactly
diagonalizing Ĥ S,P,T for AFM Fibonacci chains of lengths 24
and 25 are presented in Table II. The energy eigenvalues have
been shifted and rescaled to give the scaling dimensions of the
corresponding CFT, which for this Hamiltonian is the minimal
model associated with tricritical Ising model, M(5,4).

For each scaling dimension, Table II also gives a parameter
referred to as the “flux through the torus.” If we write our states
on the torus in a basis of type B2 constructed in the outside
region of R3, then this is simply the value of charge label xn.
It is not difficult to see from Eq. (7) and Figs. 23 and 24 that
any operator Ŷ T

b will commute with a Hamiltonian of local
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terms Ĥ A,P,T on the torus, and thus for Fibonacci anyons we
may simultaneously diagonalize Ĥ A,P,T and Ŷ T

τ . It therefore
follows that we may associate every energy eigenstate with a
corresponding eigenvalue of Ŷ T

τ , which in turn corresponds to
the measurement of a well-defined charge xn.

For a basis constructed in the inside space, the flux no longer
corresponds to any particular label on the diagram. Instead,
in an inside basis, to measure the flux one makes a charge
measurement around the topological obstruction labeled ∗ [as
seen in Fig. 23(i)]. However, the conclusions drawn from the
study of operator Ŷ T

τ in an outside basis still necessarily hold,
and thus we may again simultaneously diagonalize Ĥ A,P,T and
Ŷ T

τ . The measurement of the flux through the torus in Ref. 8
corresponds to the evaluation of the operator Ŷ T

τ (denoted in
this paper by Ŷ ) in an inside basis of type B1.

Because the Hamiltonian is translation invariant, we may
also assign a momentum to each state as shown in the
dispersion diagram of Fig. 25. This diagram clearly shows
the distinction between (i) periodic translation on sites
of the spin chain and (ii) periodic translation of anyons on
the torus, with the difference between T̂ S and T̂ T resulting
in a relative phase shift of Rττ

I as described in Sec. III B.

FIG. 25. (Color online) Energy vs phase diagram, where eiθ is
the phase acquired by energy eigenstates on translation by one
site, for the Hamiltonian of the golden chain with AFM interaction
(i) made translation-invariant on the corresponding periodic spin
chain with p = 24 spins, and (ii) naturally translation-invariant
on a nontrivial ring of anyons on the torus with n = 24 anyons.
Squares mark theoretical values for primary fields, and circles show
selected descendants. Solid lines bound the energies from below.
The system of spins yields a dispersion diagram identical to that
of anyons on the torus, except that the momenta are shifted by an
offset of −i ln[(Rττ

I )−1] = − 4π

5 as described in Sec. III B. (Note that
as described in Sec. III C and Appendix B, the momentum of the
ground state is dependent on the choice of Fibonacci UBMTC. In
all our numerical calculations we have adopted a UBMTC for which
Rττ

I = 4π i
5 .)

For numerical calculations in this paper, we have adopted a
Fibonacci UBMTC for which Rττ

I = e4π i/5.
The nonzero momentum of the ground state in Fig. 25(ii)

merits some discussion. First, we note that the ground-state
momentum is precisely −i ln(Rττ

I ) = 4π/5 and that if we had
adopted a UBMTC for which Rττ

I = e−4π i/5, we would have
similarly obtained a momentum of −4π/5. This is because
under translation, a state will necessarily acquire a phase shift
as a result of the braiding structure of the operator T̂ T.

It is also interesting to note that (as would be expected)
the ground-state momentum is not reflection-invariant. Spatial
reflection maps all braids into their inverses, and is therefore
equivalent to exchanging a UBMTC for which Rττ

I = e4π i/5

with one for which Rττ
I = e−4π i/5, changing the ground-state

momentum from 4π/5 to −4π/5. Consequently, we see that
the ground state of the anyonic system—and indeed the entire
Fibonacci UBMTC—is chiral, and this chirality originates
in the chirality of the underlying TQFT. Chirality of anyon
models is discussed further in Appendix B.

It is important to recognize that this calculation is specific
to systems governed purely by the Fibonacci UBMTC, and the
behavior may differ in models where the Fibonacci UBMTC,
Fib, represents just part of the overall symmetry of the system.
For example, the Read-Rezayi state6 exhibits the quantum
symmetry Z3 ⊗ U(1), which is equivalent, up to an Abelian
phase, to Fib, which is the subcategory generated by the even
charges of SU(2)3. In this example, the U(1) sector in the
Read-Rezayi state gives rise to a further, model-dependent
phase during periodic translation. If this phase is not fixed
by the description of the physical system, then it may be
considered a gauge freedom. In previous work8,9,11–13,32,56 this
gauge has been chosen to cancel out the factor of Rττ

I which
arises from periodic translation, yielding a momentum of zero
for the ground state. In the present paper, however, we work
with just the Fibonacci UBMTC and so, lacking the additional
U(1) gauge freedom of the Read-Rezayi state, we necessarily
obtain nonzero momenta for the ground states of the AFM
Hamiltonian on the torus (above) and the disk (Sec. III D).

D. Hamiltonian with periodic boundary conditions on the disk

To construct a periodic translation operator on the disk,
we recognize that the anyon sites in Fig. 1(iv) lie on a circle,
which must be assumed to close either towards or away from
the reader. Opting for the latter, we may define the periodic
translation operator on the disk according to Fig. 7(iv). By
inspection we see that translation may be implemented by
means of repeated application of the braiding operator of
Fig. 7(iii), which we denote B̂A

i,i+1. The operator in Fig. 7(iv)
cyclically permutes all anyons anticlockwise by one lattice
site. Up to the passive change of basis shown in Fig. 26 it is
therefore equivalent to the diagram

,
(21)

and may consequently be written as

T̂ D =
n−1∏
i=1

B̂A
i,i+1. (22)
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FIG. 26. The translation operator of Fig. 7(iv) may be rewritten in the form of Eq. (21) by means of a topology-preserving change of basis.
Diagram (i) above shows the translation process whose projection yields Fig. 7(iv). This anyon ring may be smoothly distorted to obtain that
shown in diagram (ii), for which projection yields the operator of Eq. (21).

We now introduce a translation-invariant Hamiltonian,

Ĥ A,P,D =
n−1∑
i=0

(T̂ D)i
(
ĥA

1,2

)
(T̂ D†)i =

n∑
i=1

ĥA
i,i+1, (23)

where the superscript “D” denotes that this Hamiltonian acts
on the disk. As before, we also introduce a spin chain whose
sites correspond to the degrees of freedom of the anyonic
fusion tree. However, on this occasion we use the fusion
tree of Fig. 1(iv) as a basis of states, and the corresponding
spin chain is of length p = n − 3. Near the center of the
chain we may construct the spin equivalent of an F move
in the same way as for the torus [Eq. (14)], but we see that
operators near the end of the chain will act on a reduced
number of sites. For example, an F move acting on sites a2

and a3 acts only on spin variables x1 and x2, mapping |x1x2〉
into

∑
x̃1

(Fa1a2a3
x2

)x1x̃1 |x̃1x2〉. We continue to denote the spin
chain counterparts of these operators by F̂ S

i,i+1,i+2, with the
understanding that when evaluating Eq. (14) on the disk, any
indices x0 or xp+1 are to be replaced with charges a1 and an

respectively, and any indices x−1 or xp+2 are to be replaced
with the vacuum charge I. We do not modify the spin chain,
which continues to run from x1 to xp. This behavior manifestly
breaks translation invariance on the spin chain.

For values of i sufficiently distant from 1 or n we may also
map ĥA

i,i+1 onto a three-site spin operator as before, although
this is now denoted ĥS

i−2,i−1,i as it acts on spin variables xi−2,
xi−1, and xi . By using the extended definition of F̂ S

i,i+1,i+2 we
may even write spin operators equivalent to ĥA

1,2, ĥA
2,3, ĥA

n−2,n−1,
and ĥA

n−1,n. However, for ĥA
n,1 we must introduce the spin chain

equivalent of the anyonic periodic translation operator on the
disk, T̂ D.

To do this, we first construct the spin chain counterpart
to the anyonic braiding operator given in Fig. 7(iii). This is
achieved by introducing a unitary operator R̂S

i derived from
the tensor R in Fig. 2(ii), which operator multiplies a state |xi〉
by a phase R

ai+1ai+2
xi

. Using this we may write the spin chain
equivalent of Fig. 7(iii) as

B̂S
i,i+1,i+2 = (

F̂ S
i,i+1,i+2

)†
R̂S

i+1F̂
S
i,i+1,i+2. (24)

As with F̂ S, the same special identifications for x−1, x0, xp+1,
and xp+2 must be made when applying either R̂S or B̂S to
a state. Using B̂S we can define an operator T̂ ′S on the spin
chain which is equivalent to periodic translation on the lattice
of anyons,

T̂ ′S =
p+1∏
i=0

B̂S
i−1,i,i+1, (25)

and thus compute the spin-chain Hamiltonian which is equiv-
alent to Ĥ A,P,D:

Ĥ S,P,D =
p+2∑
i=0

(T̂ ′S)i
(
ĥS

1,2,3

)
(T̂ ′S†)i . (26)

The Hamiltonian Ĥ S,P,D is clearly not translation invariant
under the natural definition of translation on a periodic spin
chain. However, it does exhibit translation invariance under the
adjoint action of the anyon-derived translation operator T̂ ′S,

Ĥ S,P,D = T̂ ′SĤ S,P,DT̂ ′S†. (27)

Away from the edges of the fusion tree, the action of
T̂ ′S(·)T̂ ′S† is equivalent to translation on the system of spins,
such that (for example) T̂ ′S(ĥS

1,2,3)T̂ ′S† = ĥS
2,3,4. However, this
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TABLE III. Energy spectra for rings of (i) 24 and (ii) 25 Fibonacci
anyons interacting via an AFM nearest-neighbor interaction on
the disk, shifted and rescaled to yield scaling dimensions for the
associated conformal field theory. For even numbers of anyons, this
is the minimal model M(5,4), associated with the tricritical Ising
model (TIM). For an odd number of anyons, we obtain a spectrum
of operators in M(5,4) which incorporate a Z2 twist in the boundary
conditions of the TIM (Ref. 60). As noted in Ref. 8 the scaling
dimensions for odd numbers of anyons may be obtained from those
for even numbers of anyons by fusing the corresponding scaling fields
with the holomorphic field ε′′. 0 ≡ (I,I), 7

8 ≡ (σ ′,σ ′), 3
2 ≡ (ε′′,I) or

(I,ε′′).

Numerics CFT prediction

(i) 24 Anyons
0.0000 0
0.8750 0.8750 ( 7

8 )

1.8380a 1.8750 ( 7
8 + 1)

1.9301a 2.0000 (0 + 2)

2.7012a 2.8750 ( 7
8 + 2)

2.7771a 2.8750 ( 7
8 + 2)

(ii) 25 Anyons
0.8750 0.8750 ( 7

8 )

1.5000a 1.5000 ( 3
2 )

1.8250a 1.8750 ( 7
8 + 1)

2.4107a 2.5000 ( 3
2 + 1)

2.6939a 2.8750 ( 7
8 + 2)

2.7598 2.8750 ( 7
8 + 2)

aEigenvalue is twofold degenerate.

does not hold where the translation would yield an operator
crossing between sites 1 and p. Instead, T̂ ′S(ĥS

p−2,p−1,p)T̂ ′S†
yields a two-site operator acting on spin sites p − 1 and
p, and it is necessary to apply T̂ ′S(·)T̂ ′S† six times to map
ĥS

p−2,p−1,p into ĥS
1,2,3, with none of the intermediate terms

resembling a translation on the spin system of the original
operator ĥS

p−2,p−1,p. Nevertheless, the complete Hamiltonian

satisfies T̂ ′S(Ĥ S,P,D)T̂ ′S† = Ĥ S,P,D.
The results of numerically exactly diagonalizing Ĥ S,P,D are

given in Table III, and a dispersion diagram is plotted in Fig. 27
for comparison with the torus [Fig. 25(ii)]. As with the torus
the energy spectrum has been shifted and rescaled to give the
scaling dimensions of local scaling operators in M(5,4). It is
noted that the local scaling operators obtained coincide with
those calculated using the anyonic scale-invariant MERA in
the absence of free charges,29,31 and this is to be expected as
the local scaling operators employed in the cited references
are topologically trivial, occupying a region of the manifold
which is locally the disk.

This behavior, where translation invariance exists relative
to an operator which is not the natural translation operator
on the spin chain, has previously been observed for certain
SU(2)k-invariant spin chain Hamiltonians by57 It is now known
that a relationship exists between SU(2)k-invariant spin chains
and chains of SU(2)k anyons, and although present research
has concentrated on anyons on the torus,8,9 it is nevertheless
likely that the models of Grosse et al. may similarly be mapped

FIG. 27. (Color online) Energy vs phase diagram, where eiθ is the
phase acquired by energy eigenstates on translation by one site, for the
golden chain with AFM interaction on the disk with n = 24 anyons.
Squares mark theoretical values for primary fields, and circles show
selected descendants. Solid lines bound the energies from below. Note
that phase shifts are in agreement with those computed on the torus
[Fig. 25(ii)] and are offset by 4π

5 relative to the corresponding values
on the spin chain [Fig. 25(i)]. (Note that as described in Sec. III C
and Appendix B, the momentum of the ground state is dependent on
the choice of Fibonacci UBMTC. In all our numerical calculations
we have adopted a UBMTC for which Rττ

I = 4π i
5 .)

into interactions of SU(2)k anyons on the disk. The form of the
anyonic translation operator also has practical implications for
the restriction of the Hilbert space of the spin chain mentioned
in Sec. III A, and these technical details are discussed in
Appendix C.

E. Relationship between the torus and the disk

1. Mapping between disk and torus states

By comparing Tables II and III we see that on the disk
with trivial boundary charge, we compute scaling dimensions
which correspond to those obtained for trivial flux through
the torus.58 The reason for this may be seen by comparing
Figs. 1(iv) and Fig. 13(ii). Without specializing to Fibonacci
anyons, we note that for any anyon model, if we restrict the
flux through the torus xn in outside basis B2 to be I, we obtain
a fusion tree identical to that of Fig. 1(iv). The action of a
general translation-invariant Hamiltonian

Ĥ A,P,X =
n−1∑
i=0

(T̂ X)i
(
ĥA

1,2

)
(T̂ X†)i , (28)

where X stands for T on the torus and D on the disk is therefore
equivalent in both cases, and we obtain the observed correspon-
dences between the energy spectrum of the torus and the disk.

For general anyon models with a nearest-neighbor Hamil-
tonian of the form of Eq. (28), we may consider both critical
and noncritical systems. In models which are not critical,
the Hamiltonian will be insensitive to nonlocal properties of
the system. In the thermodynamic limit each energy level is
therefore |U |-fold degenerate on the torus, with the degeneracy
enumerated by the different values which may be taken by the
flux through the torus. As the disk corresponds to the torus
with the flux constrained to be I, the eigenvalues on the disk
in the thermodynamic limit are the same, but nondegenerate.

At criticality, the energy spectrum is no longer necessarily
independent of the flux through the torus, and the degeneracy
of energy levels on the torus may be broken, with different
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flux sectors exhibiting different energy spectra. Nevertheless,
the identification between the disk and the torus with trivial
flux persists, and for critical local Hamiltonians applied both
on the torus and on the disk, the disk necessarily exhibits the
same energy spectrum as obtained on the torus when the flux
through the torus is constrained to be I.

Recall now that each scaling dimension obtained from
the energy spectrum is associated with a scaling operator
(see Refs. 14 and 15; also reviewed in Ref. 16). Where the
ground state is associated with the identity operator of the
CFT, these scaling operators are local. In Ref. 8, it is argued
that for a critical ring of Fibonacci anyons on the torus,
scaling operators may also be classified according to the flux
through the torus of their associated energy eigenstates, and it
is proposed on topological grounds that only local scaling
operators associated with a flux of I may appear as local
perturbations of the critical Hamiltonian. In the present paper
we see that the spectrum of valid local perturbations on the disk
is the same as that on the torus, because only the local scaling
operators associated with a flux of I have local counterparts
on the disk.

2. Conformal field theory with a defect

In Secs. III C and III D we have seen that a spin chain of
length p may be used, via appropriate mappings, to represent
states of a system of either p anyons on the torus or p + 3
anyons on the disk. We also observed that each of these systems
comes with its own definition of translation invariance. For
the torus this corresponds (up to a state-dependent phase) to
the natural definition of translation on a periodic spin chain,
whereas for the disk this is given by operator T̂ ′S of Eq. (25)
but nevertheless corresponds (when applied to an operator
using the adjoint action) to the natural definition of translation
invariance on the spin chain on sites sufficiently far from x1 and
xp. It is therefore natural to interpret the difference between
these two models as being equivalent to the introduction of
a defect in translation invariance. Furthermore, we show by
construction that there exists a second defect which, when
introduced manually, combines with the original defect to
restore the full spectrum for a system of anyons on the torus,
albeit a torus of length p − 3. [This length difference arises
because the fusion tree for p anyons on the torus has p degrees
of freedom, but the fusion tree for p anyonic charges on the disk
(assuming trivial boundary charge) has only p − 3 degrees of
freedom, and thus a chain of p anyons on the disk may simulate
at most p − 3 anyons on the torus. A construction achieving
precisely this limit is presented in Appendix D.]

We now construct a Hamiltonian on a disk of Fibonacci
anyons which reproduces the spectrum of the AFM Hamil-
tonian on the torus. This Hamiltonian satisfies translation
invariance on the disk—that is, it is invariant under the adjoint
action of T̂ D (22)—except for two local terms. These terms
define a defect D. Up to some additional degeneracies, which
we ignore, the spectrum of the resulting Hamiltonian for a ring
of n anyons on the disk is equivalent to that of n − 3 anyons
on the torus. If n is even, then n − 3 is odd, and as noted in the
caption of Table II, the spectrum of a ring of an odd number of
anyons on the torus is equivalent to that of an even number of
anyons with a Z2 twist.60 Thus, the fusion of defect D with the

Z2 twist approximates the inverse of the defect identified with
the adjoint action of the translation operator T̂ D on the spin
chain. The Hamiltonian exhibiting defect D takes the form

Ĥ A,P,D→T =
n−3∑
i=3

ĥA
i,i+1 + ĥA

n−2,n−1,n,1,2 + ĥA
n−1,n,1,2,3

(29)

for a ring of n anyons on the disk, with invariance under the
adjoint action of T̂ D corresponding to

Ĥ A,P,D→T = T̂ D(Ĥ A,P,D→T)T̂ D†. (30)

Full details of its construction for the AFM or FM Fibonacci
chain are given in Appendix D, but it suffices to note that on
the disk, ĥA

n−2,n−1,n,1,2 couples the degrees of freedom xn−4,
xn−3, and x1 in Fig. 1(iv) in the same way as ĥA

n,1 on the torus
couples xn−1, xn, and x1 in Fig. 13(i); this is illustrated in
Fig. 28. Similarly, ĥA

n−1,n,1,2,3 on the disk couples xn−3, x1, and
x2 [of Fig. 1(iv)] in the same way as ĥA

1,2 on the torus couples
xn, x1, and x2 [of Fig. 13(i)].

As a consequence of the effective invertibility of the defect
in translation, it follows that we may compute the spectrum of
a system of anyons on the torus or the disk using a system of
anyons also, in each case, either on the torus or on the disk.
In this section we have shown how to extract the spectrum of
a system of anyons on the torus from a system of anyons on
the disk by means of a local modification to the Hamiltonian.
In Sec. III E1 we noted that one can extract the spectrum of a
system of anyons on the disk from a system of anyons on the
torus by means of a global operator restricting the flux through
the torus to be I, and for completeness we now note that this
may be achieved by adding to the Hamiltonian an appropriate
1-site local operator acting on site xn of the spin chain. This
1-site operator applies an arbitrarily large energy penalty to
states for which xn �= I. When this term is introduced, the
resulting Hamiltonian has a spectrum equivalent to a system
of n anyons on the disk.

Finally, we note that when a defect is invertible, it
may also be understood as being equivalent to a set of
boundary conditions. A simple example of this is given by
the 1D quantum critical Ising model: With periodic boundary
conditions, the translation-invariant critical Ising Hamiltonian
takes the form

Ĥ =
(

n−1∑
i=1

−σx
i σ x

i+1 − σ z
i

)
− σx

n σ x
1 − σ z

n . (31)

If we then introduce antiperiodic boundary conditions, which
modify the definition of translation, the translation-invariant
Hamiltonian then becomes

Ĥ =
(

n−1∑
i=1

−σx
i σ x

i+1 − σ z
i

)
+ σx

n σ x
1 − σ z

n , (32)

and this may equivalently be thought of as a Hamiltonian on
a 1D chain with periodic boundary conditions and a localized
defect. As with the example given for Fibonacci anyons, this
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FIG. 28. (i) In the basis of Fig. 1(iv), ĥA
n−2,n−1,n,1,2 is seen to depend upon degrees of freedom xn−4, xn−3, and x1, where the degrees of

freedom are labeled x1, . . . ,xn−3. (ii) Similarly, in basis B1 of Fig. 13(i), ĥA
n,1 depends upon degrees of freedom xn−1, xn, and x1, where the

degrees of freedom are labeled x1, . . . ,xn. Thus, in each instance, the evaluation of the operator depends on the variables xq−1, xq , and x1,
where q is the total number of labels x1, . . . ,xq on the fusion tree, and is n − 3 or n depending on the topology of the manifold.

defect is invertible: The introduction of a second defect,

Ĥ =
(

n−2∑
i=1

−σx
i σ x

i+1 − σ z
i

)
+ σx

n−1σ
x
n − σ z

n−1 + σx
n σ x

1 − σ z
n ,

(33)

results in a Hamiltonian having the same energy spectrum as
the original periodic chain (31).

For Fibonacci anyons, the example which is presented in
this paper may be of particular interest as the Hamiltonian
Ĥ A,P,D→T is constructed entirely on the anyons lying on the
ring. An alternative construction is presented in Ref. 59, in
which free charges on the manifold are admitted in addition to
the charges of the anyon ring.

IV. OPEN BOUNDARY CONDITIONS

On 1D systems with open boundary conditions the situation
is somewhat simpler, but again some care must be taken as the
fusion-tree basis will again depend upon the topology of the
quantum liquid. For example, as in Ref. 8, one might choose
to study the Hamiltonian corresponding to free boundary
conditions on the torus,

Ĥ A,F,T =
n−1∑
i=1

ĥA
i,i+1, (34)

where F denotes free boundary conditions, which maps to the
spin chain as

Ĥ S,F,T =
n−1∑
i=1

ĥS
i−1,i,i+1. (35)

[This may be contrasted with Eq. (20).] Similarly, one could
place the same Hamiltonian on the disk:

Ĥ A,F,D =
n−1∑
i=1

ĥA
i,i+1, (36)

Ĥ S,F,D =
n−1∑
i=1

ĥS
i−2,i−1,i . (37)

Once again the spectrum for the Hamiltonian on the disk
is seen to be a subset of that on the torus (Table IV),
and once again by means of appropriate modifications of
the Hamiltonians, corresponding to alternative choices of
boundary conditions, we may obtain either set of scaling
dimensions on either topology.

V. CONCLUSION

In summary, this paper may be divided into two parts. In
the first (Sec. II) we have drawn attention to the importance
of manifold topology in the study of anyonic systems. By
reference to the underlying TQFT, we have explained how
to construct diagrammatic representations of anyonic states,
operators, and the inner product, for surfaces of arbitrary
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TABLE IV. Numerical results and CFT assignments for the
smallest scaling dimensions on open chains of Fibonacci anyons of
length n with AFM coupling and free boundary conditions: (i),(ii) On
the torus, Hamiltonian Ĥ S,F,T (35). (iii),(iv) On the disk, Hamiltonian
Ĥ S,F,D (37). 0 ≡ I, 1

10 ≡ ε, 3
5 ≡ ε′, 3

2 ≡ ε′′.

Numerics CFT prediction

(i) 24 Anyons, torus
0.0000a 0
0.6000 0.6000 ( 3

5 )

1.6009 1.6000 ( 3
5 + 1)

2.0186a 2.0000 (0 + 2)

2.5765 2.6000 ( 3
5 + 2)

2.5808 2.6000 ( 3
5 + 2)

(ii) 25 Anyons, torus
0.1000 0.1000 ( 1

10 )

1.1000 1.1000 ( 1
10 + 1)

1.4845a 1.5000 ( 3
2 )

2.0901 2.1000 ( 1
10 + 2)

2.4670a 2.5000 ( 3
2 + 1)

3.0524 3.1000 ( 1
10 + 3)

(iii) 24 Anyons, disk
0.0000 0
2.0000 2.0000 (0 + 2)

2.9762 3.0000 (0 + 3)

3.9137 4.0000 (0 + 4)

3.9820 4.0000 (0 + 4)

4.7976 5.0000 (0 + 5)

(iv) 25 Anyons, disk
1.5000 1.5000 ( 3

2 )

2.5000 2.5000 ( 3
2 + 1)

3.4726 3.5000 ( 3
2 + 2)

3.4956 3.5000 ( 3
2 + 2)

4.4025 4.5000 ( 3
2 + 3)

4.4621 4.5000 ( 3
2 + 3)

aEigenvalue is twofold degenerate.

genus, and we have done so explicitly for the torus, sphere,
and disk.

In the second part of the paper (Secs. III and IV) we used
these results to study the behavior of an example system,
consisting of a ring or chain of interacting Fibonacci anyons
on either the torus or the disk. It has previously been shown
that this chain is described by the same CFT as the tricritical
Ising model and that on the torus its criticality is topologically
protected.8 We have shown that criticality is similarly protected
on the disk, using exact diagonalization to calculate the scaling
dimensions of the local scaling operators which may appear
as perturbations to the critical Hamiltonian. We also see that
the low-energy properties of rings of anyons on the torus and
on the disk may be considered equivalent up to the appropriate
choice of boundary conditions.

As a whole, this paper therefore presents the means to
relate systems of interacting anyons on manifolds of differing

topology and applies this to examples using Fibonacci anyons.
In particular, insight is gained into the topological protection
of criticality of these systems and into the robustness of this
protection across surfaces of different genus, and equivalent
protection is seen to be exhibited on both the torus and the disk.
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APPENDIX A: ALTERNATIVE FUSION TREE AND
TRANSLATION OPERATOR FOR ANYONS ON THE

TORUS

In Eq. (14) of Ref. 30, states on the torus are described using
a fusion tree substantially different from the ones presented in
Fig. 13, namely

. (A1)

Note that the ends of the fusion tree are labeled with the
same charge (here, bn). In order to graphically represent
the translation operator on this basis, we must make this
identification between the ends of the tree a little more explicit,
drawing the basis as

(A2)

and identifying the two lines labeled ∗. We have also tilted
the basis from the horizontal in order to assist in formally
identifying the vertical axis with time, and replaced all bi

with xi = bi to emphasize the (deceptive) visual similarity of
this basis to Fig. 13(i). We observe the following similarities
between the basis of Eq. (A2) and the bases of Fig. 13.

(1) In both Fig. 13 and Eq. (A2), the arrow of time runs up
the page.

(2) In both Fig. 13 and Eq. (A2), there are additional
topological features which distinguish the fusion trees of the
torus from those of the disk.

However, in Fig. 13, these topological features consist
of pairs of identified arbitrarily small rings which act as
obstructions, but do not make contact with the fusion tree. In
Eq. (A2), on the other hand, there is an identification between
opposite ends of the anyon chain. Conversion between the basis
of Eq. (A2) and that of Fig. 13(i), can be achieved as follows.

(1) Close the identified ends of Eq. (A2) into a circle with
the ai pointing radially out. This fusion-tree diagram now has
a radial arrow of time. Introduce a radial coordinate system
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FIG. 29. (Color online) Coordinate system employed in step one
of the mapping from the basis of Eq. (A2) to the basis of Fig. 13(i).

(tr ,θ ). The second spatial coordinate φ on the surface of the
torus is assumed to lie perpendicular to the plane of the page
on an interval [−π ,π ] with ends identified (Fig. 29). Note
that tr = 0 corresponds to the infinite past, and obstructs
any attempt to remove the loop from the diagram using
Fig. 6.

(2) Map the (tr ,θ ) plane onto an infinitely long hollow
cylinder parametrized by (tz,θ ), where tz = ln(tr ). The φ

coordinate, being perpendicular to this plane, now corresponds
to a thickening of the hollow cylinder to have a cross section
which is the annulus (with outer and inner edges identified).
Coordinates θ and φ now parametrize this cross section as
shown in Fig. 12.

(3) As described in the main text, expand the annulus so that
θ and φ now parametrize almost the entire plane, lacking only
arbitrarily small disks enclosing the two points at the origin
and infinity. Label these points ∗.

(4) Project the hollow cylinder into the plane of the page,
oriented so that the axis tz corresponds to the vertical axis lying
on the plane of the page.

Using this process to map between the bases of Eq. (A2)
and Fig. 13(i) (basis B1), it is easy to rewrite the operators T̂ T

(7) and T̂ T
M (8) in the basis of Eq. (A2). Explicitly, we find

T̂ T =

(A3)

T̂ T
M =

(A4)

Evaluation of these operators in basis (A2) is nontrivial.
The rules of diagrammatic isotopy, commonly used in the
evaluation or simplification of fusion-tree diagrams, are
formulated for regions which represent a projection of the
2 + 1-disk, and they therefore do not necessarily hold when
the fusion tree traverses an identification. We therefore begin
by transforming T̂ T

M back into basis B1 [Fig. 13(i)], because
(as shown in Fig. 19) in this basis the action of T̂ T

M can be
evaluated purely by means of diagrammatic isotopy applied
to regions which are locally projections of the 2 + 1-disk
and local topology-preserving deformations which relocate
the obstruction but leave the fusion tree unchanged. From this

FIG. 30. Application of the operator T̂ T
M in the basis of Eq. (A2).

We know from Fig. 19 and the mapping between basis B1 [Fig. 13(i)]
and basis (A2) that the action of T̂ T

M is to cyclically permute all charge
labels ai and xi , from which follows the existence of a factor of R

anān

I
associated with translating the vertex involving charges xn−1, xn, and
an through the two identified points ∗.

we see that in basis B1, T̂ T
M has the sole effect of cyclically

permuting all ai and xi . As the mapping between basis B1 and
basis (A2) does not affect any of the charge labels, its action
must be identical in basis (A2). On applying T̂ T

M in basis (A2),
as shown in Fig. 30, we see that in this particular basis, and
on this specific topology, pushing the vertex involving charges
xn−1, xn, and an through the identification attracts a factor of
R

anān

I . As T̂ T and T̂ T
M differ only by a phase, this knowledge

suffices to permit us to likewise evaluate the action of T̂ T in
basis (A2), as shown in Fig. 31.

It is important to note that there exist two choices of map-
ping from the (tr ,θ ) plane to the hollow cylinder, equivalent up
to spatial reflection. Care must therefore be taken to keep track
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FIG. 31. Periodic translation in the basis of Eq. (A2). The
factor of R

anān

I in this expression originates from translating the
vertex involving charges xn−1, xn, and an through the two identified
points ∗.

of parity when working with chiral Hamiltonians or UBTCs.
Spatial reflection is discussed further in Appendix B.

APPENDIX B: CHIRAL SYMMETRY AND FIBONACCI
ANYONS

In Sec. III C we noted that the ground state of the AFM
golden chain has a nonzero momentum, implying that it is
chiral . We now explain this observation in more detail.

We take as our starting point the definition of chirality,
namely that a state or system is chiral if it is not invariant
under a process of spatial reflection such as the mapping
x → −x. In the fusion-tree representation for a system of
anyons, the spatial dimensions are collapsed by projection
onto the horizontal axis of the fusion-tree diagram, and thus
horizontal reflection on the plane of the page constitutes a
natural implementation of this process. As shown in Fig. 32,
it then follows that in the description of the reflected system
every braiding coefficient Ra1a2

a3
is replaced with the complex

conjugate of Ra2a1
a3

, and similarly one can also show that
each F matrix Fa1a2a3

a4
is replaced with the inverse of Fa3a2a1

a4

(Fig. 33). If we denote the parity mapping by P, then its action
on a UBTC U , is given by

P :

{
Ra1a2

a3
−→ (

Ra2a1
a3

)∗ ∀ {a1,a2,a3} ∈ U

Fa1a2a3
a4

−→ (
Fa3a2a1

a4

)−1 ∀ {a1,a2,a3,a4} ∈ U.
(B1)

FIG. 32. (i) A state |ψ,U〉 having two quasiparticle excitations,
and being described by a UBTC U , acquires a phase Raā

I on braiding.
(ii) Application of the parity mapping P to diagram (i) yields an
equivalent relationship for the reflected system, in which clockwise
braiding of a with ā has been replaced with anticlockwise braiding
of ā with a. (iii) More generally, reflection of the diagram which
defines the braiding operation shows that all Ra1a2

a3
in P(U ) are given

by (Ra2a1
a3

)∗ in U .

We may describe a UBTC U as invariant under the action of
P if and only if P(U ) = U . We further distinguish between
UBTCs for which there exists a permutation of charge
labels Perm such that Perm[P(U )] = U and those for which
no such permutation exists. The set of UBTCs for which
Perm[P(U )] = U includes some non-P-invariant UBTCs,
and also all P-invariant UBTCs, for which Perm is trivial.

Having established the action of the parity transformation
P on UBTCs, we may now consider the effects of reflection
on states and operators described by a UBTC U . We begin
by recognizing that specification of the relevant UBTC U

constitutes an essential part of the description of the state.
Even on the most trivial topology, it would be erroneous, for
example, to identify the “vacuum” state (no quasiparticle ex-
citations) of a system of Fibonacci anyons as being physically
equivalent to the vacuum of a system described by, say, D(Z2).
If we have a description of the underlying physical systems
from which the anyonic quasiparticles emerge, then we can
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FIG. 33. As with braiding, we may examine the effect of the
parity mapping P on F moves. We find that each matrix F a1a2a3

a4
in

P(U ) is given by (F a3a2a1
a4

)−1 in U .

observe that the two systems are distinct as their manifolds are
covered by different quantum spin liquids, and thus are capable
of supporting different quasiparticle excitations. If we are
working entirely at the level of the coarse-grained description
of anyons and fusion trees, then in lieu of explicitly describing
this quantum spin liquid, we specify the relevant UBTCs by
fixing Fa1a2a3

a4
and Ra1a2

a3
, and this therefore constitutes an

essential part of the description of the state. With this in
mind, it follows that for a system described by a UBTC U ,
spatial reflection will always map a state |ψ,U 〉 into a state
|ψ ′,P(U )〉. Consequently, for all models described by a UBTC
satisfying Perm[P(U )] = U , P acts as an intertwinor on the
Hilbert space H of the model, that is, P(H) = H. Conversely,
if no such permutation Perm exists, then P(H) and H are
necessarily disjoint.61 The existence of a permutation of charge
labels Perm such that Perm[P(U )] = U is therefore seen as
a necessary precondition for the construction of a state which
is invariant under reflection (i.e., nonchiral).

As an example, consider UBMTCs having the Fibonacci
fusion rules. In constructing such a UBMTC there is a phase
degree of freedom in the definition of Fa1a2a3

a4
, corresponding

to the value of θ in

F τττ
τ =

(
φ−1 eiθφ−1/2

e−iθφ−1/2 −φ−1

)
. (B2)

Once this degree of freedom has been fixed, solving the
hexagon equations yields two distinct UBMTCs having Fi-
bonacci anyon fusion rules and the same set of F matrices.
One of these UBMTCs has Rττ

I = e−4π i/5 and Rττ
τ = e3π i/5,

and the other has Rττ
I = e4π i/5 and Rττ

τ = e−3π i/5. We denote
these UBMTCs by Fib±, where ± refers to the sign on the
exponent in Rττ

I . For a single copy of Fib+ or Fib−, no
permutation Perm exists such that Perm[P(Fib±)] = Fib±,
and thus any state described by a single Fibonacci UBMTC is
necessarily chiral.62

In contrast, now consider the product Fib+ ⊗ Fib−, which
is an example of a quantum double model and known to be
nonchiral.27,63 In this UBMTC, every branch of a fusion tree
carries a compound charge consisting of one label from Fib+
and one from Fib−. Recognizing that the action of P is to
map a UBMTC Fib± into Fib∓, we see that the UBMTC

FIG. 34. (i) Fusion-tree description of a state |ψ,Fib+ ⊗ Fib−〉.
Horizontal reflection yields diagram (ii). On restoring the original
fusion-tree basis using F moves, this is seen to be equal to (i), and
thus |ψ,Fib+ ⊗ Fib−〉 is invariant under reflection. Arrows are not
required for Fib+ ⊗ Fib− as all charges are self-dual.

Fib+ ⊗ Fib− is invariant under Perm ◦ P for

Perm : a+b− −→ b+a− ∀ {a,b} ∈ {I,τ }. (B3)

For a model described by this UBMTC, the parity mapping
P therefore acts on the Hilbert space as an intertwinor, and
we may construct states which are reflection-invariant, that is,
invariant under the action of P. An example of such a state is
given in Fig. 34.

We conclude this appendix with three further observations.
First, in this appendix we have emphasized the importance
of specifying the relevant UBTC when describing a state,
operator, or physical system, and have used the notation |ψ,U 〉
to highlight that the specification of U constitutes a necessary
part of the description of a state. However, when working with
multiple objects or systems all described by a single UBTC U ,
it is frequently unnecessary to repeatedly specify the UBTC in
this manner, and it is more usual to simply write, for example,
|ψ〉 for brevity. Nevertheless, even when specification of the
UBTC is suppressed (as is the norm in the literature, and as has
been done in all of this paper except for the present appendix),
it is always implicit that the fusion-tree description of a state
or operator is associated with a specific UBTC. Consequently,
a necessary precondition for reflection invariance of any state
or operator is the existence of a permutation Perm such that
Perm[P(U )] = U .

Second, we note that none of the UBMTCs obtained from
the quantum groups SU(2)k , where k is a finite integer,
admit the definition of a charge permutation Perm such
that Perm[P(U )] = U . Consequently, the state of any system
described entirely in terms of one of these UBMTCs is always
necessarily chiral. This result includes the UBMTCs which
describe both Ising anyons and Fibonacci anyons, as the former
corresponds to SU(2)2, and the latter to the restriction to integer
charges of SU(2)3.

Finally, we observe that although the chiral nature of the
golden chain is made explicitly manifest in terms of the
ground-state momentum of Figs. 25 and 27, this particular
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manifestation of chirality may be concealed by the use of a
modified translation operator which eliminates all nontrivial
braids, for example,

T̂ D
M = (

Rττ
I

)−1
(B4)

= (B5)

on the disk. [Applying this operator to the fusion tree of
Fig. 1(iv), one readily sees that its action may be evaluated
without requiring knowledge of Ra1a2

a3
.] However, without

physical motivation for the loop in Eq. (B5) this elimination of
the ground-state momentum is artificial, and may be compared
to arbitrarily introducing extra factors of −1 into the translation
operator on a chain of fermions, purely to suppress any minus
signs (and nonzero momenta) arising from fermionic statistics.
As a mathematical transformation it may sometimes be useful,
but the model no longer corresponds directly to the original
physical system. To understand why the operators T̂ D and
T̂ T [Fig. 7(iv), Eq. (7), and Fig. 21] represent the natural
definitions of translation on the disk and torus respectively,
the reader is directed to Sec. II, where these operators are
derived, and also to their application to the Heisenberg spin
chain in Appendix E.

APPENDIX C: RESTRICTING THE HILBERT SPACE

To restrict the Hilbert space of the spin chain so that it
corresponds to a valid fusion tree, we must exclude states
forbidden by the fusion rules. For example, for a chain of
Fibonacci anyons we prohibit all states in which xi = xi+1 =
1. On the torus this condition is applied for all xi , i ranging
from 1 to p inclusive, and identifying i = p + 1 with i = 1,
but on the disk the constraint applies only for 1 � i < p.

If this restriction is enforced by including terms in ĥS
i−1,i,i+1

which apply an arbitrarily large energy penalty to invalid states,
then the behavior of T̂ D on the disk is such that this restriction is
appropriately applied to all pairs {i,i + 1}, 1 � i < p and not
to the pair {p,1}. Thus, the structure of T̂ D makes it possible to
easily enforce the restriction on the Hilbert space via Eqs. (20)
and (26), just by modifying ĥS

i−1,i,i+1 to impose large energy
penalties on the unphysical states.

APPENDIX D: CONSTRUCTION OF THE FIVE-BODY
OPERATORS IN HAMILTONIAN ĤA,P,D→T

This Appendix presents the construction of the terms
ĥA

n−2,n−1,n,1,2 and ĥA
n−1,n,1,2,3 in Hamiltonian Ĥ A,P,D→T (29)

for a chain of AFM or FM interacting Fibonacci anyons. These
operators will be defined using the fusion trees of Figs. 35(i)
and 35(ii), respectively. The rationale behind this construction
is that behavior on the disk may be achieved which is analogous
to that on the torus, if we introduce operators which couple the
outermost degrees of freedom on the disk fusion tree [x1 and
xn−3 in Fig. 1(iv)] as if they were adjacent degrees of freedom
(e.g., x1 and xn) in the inside torus basis of Fig. 13(i).

For ĥA
n−2,n−1,n,1,2 in the basis of the first diagram of

Fig. 35(i), we may identify b1 ≡ xp−1, b2 ≡ xp, b3 ≡ x1,

FIG. 35. Structures of operators used in the definition of
Ĥ A,P,D→T (29) for a chain of FM or AFM interacting Fibonacci
anyons. Arrows are not required for Fibonacci anyons as all charges
are self-dual.

b4 ≡ z1, where we have labeled by z1 the total charge of
the five anyons on sites {n − 2,n − 1,n,1,2}. The coefficients
(ĥA

n−2,n−1,n,1,2)b1b2b3

b′
1b

′
2b

′
3b4

of this operator therefore describe a
mapping from states labeled by xp−1, xp, x1, and z1 into states
labeled by x ′

p−1, x ′
p, x ′

1, and z1, respectively. To reproduce

the behavior of the operator ĥS
p−1,p,1 corresponding to ĥA

p,1
on the p-site torus, we want this operator to be independent
of z1 and to correspond to ĥS

p−1,p,1 on the subspace labeled
by {xp−1,xp,x1,x

′
p−1,x

′
p,x ′

1}. Its coefficients are therefore
given by

∀ z1 :
(
ĥA

n−2,n−1,n,1,2

)xp−1xpx1

x ′
p−1x

′
px ′

1z1
= (

ĥS
p−1,p,1

)xp−1xpx1

x ′
p−1x

′
px ′

1
. (D1)

Similarly, ĥA
n−1,n,1,2,3 in the basis of the third diagram of

Fig. 35(ii) takes its coefficients from ĥS
p,1,2 for all z2, where

z2 represents the total charge of the five anyons on sites
{n − 1,n,1,2,3} and we make the identifications b̃1 ≡ xp,
b̃2 ≡ x1, b̃3 ≡ x2, b̃4 ≡ z2.

Finally, on the torus the Hilbert space is restricted to states
which satisfy the constraints xi+1 ∈ xi × τ for all values of
i, and site p + 1 is identified with site 1. On the disk this
restriction is enforced by the fusion rules for 1 � i � p − 1,
but for i = p it must be applied manually by inserting an
arbitrarily large energy penalty into the 5-site Hamiltonian
terms for states satisfying xp = x1 = 1.

APPENDIX E: APPLICATION OF THE DIAGRAMMATIC
FORMALISM TO THE HEISENBERG SPIN CHAIN

In this paper we primarily deal with models such as the
AFM golden chain, which are defined on a ring of anyons.
It is instructive to compare these with models such as the
Heisenberg model, which is defined on a spin chain but which
can also be expressed in the diagrammatic notation used in
this paper.31 As an example, we now consider the spin- 1

2
AFM Heisenberg model with periodic boundary conditions,
assumed to be constructed on a manifold which is topologically
the disk. Because this model possesses SU(2) symmetry,
we may represent it in the diagrammatic notation using a
UBMTC based on the fusion rules for representations of SU(2).
States can be represented in the form of Fig. 36(i), and the
nearest-neighbor interaction takes the form of Fig. 36(ii).
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FIG. 36. (i) Fusion tree used as a basis of states for the n-site
Heisenberg spin chain. Note that in contrast to Fig. 1(iv), the total
charge (or spin) is not constrained to be zero, and a tree with total
charge xn−1 therefore represents a vector space of dimension dxn−1 .
(ii) Diagrammatic representation of nearest-neighbor interaction in
the AFM spin- 1

2 Heisenberg model. The leading “−1” in this diagram
is a numerical multiplier. When this operator acts on a pair of sites i

and i + 1, it yields a negative energy contribution if and only if the
combined spin of these two sites is zero.

We may now analyze this system in two different ways.
Either we may obtain the energy spectrum by exactly diagonal-
izing the original spin chain, and compute momenta using the
natural definition of translation on that spin chain, or we may
write it in the diagrammatic notation, and map this to a different
spin chain as described in Sec. III A. We would then compute
the energy on the chain of fusion-tree variables x1, . . . ,xn−1,
and the momenta using translation operator T̂ D from Fig. 1(i).
As is to be expected, the results obtained using these different
methods agree to the limits of numerical precision.

This observation has bearing upon the definition of the
translation operator. If we use the definitions for T̂ D and T̂ T

given in Fig. 1(i), Eq. (7), and Fig. 21, then we find that
the ground state of the AFM golden chain has nontrivial
momentum. Suppose that, instead, we assume a momentum
of zero for the ground state of the golden chain, and adopt

T̂ D
M = (

R
anan

I

)−1

(E1)

as the translation operator on the disk and

T̂ T
M = (

R
anan

I

)−1

(E2)

on the torus (noting that T̂ T
M is the modified translation operator

originally introduced in Sec. II B4, corresponding to cycling
of the fusion-tree variables x1, . . . ,xn−1). For consistency we
would then also have to use Eq. (E1) when working with the
diagrammatic representation of the AFM Heisenberg chain,

with R
anan

I = R
1
2

1
2

0 = −1. However, the momenta obtained
using this operator are inconsistent with results obtained by
exactly diagonalizing the original spin chain, indicating that
T̂ D, and not T̂ D

M , is the correct definition for the periodic
translation operator on the disk. As we require that the torus
with trivial flux be consistent with the disk, we also obtain that
T̂ T, and not T̂ T

M, is the correct periodic translation operator
on the torus. Thus, study of the AFM Heisenberg spin chain
supports our claim that the ground state of the AFM golden
chain has nonzero momentum, as observed in Fig. 25(ii) for
the torus and Fig. 27 for the disk.
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