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We study the onset of spin-density wave order in itinerant electron systems via a two-dimensional lattice
model amenable to numerically exact, sign-problem-free determinantal quantum Monte Carlo simulations.
The finite-temperature phase diagram of the model reveals a dome-shaped d-wave superconducting phase
near the magnetic quantum phase transition. Above the critical superconducting temperature, an extended
fluctuation regime manifests itself in the opening of a gap in the electronic density of states and an
enhanced diamagnetic response. While charge density wave fluctuations are moderately enhanced in the
proximity of the magnetic quantum phase transition, they remain short ranged. The striking similarity of
our results to the phenomenology of many unconventional superconductors points a way to a microscopic
understanding of such strongly coupled systems in a controlled manner.
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A common feature of many strongly correlated metals,
such as the cuprates, the Fe-based superconductors, heavy-
fermion compounds, and organic superconductors, is the
close proximity of unconventional superconductivity (SC)
and spin density wave (SDW) order in their phase
diagrams. This suggests that there is a common, universal
mechanism at work behind both phenomena [1–5]. In some
of these systems, additional types of competing or coex-
isting orders appear upon suppressing the SDWorder, such
as nematic, charge-density wave (CDW), or possibly also
pair density wave (PDW) order. Such a complex interplay
between multiple types of electronic order, with compa-
rable onset temperature scales, is a recurring theme in
strongly correlated systems [6].
These findings call for a detailed understanding of the

physics of metals on the verge of an SDW transition. Many
studies have focused on the universal properties of an
antiferromagnetic quantum critical point (QCP) in a metal
[7–15]. However, due to the strongly coupled nature of
the problem, no controlled solution has been available;
all existing theoretical treatments involve uncontrolled
approximations, whose validity is not obvious a priori.
As a result, even the basic generic characteristics of
metallic antiferromagnetic QCPs are still under debate.
Many studies have proposed that superconductivity is

anomalously enhanced at the magnetic QCP [16–19].
The same antiferromagnetic interaction may enhance other
subsidiary orders, such as CDW [18,20,21] or PDW
[22,23]. Within a linearlized “hot-spot” theory (which
focuses on the vicinity of the points on the Fermi surface
where fermions can scatter resonantly), a symmetry relating
the SC and CDW orders emerges [18]. The strong fluctua-
tions of the resulting multicomponent order parameter were
proposed to be the origin of the “pseudogap” observed
in the cuprates [20,24–26]; however, to what extent this

fluctuation regime plays a role beyond the linearized hot
spot model has not been established. A deep minimum in
the superfluid density at low temperature, seen in the iron-
based SC BaFe2ðAs1−xPxÞ2 [27], has been proposed as a
generic manifestation of the underlying antiferromagnetic
QCP [28,29]. Other studies proposed a different mecha-
nism for this behavior, unrelated to quantum criticality
[30,31].
It is widely believed that the universal physics near the

QCP depends only on the structure of the hot spots, and
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FIG. 1. Phase diagram of model (1) showing the transition
temperature TSDW to magnetic spin density wave (SDW) order,
the superconducting Tc, and the onset of diamagnetism at Tdia.
Solid lines indicate a Berezinskii-Kosterlitz-Thouless transition.
The SDW transition inside the SC dome, marked by a dashed
line, possibly is a weakly first-order transition (see the main text).
The shaded region indicates the coexistence region between
SDWand SC quasi-long-range orders. The inset shows the Fermi
surface, with different colors indicating the sign of the super-
conducting order parameter. The hot spots and the SDWordering
wave vector Q are marked.
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not on the details of the Fermi surface away from them.
In Ref. [32], a two-dimensional lattice model of a nearly
antiferromagnetic metal, designed to capture this universal
physics, has been introduced. At the same time, this model
is amenable to sign-problem-free, determinantal quantum
Monte Carlo (DQMC) simulations, thus allowing for a
numerically exact solution. In this work, we numerically
explore the phase diagram of a closely related model, as a
function of temperature and a tuning parameter, shown in
Fig. 1. This is the first time that such a phase diagram was
obtained using a controlled, unbiased method. In addition,
we systematically examine the role of subsidiary, emergent
competing orders near the antiferromagnetic quantum
phase transition (QPT). In the vicinity of the magnetic QPT
we find a d-wave superconducting dome with a maximum
Tc of the order of EF=30, where EF is the Fermi energy.
In the superconducting state we find a region of coexistence
with SDW order [33,35].
In addition to SC order, we have examined CDW and

PDW ordering tendencies. While the CDW susceptibility
shows a moderate enhancement in the vicinity of the QPT,
there is no sign of a near degeneracy between the SC
and CDW order parameters as the QPT is approached,
suggesting that superconductivity is the only generic
subsidiary order. Finally, the low-temperature superfluid
density is found to vary smoothly, showing no pronounced
minimum near the QPT.
Model.—Our lattice model consists of two flavors of

spin–1
2
fermions, ψx and ψy, coupled to an SDW order

parameter ~φ at wave vector Q ¼ ðπ; πÞ. The two flavor
structure of the model guarantees the absence of the sign
problem (see Refs. [32,34]). We assume that the SDWorder
parameter has an easy-plane character, and restrict the order
parameter ~φ to lie in the XY plane. Using an O(2) rather
than O(3) order parameter (as in Ref. [32]) gives rise to a
finite-temperature SDW phase transition of Berezinskii-
Kosterlitz-Thouless (BKT) character; it also allows for
higher numerical efficiency.
The action is S ¼ SF þ Sφ ¼ R β
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Here i, j label the sites of a square lattice, α ¼ x, y are
flavor indices, s, s0 ¼ ↑;↓ are spin indices, and ~s are Pauli
matrices. τ denotes imaginary time and β ¼ 1=T the inverse
temperature. The hopping amplitudes for the ψx-fermions

along the horizontal and vertical lattice directions are
tx;h ¼ 1 and tx;v ¼ 0.5, respectively, while for the ψy
fermions ty;h ¼ 0.5 and ty;v ¼ 1. (The inset of Fig. 1 shows
the Fermi surfaces.) r is a tuning parameter used to tune the
system to the vicinity of an SDW instability. Physically,
r can be thought of as doping or pressure. We set the
chemical potential to μ ¼ 0.5, the quartic coupling to
u ¼ 1, the Yukawa coupling to λ ¼ 3, and the bare bosonic
velocity to c ¼ 2.
Numerical simulations.— We study model (1) by exten-

sive DQMC [36–39] simulations. Simulations were
performed with a single flux quantum threaded through
the system, which dramatically improves the approach to
the thermodynamic limit for metallic systems [40,41].
For details of this procedure and other technical aspects
of the DQMC simulations and data analysis we refer to the
Supplemental Material [34]. We report results up to linear
extent L ¼ 14 and temperatures down to T ¼ 0.025.
Phase diagram.—Our main finding is the phase diagram

of model (1) as shown in Fig. 1. The system displays a
quasi-long-range ordered SDW phase, whose transition
temperature, TSDW, decreases upon increasing r. In the
vicinity of the magnetic QPTwhere TSDW collapses to zero,
we find a region with quasi-long-range d-wave super-
conducting order. The superconducting Tc traces an asym-
metric domelike shape as a function of r and reaches
a maximum of Tmax

c ≈ 0.08 at ropt ≈ 10.2. Between the
two distinct phases we find a region where both types of
quasi-long-range order coexist.
At sufficiently high temperatures, the antiferromagnetic

transition is consistent with BKT character. In this regime
the SDW susceptibility χ ¼ R

dτ
P

ih~φiðτÞ · ~φ0ð0Þi for
different system sizes nicely follows the expected scaling
behavior χ ∝ L2−η, with η changing continuously as a
function of r and T [34]. We identify TSDW as the point
where we observe the BKT value η ¼ 1=4. At low temper-
atures, T ≲ 0.05 (i.e., within the SC region), the situation is
less clear with the numerical data starting to systematically
deviate from this scaling behavior. In fact, there are
indications that the transition may become weakly first
order at sufficiently low T; see the discussion in the
Supplemental Material [34].
The SC transition is identified as the point where the

superfluid density obtains the universal BKT value 2T=π
[42,43], and is always consistent with BKT behavior.
The nature of the superconducting state is revealed
in the uniform pairing susceptibilities Pηðq ¼ 0Þ, where
PηðqÞ¼

R
dτhΔ†

ηðq;τÞΔηðq;0Þi, andΔηðriÞ¼ 2ðψ†
xi↑ψ

†
xi↓þ

ηψ†
yi↑ψ

†
yi↓Þ with η ¼ �1. Under a π=2 rotation, associated

with a rotation matrix Rπ=2, we have ΔηðrÞ → ηΔηðRπ=2rÞ;
i.e., Δ− has a d-wave (B1g) character. At low temperatures
P−ðq ¼ 0Þ, shown in Fig. 2(b), is found to increase rapidly
with system size, indicating that the SC phase has d-wave
symmetry in the thermodynamic limit. In contrast, the
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s-wave pairing susceptibility Pþðq ¼ 0Þ is found to be
much smaller and system size independent [34].
In the shaded region of Fig. 1, we find that both the SDW

and the SC susceptibilities grow faster than ∼L7=4 with the
system size; see Fig. 2. This indicates that in this region, the
two quasi-long-range orders coexist.
A striking feature seen in the phase diagram is the

kinklike change of slope of the SDW and SC phase
boundaries in the r-T plane upon meeting each other. A
related “back bending” is also apparent in the magnetic
susceptibility over a wide range of r as shown in Fig. 3(a).
Tracking the SDW susceptibility for fixed r, as shown in
Fig. 3(b), one finds nonmonotonic behavior with a maxi-
mum seen near Tc. Such behavior, generally expected for
order parameters interacting through a repulsive quartic
term [44], has been predicted to arise from the competition
between the two order parameters [45], and has been
observed in certain unconventional superconductors, such
as Ba1−xCoxFe2As2 [46].
In a finite range of temperatures above Tc, the orbital

magnetic susceptibility is diamagnetic in sign (unlike the
high temperature susceptibility, which is paramagnetic in
our model), and its magnitude rapidly grows with

decreasing temperature. We identify this behavior as a
signature of substantial finite-range superconducting fluc-
tuations. The temperature where the orbital susceptibility
changes sign, denoted by Tdia, is indicated by the gray
dots in Fig. 1. Over much of the phase diagram, Tdia
roughly follows the shape of the superconducting
dome, i.e., Tdia ∝ Tc. Another manifestation of finite-range
superconducting fluctuations is the opening of a gap in the
single-particle density of states (DOS) Nðω; TÞ above Tc.
While we cannot access Nðω; TÞ directly without
performing an analytical continuation, we can use the
relation [47] ~NðTÞ¼ ð1=πL2TÞTrGðτ¼ β=2Þ¼ R∞

−∞f½dω�=
½2πT coshðβω=2Þ�gNðω;TÞ, to extract information about
the low-energy DOS. Here, G is the imaginary time
single-particle Green’s function. Note that ~NðT → 0Þ ¼
Nðω ¼ 0; T ¼ 0Þ. This integrated DOS ~NðTÞ is shown in
Fig. 4. In the SDW state, the behavior is consistent with
a partial gapping of the Fermi surface, which, due to
magnetic fluctuations, commences slightly above the mag-
netic ordering temperature TSDW [see panels (a) and (b)].
A similar reduction of ~NðTÞ, which we associate with
superconducting fluctuations, sets in above the supercon-
ducting Tc, in correlation with Tdia. See panels (b),(c),
and (d). Extrapolating ~NðTÞ to T ¼ 0 indicates that the
superconducting state is fully gapped [48].
CDW and PDW susceptibilities.—We now turn to exam-

ine susceptibilities of various density-wave orders.We define
the CDW susceptibility CηðqÞ ¼

R
dτhn†ηðq; τÞnηðq; 0Þi,

where nηðriÞ ¼
P

s¼↑;↓ðψ†
xisψxis þ ηψ†

yisψyisÞ and η ¼ �1.
Note that similarly to Δ−, n− has a d-wave (B1g) character.
In Fig. 5 we show the momentum dependence of C− and

P−. P− is strongly peaked at q ¼ 0 and does not display
much structure at other momenta, indicating that there
is no noticeable tendency towards PDW order. Pþðq ¼ 0Þ

40 60 80 100

scaled system size   L7/4

0

50

100

150

200

250

300
SD

W
 s

us
ce

pt
ib

ili
ty

   
χ r = 9.417

r = 10.026

40 60 80 100

scaled system size   L7/4

0

200

400

600

800

1000

d-
w

av
e 

SC
 s

us
ce

pt
ib

ili
ty

   
P

-(q
 =

 0
)

r = 9.417
r = 10.026

T = 1/30

(b)(a)

T = 1/30

L = 8

L = 14

L = 8

L = 14

FIG. 2. (a) SDW susceptibility χ and (b) d-wave superconduct-
ing susceptibility P−ðq ¼ 0Þ at T ¼ 1=30 in the region of phase
coexistence at r ¼ 9.417 and in the nonmagnetic superconduct-
ing phase at r ¼ 10.026.

FIG. 3. (a) Inverse magnetic susceptibility across the phase
diagram with the gray lines indicating contour lines. We show
data for L ¼ 14 at those temperatures indicated by ticks on the
left inside of the plot and interpolate linearly between them.
(b) Magnetic susceptibility near the maximum of the super-
conducting dome as a function of temperature for different
system sizes.
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(not shown [34]) is significantly smaller in amplitude, and
also shows no structure at finite momenta. C− is maximal
in the vicinity of (but away from) q ¼ ðπ; πÞ. CþðqÞ (not
shown [34]) is qualitatively similar to C−ðqÞ, although its
maximal value is approximately 3 times lower. We find that
several bond-centered charge orders (not shown [34]) do
not exhibit strong temperature or size dependence.
Focusing on C−, we show its momentum dependence

along the high-symmetry cut q ¼ ðπ; qyÞ in Fig. 6(a).
The data taken from different system sizes collapse onto
a single curve, suggesting that the CDW correlation length
is sufficiently short such that results are representative of
the thermodynamic limit. The temperature dependence of
C− at the CDW wave vector qmax ¼ ðπ; qmaxÞ, where it is
maximal (qmax ≈ 0.83π) is shown in Fig. 6(b) for different
values of r on either side of the magnetic QPT. We find
that C−ðqmax; TÞ is maximal at a temperature close to
maxðTc; TSDWÞ. This can be understood as a consequence
of the reduction in the DOS due to the SC or SDW order.
Across the entire phase diagram, the maximal CDW
susceptibility is obtained at r ≈ ropt, close to the SDW
QPT. Note, however, that near Tc the d-wave pairing
susceptibility P− is at least an order of magnitude larger
than the CDW susceptibility.

Superfluid density.— Finally, we examine the low-
temperature superfluid density across the phase diagram,
proposed to exhibit a sharp minimum at a magnetic QCP
[29]. Figure 7 shows the finite-size superfluid density ρsðLÞ
[34] along a cut through the superconducting dome at a
fixed temperature, T ¼ 0.025. Notably, we find that inside
the SC dome ρsðLÞ is only weakly r dependent, with no
apparent minimum anywhere in the superconducting phase.
This is consistent with predictions of a field theoretical
analysis [30] and with the observed behavior in
Ba1−xCoxFe2As2 [49], and suggests that the sharp mini-
mum observed in BaFe2ðAs1−xPxÞ2 may be of a different
origin (see, e.g., Ref. [31]).
Discussion.—The striking similarity between the phase

diagram of our model and the phase diagrams of many
unconventional superconductors, such as the iron-based
SC, electron-doped cuprates or organic SC, strongly
suggests that much of the essential physics in these systems
is indeed captured within our model, as has been long
anticipated [5]. This encouraging result calls for further
investigations of extensions of this basic model, designed to
capture more material-specific features. First steps in this
direction have been taken recently [50,51].
Since models similar to the one studied here are

frequently invoked to describe the phenomenology of
the hole-doped cuprate superconductors, it is interesting
to contrast the behavior seen in our model to that of the
cuprates. Our model exhibits a gap in the single particle
spectrum that precedes the phase transitions into the SC and
SDW phases, as has been predicted for a nearly antiferro-
magnetic metal [52]. However, the onset temperature of the
gap roughly follows the ordering temperature, and is never
larger than about twice the corresponding transition tem-
perature. In this sense, our results are different from the
pseudogap phase of the cuprates. Our model also displays
diamagnetic fluctuations with an onset temperature propor-
tional to, and significantly above, Tc. Similar phenomena
have been observed in the cuprates [53,54].
In addition to unconventional superconductivity, our

model exhibits an enhancement of CDW fluctuations with

(a) (b)

FIG. 5. (a) d-wave CDW and (b) d-wave PDW susceptibilities,
as defined in the text, across the Brillouin zone. Shown here is
data for L ¼ 14, T ¼ 0.083, and r ¼ 10.4. The data point
P−ðq ¼ 0Þ (i.e., the uniform superconducting susceptiblity)
has been excluded from the data (white square).
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a d-wave form factor. However, the CDW susceptibility is
only moderately enhanced compared to the expectation
based on the noninteracting band structure. The quasi-one-
dimensional character of the dispersion of each fermion
flavor enhances the CDW susceptibility, although at a
nonzero chemical potential there is no “perfect nesting”
[34]. It seems that the interaction mediated by spin
fluctuations is not sufficient, by itself, to promote strong
CDW fluctuations. This is consistent with the conclusions
of Refs. [55–58] that additional, nonmagnetic interactions
are needed to stabilize a CDW phase.
Finally, since in our model the magnetic QPT occurs

inside a superconducting phase, our results do not have a
direct bearing on the question of metallic SDW quantum
criticality. In addition, we found some indications that at
low temperatures, the SDW transition may become weakly
first order. Nevertheless, since Tc ≪ EF, one can still
expect to see a substantial crossover regime above Tc,
where the physics is dominated by an underlying “avoided”
QCP. Indeed, we have preliminary indications that above
Tc, the dynamic SDW susceptibility exhibits Landau
damping [59]. Whether this regime is characterized by a
breakdown of Fermi liquid behavior, as observed in many
unconventional superconductors, remains to be seen.
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Note added.—While we were preparing this manuscript,
Ref. [60] appeared, where a closely related model with
O(3) symmetry was studied. Our results are qualitatively
similar to those of Ref. [60] where they overlap.
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