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We explore the dynamical behavior at and near a special class of two-dimensional quantum critical points. Each
is a conformal quantum critical point (CQCP), where in the scaling limit the equal-time correlators are those of
a two-dimensional conformal field theory. The critical theories include the square-lattice quantum dimer model,
the quantum Lifshitz theory, and a deformed toric code model. We show that under generic perturbation the latter
flows toward the ordinary Lorentz-invariant (2 + 1)-dimensional Ising critical point, illustrating that CQCPs are
generically unstable. We exploit a correspondence between the classical and quantum-dynamical behavior in
such systems to perform an extensive numerical study of two lines of CQCPs in a quantum eight-vertex model or,
equivalently, two coupled deformed toric codes. We find that the dynamical critical exponent z remains 2 along
the U(1)-symmetric quantum Lifshitz line, while it continuously varies along the line with only Z2 symmetry.
This illustrates how two CQCPs can have very different dynamical properties, despite identical equal-time
ground-state correlators. Our results equally apply to the dynamics of the corresponding purely classical models.
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I. INTRODUCTION

The study of critical properties of classical statistical
mechanics systems with stochastic relaxational dynamics has a
venerable history.1 More recently, a class of quantum systems
closely related to classical systems with stochastic dynamics
has come under intense study. Here each basis element of
the Hilbert space of the two-dimensional quantum system
corresponds to a configuration in a two-dimensional classical
system. This in itself is not unusual; what is special about this
class is that the Hamiltonian is chosen so that the ground state
is written in terms of the Boltzmann weights of the classical
model. One significant consequence of this relation between
quantum and classical models is that correlators in the ground
state of such a Hamiltonian are the same as those of the
classical model. This means that the phase diagrams of the
quantum and classical models are closely related.

The quantum dimer model2 is an example of this class
of quantum systems. On the square lattice, it is a canonical
example of the conformal quantum critical points to be
discussed in this paper, while on the triangular lattice it is a
canonical example of topological order.3 The Hilbert space is
spanned by close-packed hard-core dimer configurations. The
quantum ground state is the equal-amplitude sum over all such
dimer configurations. A Hamiltonian having this ground state
can easily be constructed by using a technique first developed
in this context by Rokhsar and Kivelson2 (RK). It typically
is a sum of local projection operators, each annihilating the
ground state, and will be reviewed in Sec. II B.

In particular, this provides a way to discover and analyze
new quantum critical points in two spatial dimensions. When-
ever a ground state in two dimensions has a correlator of
local operators algebraically decaying with distance, all local
Hamiltonians must be gapless.4 Thus, if the ground state of an
RK Hamiltonian is described by a critical classical theory, the
quantum theory must be critical as well. Since well-understood
quantum critical points in two dimensions are few and far
between, such RK Hamiltonians are quite interesting.5

Indeed, some of the best-understood quantum critical points
in two dimensions were found by analyzing RK Hamiltonians.
A great deal is known about critical points in rotationally
invariant two-dimensional classical models because these
critical points are not only scale invariant but conformally
invariant as well. Two-dimensional conformal symmetry has
an infinite number of generators and so is very powerful. It can
be used not only to identify many classes of critical points but
also to explicitly compute correlation functions in the scaling
limit, even when the systems are strongly interacting. Because
the ground-state correlators are those of the classical theory,
these results can then be carried over to the quantum case. In
fact, the ground state itself becomes conformally invariant in
the scaling limit, as detailed in Ref. 7. For this reason, these
theories were dubbed conformal quantum critical points.

The static behavior of conformal quantum critical points
is well understood because of this connection to conformal
field theory. Their dynamical behavior, however, is another
story. Only in an exactly solvable case,7–9 dubbed the quantum
Lifshitz theory, has the quantum dynamics been studied in
depth. Here the ground-state correlators can be written in terms
of classical correlators of a free massless scalar field. More-
over, the quantum Hamiltonian remains quadratic (although
not Lorentz invariant), and so everything, in principle, can be
computed.9

One purpose of this paper is to study the dynamics of more
complex conformal quantum critical points. A key example,
which we will study in detail, are the two lines of conformal
quantum critical points in the quantum eight-vertex model of
Ref. 7. The first of these two lines exhibits an additional U(1)
symmetry, which reduces the quantum eight-vertex model to
a quantum six-vertex model whose scaling limit corresponds
precisely to the quantum Lifshitz model mentioned above. So,
while the quantum six-vertex model is not exactly solvable, the
field theory describing its scaling limit is. There is, however, an
RK Hamiltonian whose ground state is that of the classical six-
vertex model. The second critical line corresponds to the full
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quantum eight-vertex model. This line is not exactly solvable
on the lattice or in the scaling limit, although, again, the ground
state of an RK Hamiltonian can be found explicitly. The equal-
time correlators on the two critical lines can be mapped onto
each other because the two corresponding classical theories
are dual to each other.10

In general, different dynamical symmetry classes are
possible for a given static universality class, depending, e.g.,
on whether the dynamics possesses conservation laws or not.1

We find here that despite the identical equal-time correlators,
the dynamical behavior of the two critical lines is, indeed,
quite different. In the quantum Lifshitz theory, the dynamical
critical exponent remains z = 2 all along the line, while along
the other line, this exponent is found to vary. In the language
of Ref. 1, the latter possesses model A dynamics, i.e., the
dynamics has no conservation law and only IsingZ2 symmetry.
In the former, however, the dynamics respects a U(1) symmetry
and so has a conserved quantity; this corresponds to model B.
Both theories possess an exactly marginal operator, and the
exponents of the equal-time correlators vary continuously
along the critical lines. However, we note that the presence
of an exactly marginal operator implies the existence of a
U(1) symmetry only in two classical dimensions, not in a full
two-dimensional quantum theory.

To do this analysis, we exploit the fact that the connection
between the classical and quantum models goes deeper than
the equal-time correlators. As described in Refs. 8, 11, and 12,
much can be learned about the quantum dynamics by studying
the classical ones. This means, in particular, that in some cases
the dynamical critical exponent z in the quantum model can
be found by doing classical Monte Carlo simulations. Since
one point along the z �= 2 line amounts to doing classical
Ising dynamics, we make contact with decades of numerical
studies13 here.

Even though an RK Hamiltonian is fine-tuned, when it
describes a phase with topological order, this physics persists
under (at least small) deformations. This has been demon-
strated numerically in several examples3,14–17 and has recently
been derived rigorously.18,19 The robustness of topological
order near RK points is not surprising, given that the phase is
gapped. The argument, of course, does not apply at conformal
quantum critical points, and there is no reason to expect that
these will remain critical under generic perturbations. Even
though the square-lattice quantum dimer model is critical with
seemingly no fine tuning, this is a consequence of the highly
constrained behavior of dimer models. In a more general
setting, it has been shown that this quantum critical point
typically has several relevant perturbations, as well as a host
of dangerously irrelevant operators.20,21

Thus, an interesting question is if a conformal quantum
critical point is isolated or if it is part of a phase boundary.
In renormalization group language, the question is whether a
relevant perturbation causes a flow to another quantum critical
point or into a gapped phase. We will present substantial
evidence that the Ising conformal quantum critical point is
continuously connected to the usual (2 + 1)-dimensional Ising
critical point.

The outline of the remainder of the paper is as follows.
In Sec. II we review some well-known models with RK
Hamiltonians, the quantum Lifshitz theory, and the quantum

dimer model. We also display a general connection between
classical dynamics and quantum dynamics in theories with
RK Hamiltonians. In Sec. III, we discuss the dynamics of
the Ising conformal quantum critical point in two spatial
dimensions, i.e., the quantum critical point whose ground state
is written in terms of the Boltzmann weights of the critical
classical two-dimensional (2D) Ising model. RK Hamiltonians
are strongly fine-tuned, and so we show in Sec. IV that generic
perturbations of the lattice model generate a crossover from
the (d = 2)-dimensional dynamics with dynamical critical
exponent z ≈ 2.167 (and 2D static correlation length exponent
ν = 1) to the critical dynamics of the (2 + 1)-dimensional
classical Ising universality class with z = 1 (and ν ≈ 0.632).
In Sec. V we discuss the case of the dynamics of two coupled
copies of the deformed toric code, or, in the equivalent classical
case, two coupled copies of the critical Ising model. There are
two critical lines, whose equal-time correlators can be mapped
into each other by two-dimensional classical duality. We show
that these lines correspond to different dynamic universality
classes. In the case without U(1) symmetry, we will present
numerical results that indicate that, along with the static critical
exponents, the dynamical critical exponent z also varies with
the couplings.

II. CONFORMAL QUANTUM CRITICAL POINTS
AND RK HAMILTONIANS

The great progress made in understanding conformal
quantum points came from considering specific ground-state
wave functions. Once a particular ground state is specified, it
is usually (but not always) straightforward to find some RK
Hamiltonian with this ground state.

All the models we study have Hilbert spaces whose basis
elements are labeled by configurations in some classical
two-dimensional model. Let C label a classical configuration
and w(C) be its Boltzmann weight. Then let |C〉 be the
corresponding basis element of the quantum Hilbert space.
Here we take the simplest choice for the inner product, the
orthonormal one. In a lattice model with discrete degrees of
freedom,

〈C ′|C〉 = δCC ′ . (1)

With continuous degrees of freedom as in a field theory, the
Kronecker delta is replaced by a Dirac delta function.

To find a conformal quantum critical point (CQCP) by this
method, the classical model must be critical and isotropic, and
the Boltzmann weights w(C) must be real and non-negative
for all C. Then the (unnormalized) ground-state wave function

|�〉 =
∑
C

√
w(C)|C〉 (2)

is that of a CQCP. The expectation value of any diagonal
operator D in the ground state is identical to that found in the
classical theory:

〈�|D|�〉
〈�|�〉 =

∑
C w(C)D(C)∑

C w(C)
,

where D(C) ≡ 〈C|D|C〉 is, by definition, the value of D in
configuration C.
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At first glance, it appears that for any local dynamics possi-
ble in a critical classical system, there exists a corresponding
conformal quantum critical point. This is not true because
in a quantum theory one, of course, weights by the absolute
value of the amplitude squared. Some classical Euclidean field
theories like the Wess-Zumino-Witten models are only critical
when the action includes an imaginary term. Thus, even if one
has an RK Hamiltonian whose ground state includes such a
term, this term disappears from |�|2, and so the correlators
will not decay algebraically.7

A. The quantum Lifshitz theory

An important example of a CQCP is given by the quantum
Lifshitz theory. This is an exactly solvable field theory that
describes, among other things, the scaling limit of the square-
lattice quantum dimer model. Here the degrees of freedom
are given by a scalar field ϕ(x), which is a smooth map of
all points x on some two-dimensional manifold to a circle.
The Boltzmann weight of the classical model for a given field
configuration is simply w = e−S2d , where S2d is the standard
action for a free massless scalar field:

S2d (ϕ) = κ

∫
d2x(∇ϕ)2, (3)

where κ is an arbitrary parameter. As discussed in
Ref. 7, this weight defines a ground-state wave func-
tional, such that all diagonal correlators in the quantum
model are those of a classical massless scalar field in two
dimensions.

The action S2d is invariant under conformal transformations
of x, so the Boltzmann weights for the quantum Lifshitz
ground state are invariant as well. It also possesses an
additional symmetry, under shifts (constant in space) of ϕ.
This U(1) symmetry is also a symmetry of the quantum Lifshitz
Hamiltonian

HQL = 1

2

∫
d2x[�2 + κ2(∇2ϕ)2], (4)

where the canonical conjugate field �(x) obeys
[�(x),ϕ(x ′)] = iδ(2)(x − x ′). For the examples of interest
here, the field ϕ is periodic, i.e., ϕ = ϕ + 2π . The resulting
vortex operators, however, are irrelevant at a CQCP.7

This Hamiltonian is not a sum of projection operators like
the RK lattice Hamiltonian is. However, it is very similar: It
can be written7 as the integral over local terms of the form
Q†(x)Q(x). Such a Hamiltonian necessarily has non-negative
eigenvalues, and so any state annihilated by Q(x) for all x is a
zero-energy ground state. The ground state (2) with w = e−S2d

is, indeed, annihilated by all Q(x).
Since the quantum Lifshitz Hamiltonian is quadratic in the

fields, it is exactly solvable, and so much more than just the
ground-state correlators can be computed.9 In particular, by
writing down the three-dimensional Euclidean action for this
theory,

S3d = 1

2

∫
d2xdt

[(
∂ϕ

∂t

)2

+ κ2(∇2ϕ)2

]
, (5)

one sees immediately that the dispersion relation is E ∝ k2,
and so the dynamical critical exponent is z = 2. As we will

discuss below, we believe that a generic U(1)-invariant CQCP
has z = 2.

B. Quantum dimers on the square lattice

The square-lattice quantum dimer model is an example
of a lattice model with a conformal quantum critical point.2

Each basis element C corresponds to a configuration of
dimers stretching between neighboring sites on the square
lattice. The weight w(C) = 1 for all configurations that
have exactly one dimer touching each site, and it is zero
for all configurations violating the constraint. It has long
been known that correlators in the classical dimer model
on the square lattice are algebraically decaying.22 Thus, by
Hastings’ theorem,4 the square-lattice quantum dimer model is
critical.

The RK Hamiltonian here was described in the original
paper by Rokhsar and Kivelson.2 It is a sum of local
projection operators with the ground state annihilated by
each projector individually. Each term acts nontrivially on
a single plaquette, projecting each of the two configurations
with two dimers on this plaquette onto their difference. It
annihilates all other configurations on that plaquette. Each such
projector indeed annihilates the equal-amplitude sum over all
configurations.

An elegant argument8 indicates that the scaling limit of
the square-lattice quantum dimer model is κ−1 = 2π of the
quantum Lifshitz model: First, one identifies the classical
model as having the free scalar field action S2d in (3) with
κ−1 = 2π . This follows from a Coulomb-gas mapping, done
here by rewriting the dimer degrees of freedom in terms of
a classical “height,” an integer-value degree of freedom on
every site of the lattice. It is then natural to assume that the
height becomes the continuous field ϕ in the scaling limit. The
value κ is then identified by comparing the scaling dimensions
determined from the exact computation to those in the classical
2D scalar field theory. The ground state in the scaling limit,
therefore, must be of the form (2) because all its diagonal
correlators are the same as those of S2d . The Hamiltonian (4) by
construction annihilates this. Moreover, note that the quantum
dimer model has a U(1) symmetry. The Hamiltonian preserves
both the overall number of dimers and their “winding number”
of dimers. [The winding number is defined by

∑
j nj (−1)j ,

where j labels the links around a cycle and nj = 1 for occupied
links and nj = 0 for unoccupied links.] This requires that only
derivatives of ϕ can appear in the Hamiltonian, which, indeed,
is a property of (4).

Finding the dynamical scaling exponent z provides another
check that the scaling limit of the square-lattice quantum dimer
model is given by the quantum Lifshitz theory. The quantum
dimer model is not solvable, even though its ground state
is known exactly. We thus need to find z numerically; we
do this by studying the finite-size scaling of the gap. Our
method is described in Appendix A. We find that z = 2.01(2),
as shown in Fig. 1. This is in excellent agreement with
the exact value z = 2 for the quantum Lifshitz theory, as
seen from (5), and previous numerical results.23 As such,
it also provides a nice consistency check on our numerical
method.
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FIG. 1. (Color online) The finite-size gap of the quantum dimer
model as a function of the system size. The gap scales as 
 ∝
L−2.01(2), indicating that z = 2.01(2).

C. RK Hamiltonians from classical stochastic dynamics

For classical systems with (positive) Boltzmann weights
w(C), every relaxational stochastic dynamics is known11 to
give rise to a “RK Hamiltonian”: time-dependent probabilities
pC(τ ) � 0, satisfying a “master equation.” The master equa-
tion is written in terms of a “transition matrix” WC,C′ , where, for
different configurations C �= C ′, the matrix element WC,C′ � 0
denotes the transition rate from C ′ to C. The diagonal element
defined by WC,C := −∑

C′ �=C WC′,C denotes the transition rate
out of state C. The master equation is then

d

dτ
pC(τ ) =

∑
C′

WC,C′ pC′(τ ). (6)

The probabilities relax at long times to the classical equilib-
rium distribution

pC(τ ) → w(C) (7)

when detailed balance

w(C) WC′,C = WC,C′ w(C ′) (8)

is satisfied.
A slight rewriting of the master equation (6) gives a

generalization of the RK Hamiltonian. The rescaled transition
matrix

W̃C,C′ ≡ 1√
w(C)

WC,C′
√

w(C ′) (9)

is (real) symmetric due to detailed balance Eq. (8). Letting
p̃C(τ ) ≡ pC(τ )/

√
w(C), the rewritten master equation is

d

dτ
p̃C(τ ) =

∑
C′

W̃C,C′ p̃C′(τ ). (10)

This is a Schrödinger equation in imaginary time τ with
Hamiltonian HC,C′ = (−1)W̃C,C′ for the time-dependent quan-
tum state

|�(t)〉 =
∑
C

p̃C(t) |C〉. (11)

Note that W̃C,C′ and WC,C′ are related by a similarity transfor-
mation and so have the same spectrum. The Hamiltonian thus

has the same spectrum as that of the relaxational dynamics,
Eq. (6). The state (11) relaxes, due to Eq. (7), at long imaginary
times τ to the ground-state equation (2). Thus, this construction
indeed provides a generalization of the RK-type Hamiltonian
and ground state.

In the present formulation, C denotes configurations of
classical variables on a lattice. When the system with classical
Boltzmann weights w(C) possesses an equilibrium critical
point, a universal continuum field theory description emerges
upon coarse graining for both the static as well as for
the dynamic correlations. The resulting dynamic universality
classes are classified within the well-known framework of
Hohenberg and Halperin.1 For example, the Ising conformal
quantum critical point discussed below in Sec. III is described
by the model A dynamical universality class of Hohenberg
and Halperin1 (describing dynamics lacking any conservation
law). The quantum Lifshitz universality class, however, pos-
sesses a U(1) symmetry, so that this belongs to the model B
universality class.

The classical dynamics are conventionally described by
a time-dependent Landau-Ginzburg equation with stochastic
Langevin-type noise, or, equivalently, as a Fokker-Planck
equation for the time-evolution of the probability distribution
for the coarse-grained classical degrees of freedom. It is well
known24 that if one performs the corresponding similarity
transformation to make the linear operator appearing in the
Fokker-Planck equation Hermitian, the Fokker-Planck equa-
tion turns into the coarse-grained analog of the Schrödinger
equation, Eq. (10), in imaginary time. Specifically, for a
classical statistical mechanics system in d spatial dimensions
described, e.g., by a static (real) Landau-Ginzburg action
S{φa(x)} for coarse-grained classical degrees of freedom
{φa(x)}, the resulting quantum Hamiltonian is again of the
form

H = 1

2

∫
ddx Q†

a(x)Qa(x) (12)

generalizing Eq. (4), where

Qa(x) = 1√
2

(
δ

δφa(x)
+ 1

2

δS

δφa(x)

)
,

(13)

Q†
a(x) = 1√

2

(
− δ

δφa(x)
+ 1

2

δS

δφa(x)

)
.

This implies very generally that the ground-state wave func-
tion �({φa(x)}) = (1/

√
Z) exp{− 1

2S{φa(x)}} is given by the
classical Boltzmann weight (Z denotes the classical partition
function). Thus, the (in general, non-Hermitian) linear operator
appearing in the Fokker-Planck equation becomes, after
similarity transform, the negative of the (Hermitian) quantum
Hamiltonian, (−1)H . All its eigenfunctions are positive.

The Hamiltonians of the form of Eq. (12) are clearly very
special. One may ask if there exists a symmetry principle which
constrains Hamiltonians to be fine-tuned to this very particular
form. Indeed, there exists such a symmetry. It is again well
known24 that classical relaxational stochastic dynamics can
be viewed as being invariant under a certain supersymmetry
transformation.25 The property that equal-time correlation
functions converge at large times to static equilibrium cor-
relation function can then be seen as a direct consequence of
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the underlying supersymmetry. The perturbation of the Ising
conformal quantum critical point discussed in Sec. IV can thus
be viewed as breaking the supersymmetry.

This procedure makes obvious the relation between classi-
cal dynamics and RK Hamiltonians. In fact, the generic way
of constructing RK Hamiltonians in field theory discussed in
Ref. 7 is formally identical to that in Eqs. (12) and (13). For
example, the quantum Lifshitz Hamiltonian (4) arises with one
field ϕ and setting S = S2d from Eq. (3).7,8

III. QUANTUM AND CLASSICAL DYNAMICS
IN THE ISING MODEL

The Hilbert spaces of the lattice models we consider for
the remainder of the paper are simply those of the Ising model
on the square lattice. Namely, at every site we have a spin
(i.e., a two-state quantum system), and all the Hamiltonians
we consider are invariant under flipping all the spins. We write
the Hamiltonians in terms of the Pauli matrices τ a

α acting on
the spin at site α.

For both pedagogical and physical reasons, it is often
convenient to describe the Hilbert space in terms of domain
walls instead of spins. There is a two-to-one mapping from spin
configurations to domain walls obtained simply by drawing a
lines on the links of the dual lattice separating regions of
different spins. A typical configuration is illustrated in Fig. 2.
Each domain wall is a two-state system, so we define the Pauli
matrices σa

k acting on the link k analogously to the spins.
However, the domain walls cannot end or branch, so there
must be an even number of domain walls at each site. In an
equation, we constrain ∏

k touching α̂

σ z
k = 1, (14)

for all sites α̂ on the dual lattice. For the obvious reason, these
domain walls are often referred to as “loops.”

A. The toric code ground state

Let us first consider an important noncritical case, closely
related to the mother of all lattice models for topological
quantum computation, the toric code.27 Here the ground

FIG. 2. (Color online) Sketch of a typical domain wall configu-
ration separating regions of opposite spins.

state (2) is a sum over all Ising configurations with the
same amplitude

√
w(C) = 1. Thus, the associated classical

model is simply the Ising model at infinite temperature.
Equivalently, the ground state can be viewed as a sum over all
loop configurations with equal amplitude. Correlators of local
objects in the ground state (e.g., whether a link is occupied by
a loop or not) are obviously finite range.

The gapped RK Hamiltonian having this ground state is
simply the sum over all possible single-spin flips:

HT =∞ =
∑

α

(
1 − τ x

α

)
. (15)

In terms of domain walls or loops, respectively, this acts on the
four links on the dual lattice surrounding each site j , removing
a wall when there is one and adding a wall when there is not:

τ x
α =

∏
p∈�α

σ x
p , (16)

where the product is over the four links on the plaquette on the
dual lattice surrounding the site α.

This equal-amplitude sum over all loops (or domain walls)
is the same ground state as in the toric code. The difference
between the models is that, in the toric code, the constraint
(14) is not imposed. Rather, a diagonal term is added to the
Hamiltonian to give an energy for every site with an odd
number of domain walls touching it. The energy penalty then
precludes any configuration with an odd number of domain
walls at a site from appearing in the ground state.

Since each term in the Hamiltonian (15) commutes with
each of the others, this model is trivially solvable, and the sum
over all loops is, indeed, the ground state. On the disk, this
ground state is unique. On the torus, there are four ground
states, corresponding to the choices of having zero or one
loops go around each cycle. It is easy to see that the model
is gapped; excited states correspond to having plaquettes with
the eigenvalue −1 of τ x . This ground state has topological
order and so has been the subject of intense study in recent
years.

B. The Ising CQCP

Thinking about the toric code in terms of Ising spins
makes it clear how to find a conformal quantum critical point
separating the phase with topological order from an ordered
phase. We simply need to change the weight in the ground
state to correspond to that in the classical two-dimensional
Ising model at noninfinite temperature. In loop language, this
corresponds to adding a weight per unit length 2η, so that

w(L) = η2nL ,

where nL is the number of links covered by loop. In the
quantum theory, we can write(

N∑
k=1

σ z
k

)
|L〉 = (2nL − N )|L〉

for N links. The ground state is then simply

|�〉 =
∑
L

ηn(L)|L〉 . (17)
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An RK Hamiltonian with the ground state (17) for general
η can be found by including a potential that weights links. We
will show below that the Hamiltonian found in Ref. 7 gives
two copies; a simpler-to-write form is28

HIsing =
∑

α

⎛⎝ ∏
p∈�α

ησz
p −

∏
p∈�α

σ x
p

⎞⎠ . (18)

This Hamiltonian can be written as a sum over projectors,
each projector breaking into 2 × 2 blocks. Note that there is
no manifest U(1) symmetry like there is in the quantum dimer
model.

The 2D Ising critical point is at η = ηc, where

ηc = (1 +
√

2)−1/2. (19)

Any local Hamiltonian such as (18) having (17) with η = ηc as
a ground state must be quantum critical by Hastings’ theorem.
We call the Hamiltonian (18) with η = ηc the Ising CQCP.

This quantum Hamiltonian imposes a dynamics on the
spins identical to the usual classical dynamics with local
updates. Thus, the dynamical exponent z is the same in two
cases. There have been numerical determinations of z for
decades; the current value from Ref. 29 is z = 2.1667(5).
This is slightly larger than the z = 2 value for the quantum
dimer model and the quantum Lifshitz theory; below in Sec. V
we explain how to adapt an argument of Ref. 7 to suggest that
z � 2 for CQCPs. For the Ising case here, a rigorous inequality
requires that z � 7/4.30

We have rechecked this number using our numerical
methods described in Appendix A and find the same result;
see Fig. 3. We note that one needs to simulate the classical
Ising model with the Monte Carlo transition matrix that is
proportional to the quantum Hamiltonian. In this case, the
transition matrix has the following form:

WC,C′ = η4

√
w(C ′)
w(C)

,

where w(C) and w(C ′) are the weights of the configurations
before and after update (single-spin flip). This transition matrix
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FIG. 3. (Color online) The finite-size gap of Hamiltonian (18) at
the Ising CQCP ηc as a function of the system size. The gap scales as

 ∝ L−2.170(3), indicating that z = 2.170(3).

leads to the same dynamical exponent as the Metropolis
transition matrix.

IV. FLOW FROM 2D ISING TO 3D ISING

Another interesting way to deform the toric code is to
include the more conventional Ising nearest-neighbor inter-
action. In this section, we study the phase diagram of the toric
code deformed by this interaction and the special RK-type
interaction in (18). We will show that including this term
causes a flow from the Ising CQCP with 2D Ising critical
exponents to the usual z = 1 Ising critical transition in 2 + 1
dimensions.

Adding the Ising nearest-neighbor interaction deforms
Eq. (18) to

H = − 1

η4

∑
α

[
τ x
α + 1

η4

∏
β

ητz
ατ z

β − hη4

2

∑
β

τ z
ατ z

β

]
, (20)

where sites β are the nearest neighbors of α. We include a
factor of 1/η4 compared to Eq. (18) for convenience. In terms
of the link degrees of freedom, the extra term is simply a loop
tension −h

∑
p σ z

p. The other diagonal term in H can also be
thought of as a loop tension, but fine-tuned to make the ground
state have the weighting of the 2D classical Ising model.

The Hamiltonian (20) reduces to that of the 2D transverse
field Ising model on the square lattice for η = 1. There is
a phase transition at h ≈ 0.32847,31 which is in the 3D
Ising universality class with the dynamical critical exponent
z = 1 and the correlation length exponent ν ≈ 0.632. From
the discussion in the previous section, we know that there
is a conformal critical point at h = 0 and η = ηc. This
phase transition is in the 2D Ising universality class with
the dynamical critical exponent z ≈ 2.167 and the correlation
length exponent ν = 1.

A. Phase diagram

The interesting question is if these two critical points
are connected by a line of phase transitions or describe
disconnected regions in parameter space. We find convincing
numerical evidence that the former is true. The full phase
diagram in the h − 1/η plane is shown in Fig. 4. The CQCP
at h = 0 and η = ηc is unstable under perturbations by both h

and η. Along a particular line in this plane, there is a flow from
the Ising CQCP to the (2 + 1)D Ising fixed point. The whole
phase boundary in Fig. 4 has 3D Ising exponents except for
one point.

This phase diagram was mapped out by using a variant of
the continuous-time quantum Monte Carlo algorithm.32 We
measure the Binder cumulant in Monte Carlo simulations

U = 1 − 〈m4〉
3〈m2〉2

, (21)

where m is the magnetization density. The Binder cumulant
scales in the vicinity of a continuous phase transition as

U (L,K,β) = F [L1/ν(K − Kc),β/Lz],

where F is the scaling function, L is the linear system size, z

is the dynamical critical exponent, ν is the correlation length
exponent, K − Kc is the distance to the critical point in some

125114-6



DYNAMICS AT AND NEAR CONFORMAL QUANTUM . . . PHYSICAL REVIEW B 83, 125114 (2011)

1 1.1 1.2 1.3 1.4 1.5 1.6
coupling   1 / η

0 0

0.1 0.1

0.2 0.2

0.3 0.3

te
ns

io
n

h

ordered

disordered
A

B

FIG. 4. (Color online) Phase diagram in the h-1/η plane. Error
bars are smaller than the symbol size. The line guides the eye. The
whole transition line has z = 1 except for one point at h = 0 and
1/η = (1 + √

2)1/2. For the two points labeled A and B, we extract
the critical exponent ν from data collapses of the Binder cumulants
in Figs. 5 and 7, respectively.

coupling constant K , and β is the inverse temperature. It
follows from the above equation that the curves for different
system sizes should collapse onto the universal curve F for
appropriate values of ν and Kc when β/Lz is fixed. We locate
the critical points shown in Fig. 4 by collapsing the Binder
cumulant data.

In Fig. 5, we show an example of such data collapse for
hc = 0.076, 1/η = 1.3. It is very hard to obtain the phase
boundary close to the Ising CQCP using the continuous-time
algorithm because the gap becomes very small and one needs
to simulate very low temperatures to obtain any meaningful
results. We believe that the phase transition is in the 3D Ising
universality class with z = 1 and ν = 0.632 at any point on
the phase boundary for finite values of h.
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FIG. 5. (Color online) Data collapse of the Binder cumulant (21)
for point A at hc = 0.076, 1/η = 1.3 using the 3D Ising exponent
ν = 0.632 (z = 1). Data are obtained from continuous-time Monte
Carlo simulations at inverse temperature β = 2L.

B. Instability of the 2D Ising point to Trotter errors

In this subsection, we show that the Ising CQCP is unstable
even to the Trotter discretization errors. The imaginary time
direction can be discretized in N = β/ε slices, and using
the Suzuki-Trotter decomposition, one maps the 2D quantum
model onto the 3D (Ising-type) classical model with interlayer
couplings given by the diagonal couplings in Eq. (20) and
the intraayer ferromagnetic coupling Kτ = −1/2 ln tanh ε�,
where � = 1/η4 is the strength of the quantum transverse
field. Kτ diverges in the limit ε → 0.

This approach is often used to obtain the critical exponents
when simulations using the continuous-time algorithm are
cumbersome. The exponents obtained by discrete-time and
continuous-time methods should have the same values for
stable fixed points. However, in our case, the 2D Ising point is
unstable, and we obtain the 3D Ising exponents in discrete time,
indicating that there is a flow to the 3D Ising fixed point; see
Fig. 6. Thus, we may have the case when quantum-to-classical
mapping fails. In principle, one should recover 2D exponents
in the limit ε → 0. We are unable to do this because the third
direction becomes very large for small ε and Monte Carlo
simulations become quite impractical.

C. Path-integral ground-state simulations

The continuous-time quantum Monte Carlo simulations
around the Ising CQCP become very slow because we use local
updates in the spatial direction. To prove that the transition at
h = 0 and η = ηc is indeed in the 2D Ising universality class,
we perform quantum Monte Carlo simulations by using the
path-integral ground-state (PIGS) Monte Carlo algorithm.33

In the PIGS algorithm, one uses a variational wave function
and tries to project the ground state wave function. In our
case, the ground state is known exactly. [Strictly speaking,
the wave function given in Eq. (2) is not the exact ground
state in discrete time but becomes one in the limit ε → 0.]
Thus, simulations can be performed at any temperature if one
uses the continuous-time algorithm. We choose 1/T = 0.4.
This temperature is low enough to have substantial quantum
dynamics and to avoid trivial classical simulations of the Ising
model that one effectively has at high temperatures. Figure 7
shows the data collapse of the Binder cumulant (21) with the
2D Ising correlation length exponent. The 2D Ising exponents
can also be recovered using the PIGS Monte Carlo algorithm
in discrete time at small enough values of ε (not shown).

V. CONFORMAL QUANTUM CRITICAL LINES
WITH CONSTANT AND VARYING z

The two-dimensional classical Ising model at its critical
point provides a simple example of a conformal field theory.
All the scaling dimensions can be determined, and one finds
that there are no marginal perturbations possible. However,
by coupling two critical Ising models together, one finds a
theory with an exactly marginal operator, leading to a line of
renormalization group fixed points. If the Ising spins are on
the same lattice, this is called the Ashkin-Teller model, while
if they are on interpenetrating square lattices, this is called the
eight-vertex model.10 In equivalent fermionic language, this
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FIG. 6. (Color online) Data collapse of the Binder cumulant (21) for h = 0 and (1/η)c = 1.316, obtained from discrete-time Monte Carlo
simulations with ε = 0.2 and β = 3. (left) The 3D exponent ν = 0.632. (right) The 2D exponent ν = 1.

amounts to coupling two Majorana fermions together with an
exactly marginal four-fermion term.

This richer behavior persists in quantum theories with RK
Hamiltonians. We review below how this coupling yields
two conformal quantum critical lines.7 For any given point
on one line, one can map its correlators, given in terms of
the underlying classical theory, to those of a point on the
other line. Thus, the equal-time correlators in the quantum
theory have the same behavior at these two related points.
This, however, is no guarantee that the quantum theories have
the same dynamical behavior. Indeed, we will show in the
following that the dynamical behavior turns out to be quite
different.

On one of these lines, the quantum six-vertex model, the
model has a height description and so has a U(1) symmetry.
Thus, one expects the quantum Lifshitz theory to describe the
scaling limit, and indeed, we see numerically that z remains 2
all along this line. The second conformal quantum critical line
includes the case where the two Ising CQCPs are decoupled.
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FIG. 7. (Color online) Data collapse of the Binder cumulant
(21) for point B at h = 0, (1/η)c = (1 + √

2)1/2 using the 2D Ising
exponent ν = 1. The numerical data are obtained from continuous-
time PIGS Monte Carlo simulations at β = 0.4.

Thus, there is no U(1) symmetry, and as we saw above,
z is not 2. However, these two critical lines intersect, and
so necessarily z cannot remain at the Ising value along this
line. We present numerical work that indicates that z indeed
varies continuously along this line.

In fact, an argument adapted from Ref. 7 suggests that
z � 2 for a CQCP. By relating the stress tensor of the two-
dimensional conformal field theory describing the ground state
of the CQCP to deformations of the quantum Hamiltonian, it
is argued that terms in the latter can only depend on space via
the Laplacian, e.g., terms like (∇2ϕ)2 in the quantum Lifshitz
theory. In general, there is no scalar field, but the argument
still suggests that the usual Lorentz-invariant terms in the
effective action yielding z = 1 are absent. Moreover, fields in
a unitary conformal field theory necessarily have non-negative
dimension, so acting with the dimension-2 Laplacian gives
a field of dimension at least 2. This suggests that z � 2 for
CQCPs where the underlying conformal field theory is unitary,
as for the theories considered here. It would be interesting to
make this argument more precise; we indeed find that this
bound is satisfied for all the CQCPs we study.

A. The model

As before, we study the Ising models in their domain wall
and loop formulation, so that the degrees of freedom live
on the links of the lattice. We place these models on two
interpenetrating square lattices (i.e., on both a square lattice
and its dual). Then the quantum model has a four-state system
on each face of the doubled lattice, as illustrated in Fig. 8.
The sites on the original lattice are denoted by solid circles,
while the dual-lattice sites are denoted by open circles, so each
configuration applies to half the faces; the others are given by
a rotation. The constraint (14) is required on all sites on the
doubled lattice, assuring that neither type of loop branches
or ends.

The phase diagram of the coupled model is well understood
because the corresponding classical model is equivalent to
the eight-vertex model.10 This can be seen by first reverting
to the original Ising spins on the doubled lattice and then
drawing the domain walls on the dual lattice to the doubled

125114-8



DYNAMICS AT AND NEAR CONFORMAL QUANTUM . . . PHYSICAL REVIEW B 83, 125114 (2011)

η1 η η2x

FIG. 8. (Color online) The four configurations in the coupled
deformed toric codes and their weights in the ground state.

lattice. The four configurations in Fig. 8 then become the eight
vertices of the zero-field eight-vertex model. The counting is
as follows. There are, of course, 16 possible configurations
of four Ising spins around a plaquette. One can flip all the
spins on the lattice of solid circles without changing the
configurations in Fig. 8. One can do the same for the lattice
of open circles. Flipping the spins on both lattices does not
change the eight-vertex configuration, but flipping the spins
on, say, the solid lattice does. Thus, the 16 different Ising spin
configurations correspond to the eight different configurations
in the eight-vertex model and the four different configurations
in Fig. 8. In the standard eight-vertex model language, the
four configurations in Fig. 8 have weights c, a, b, and d,
respectively. To make the connection with coupled Ising
domain walls more apparent, we set c = 1/η and d = ηx and
a = b = 1.

The RK Hamiltonian with this ground state is therefore the
same as that of Ref. 7. It is comprised of a sum over 2 × 2
blocks, just like the Ising case. The off-diagonal terms flip all
the solid lines around a plaquette on the dual lattice or flip
the dotted lines around a plaquette on the original lattice. The
2 × 2 block thus acts on four faces surrounding each point on
the doubled lattice. Let nc be the number of these four faces
that are empty and nd be the number of crossings in these four.
Likewise, let ñc and ñd be the number of empty faces and
crossings in the flipped configuration. Then the diagonal term
for each site is given by c2̃ncd 2̃nd ; i.e., what enters is the number
of crossings and empty faces in the flipped configuration. Each
2 × 2 block is then

Qi = cñc+ncdñd+nd

(
cñc−ncdñd−nd −1

−1 cnc−ñc dnd−ñd

)
=

(
c2̃ncd 2̃nd −cnc+ñc dnd+ñd

−cnc+ñc dnd+ñd c2ncd2nd

)
, (22)

where c = 1/η and d = ηx as before. The reason for the
prefactor as compared to Ref. 7 is to ensure that the terms
remain finite in the c → 0 and d → 0 limits. The fact that
nc + nd + ñc + ñd = 4 can be used to rewrite the off-diagonal
terms if desired.

B. Constant z = 2 along the U(1)-symmetric line

One critical line occurs when there is a U(1) symmetry, on
the quantum six-vertex line. This U(1) symmetry arises when
x = 0; i.e., the dotted and solid lines are never permitted to
cross in the ground state, so that there is a three-state system
on each face. The symmetry becomes apparent by rewriting
the degrees of freedom in terms of an integer-valued “height”
h at each site of doubled lattice. Heights on adjacent sites
differ by one. The solid lines in Fig. 8 represent domain walls

between heights on the original lattice, while the dashed lines
are domain walls between heights on the dual lattice. On
a disk or sphere, this definition is unique up to an overall
shift h → h + n or a sign flip h → −h. (When x �= 0, one
can consistently assign only Z2-valued heights, i.e., Ising
variables, consistently.)

Thus, this height has the same properties as the field ϕ in the
quantum Lifshitz model discussed in Sec. II A, and it is natural
to identify h with ϕ in the continuum limit. However, as with
the XY model, the classical model is not critical for all values
of η; a Kosterlitz-Thouless transition occurs at c = 2. Thus,
for x = 0, the model is critical for any η � 1/

√
2. This critical

line should be described by the quantum Lifshitz model. The
exponents in equal-time correlators will depend on η, but we
should have z = 2 all along this line. We have checked this
explicitly for one point at x = 0 and η = 1/

√
2.

A subtlety in taking the x = 0 limit is that crossings are not
forbidden with this Hamiltonian. Rather, they become fixed
defects. However, except in peculiar special cases, all such
defects have a nonzero gap and so can be ignored in the scaling
limit. Another thing to note is that there are extra ground states
on the torus in the x = 0 limit. These are the analog of tilted
states in the dimer case, where the height is not periodic around
a cycle of the torus. In the language of dashed and solid loops,
these result from configurations where the loops around a cycle
alternate between dashed and solid. Two neighboring loops
of the same type around a cycle can annihilate, but loops of
different types cannot: They lie on different sets of links. Thus,
when crossing is forbidden, there is no way for noncontractible
loops of alternating type to annihilate.

C. Continuous variation of z along the Z2-symmetric line

The second critical line7 in the quantum eight-vertex model,
which does not have a U(1) symmetry, is parametrized by
c2 = d2 ± 2, or

x2
c = 1

η4
∓ 2

η2
. (23)

We will refer to this line as the “Z2 critical line.” For xc = 0
this line meets the U(1) critical line discussed in the previous
section, and we thus expect a dynamical critical exponent
z = 2 at this point. However, when η2 = √

2 − 1 on the Z2

line, we recover the case of two decoupled Ising models
corresponding to xc = 1. For this second point we thus expect a
dynamical critical exponent of z ≈ 2.17 as previously obtained
in extensive numerical simulations of the dynamics of the 2D
Ising model;13 see also Fig. 3. As a result, one is led to expect
that the dynamical critical exponent is varying (continuously)
along the Z2 critical line.

This might not be surprising since it is known that all
static critical exponents (of the equal-time correlators) are
continuously varying along the Z2 and U(1) critical lines.
Thus, it might be natural to expect that in the absence of
additional symmetries all critical exponents, including z, are
continuously varying along such a critical line.

To calculate the variation of the dynamical critical exponent
along the Z2 critical line, we again perform classical Monte
Carlo simulations. The off-diagonal part of the Hamiltonian of
the two coupled deformed toric codes is more complicated

125114-9



ISAKOV, FENDLEY, LUDWIG, TREBST, AND TROYER PHYSICAL REVIEW B 83, 125114 (2011)

FIG. 9. Two configurations differ by a single plaquette flip. Thin
lines denote empty faces, and thick lines denote nonempty faces. Here
nc = 2, nd = 0, ñc = 0, and ñd = 2. See text for more details.

compared with the single deformed toric code. To work
out the transition matrix, we note that the weights before
and after update are w(C) = (xη2)2nd η2ñc+2ñd and w(C ′) =
(xη2)2ñd η2nc+2nd , respectively. An example of such an update
is shown in Fig. 9. Given the off-diagonal matrix element
Qij = −(1/η)nc+ñc (xη)nd+ñd , it is easy to obtain the transition
matrix

WC,C′ = w(C ′).

This is, indeed, a legitimate transition matrix since 0 � w � 1.
In Fig. 10, we show our numerical estimates of the

dynamical critical exponent z as a function of the coupling x.
The point x = 0 is the special point where the two critical lines
meet. Here z = 2 (within error bars), as it remains all along
the critical line with U(1) symmetry (x = 0 and η � 1

√
2).

Moving along the Z2 critical line with increasing coupling
x, we see that z indeed varies continuously. The dynamical
exponent has a nonmonotonic behavior with an increase up to
a maximum of 2.196 close to the Ising point (x = 1) and a
decrease down toward z = 2 as x goes to infinity. We note that
there might be small systematic errors, which are discussed in
Appendix B in detail, because the system sizes are not large
enough for the majority of points in Fig. 10.

The contrasting observation that the dynamical critical
exponent does not change along the U(1) critical line, despite
continuously varying equal-time correlators, suggests that
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FIG. 10. (Color online) The dynamical exponent z as a function
of x along the critical line. The dashed line indicates the coupling
x = 1 of the case of two decoupled classical Ising models. Error bars
correspond to the statistical errors of the numerical fit described in
Appendix A. For a discussion of systematic errors, see Appendix B.

this additional U(1) symmetry protects the dynamical critical
exponent z = 2. This is in line with the general classification
of Hohenberg and Halperin,1 within which the Z2-symmetric
line is in the model A dynamical symmetry class (absence of
any conservation law) and the U(1)-symmetric line is in the
model B dynamical symmetry class (presence of a conservation
law).

VI. DISCUSSION

We have studied the dynamics of a number of conformal
quantum critical points. We explored the Ising CQCP in
depth, showing that its dynamics are equivalent to classical
dynamics. We also showed that it is quite unstable and that by
perturbing with the usual nearest-neighbor interaction it can be
continuously connected to the conventional Lorentz-invariant
Ising transition in 2 + 1 dimensions. By studying two coupled
deformed toric codes, we illustrated how different dynamics
can result in different values of z, even when the equal-time
correlators are the same.

There are several interesting directions for future research.
At the beginning of Sec. V we discussed two quantum-critical
lines, one possessing U(1) symmetry and the other possessing
only Z2 symmetry. These two lines intersect at one point at
which the dynamical critical exponent is z = 2. This point, not
surprisingly, has enhanced symmetry. For example, the equal-
time correlations are known to possess an SU(2) symmetry.
Moreover, the physics should be in the same universality class
as the loop models studied in Ref. 34. The coupling constant
moving one along the Z2 line away from this intersection
point with SU(2) symmetry must be an exactly marginal
perturbation that generates a line of fixed points for both statics
and dynamics. In particular, by performing perturbation theory
in this coupling constant around the SU(2) point, one expects
to be able to obtain analytic expressions for the deviation of
the dynamic critical exponent from z = 2.

It would be interesting to explore whether the quantum
critical line recently postulated17 for the toric code model
in a multicomponent magnetic field bears some relation to
our results. It was found17 that along this line the product
zν of dynamical critical exponent and correlation exponent
appears to vary from approximately 0.69 to 1. The most
likely interpretation of those results might be in terms of a
crossover between a conformal quantum critical point with
z = 2 and correlation exponent ν = 1/2, corresponding to the
x → ∞ limit of theZ2 critical line in the quantum eight-vertex
model studied in this manuscript, and a Lorentz-invariant
(2 + 1)-dimensional multicritical point. Such a scenario would
be akin to the crossover discussed in detail in Sec. IV.

One may further ask if it is possible to define a quantum
dynamics of RK type based on classical stochastic dynamics
as discussed in this paper for (2 + 1)-dimensional systems
supporting non-Abelian statistics. A case in point is the
Levin-Wen model,35 which can be viewed36,37 as a “lattice
regularization” of (2 + 1)-dimensional doubled SU(2) Chern-
Simons theory at level k = 3, possessing anyon excitations
with non-Abelian exchange statistics. Indeed, the ground state
|�〉 of this model in the simplest non-Abelian (Fibonacci)
case can be described in a geometric form similar to Eq. (2).
Such a description is found by using the results of Ref. 38
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to rewrite the Fibonacci Levin-Wen model in terms of the
quantum net model of Refs. 39 and 40. Here the configurations
C describe configurations of so-called “nets,” which provide
an orthonormal basis, as in Eq. (1). A key difference with
Eq. (2) is that

√
w(C) is replaced by a real wave function of

the configurations C, which takes on both positive and negative
values. [The lack of positivity of the wave function (“sign
problem”) may be a general feature of systems supporting
excitations with non-Abelian statistics.] This property prevents
one from constructing a quantum dynamics of RK type for the
Fibonacci Levin-Wen model by using a stochastic relaxational
dynamics of a suitable classical statistical model, as we did in
Sec. II C.

Nevertheless, there is a classical 2D statistical mechanics
model that arises naturally from the ground state |�〉 of the
Fibonacci Levin-Wen model and gives rise to a CQCP.39,40

By tuning the weight per unit length of net just as we did
in this manuscript, the (2 + 0)-dimensional classical partition
function obtained from the wave function |�〉, Z = 〈�|�〉, is
critical. Z is now a sum of non-negative Boltzmann weights
because only the square of the wave function appears due
to the orthonormality of the basis. By Hastings’ theorem,
the quantum model must therefore be critical. This classical
critical point is in the universality class of the (2 + 0)-
dimensional conformal minimal model with central charge
c = 14/15 [or, in the language of Refs. 39 and 40, the Q-state
Potts model with Q = (5 + √

5)/2].41 Such a conformal field
theory is known42 to be described by a classical Boltzmann
weight arising from Landau-Ginzburg theory, precisely of
the type described above Eq. (12). Were it not for the “sign
problem” mentioned above, one could proceed to study the
dynamic critical exponent z for this conformal quantum critical
point along the lines of the present manuscript.
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APPENDIX A: NUMERICAL CALCULATION OF THE
DYNAMICAL CRITICAL EXPONENT

In this Appendix, we describe our numerical method. To
extract the dynamical critical exponent z, we use the finite-size
scaling of the gap 
 ∝ L−z at the critical point, where L

is the linear system size. The gap can be obtained from the
autocorrelation function of classical Monte Carlo simulations
by ensuring that the off-diagonal part of the Monte Carlo
transition matrix is proportional to the off-diagonal part of
a Hamiltonian8 (see also Sec. II C). Strictly speaking, the
Hamiltonian is symmetric, but the transition matrix WC,C′ is
not. The following matrix is symmetric and has the same
eigenvalues as WC,C′ :8

W̃C,C′ = w(C)1/2WC,C′w(C ′)−1/2,

where w(C) and w(C ′) are the statistical weights of the
configurations before and after update. If the transition matrix
W̃ is proportional to the Hamiltonian,

W̃ = 1 − cH,

where c is the coefficient of proportionality, then the gap of the
Hamiltonian is related to the autocorrelation time τA of some
observable A as


 = 1 − e1/τA

c
,

where τA is measured in Monte Carlo time units. The autocor-
relation time τA can be obtained by fitting the autocorrelation
function to an exponential function (at long enough Monte
Carlo time to make sure that the contribution from the other
modes is negligible).

We perform Monte Carlo simulations as follows. We
simulate a classical model corresponding to the quantum
Hamiltonian for different system sizes L. Typically, the largest
system size is L = 64. We measure the autocorrelation time of
the magnetization for Ising-like models and the autocorrelation
time of a product of two dimers separated by a distance of L/2
for the dimer model. The dynamical exponent is calculated
as described in the previous paragraph. Typically, we perform
25 independent runs for every point, and the error bars are
obtained by using the jackknife method.

APPENDIX B: SIZE DEPENDENCE OF THE GAP IN THE
DEFORMED TORIC CODE MODEL

We note that at the decoupling point x = 1 of the deformed
toric code model, describing two decoupled Ising models,
the gap shows very strong system size dependence, reach-
ing the asymptotic exponential form only at large system
sizes. In Fig. 11, we show the gaps of this model and

8 16 32 64 128
system size L

2.15 2.15

2.2 2.2

2.25 2.25

2.3 2.3

2.35 2.35

2.4 2.4

2.45 2.45

2.5 2.5

L
2.

17
Δ

Ising model
two decoupled Ising models

FIG. 11. (Color online) Four times the gap of Hamiltonian (18)
and the gap of Hamiltonian (22) (x = 1) at the critical point ηc as
a function of the system size. The gaps are multiplied by L2.17 to
make the difference between the two curves clearly visible. The gaps
of the two decoupled Ising models show very strong system size
dependence. Fitting the curve from L = 24 to L = 64 gives z =
2.192(3) (indicated by the dashed line), whereas fitting the curve
from L = 64 to L = 96 gives z = 2.170(4) (indicated by the solid
line) as for the single Ising model.
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the ordinary Ising model as functions of the system size.
The dynamical critical exponent of the two decoupled Ising
models is z = 2.192(3) if we fit the curve from L = 24 to
L = 64 and z = 2.170(4) if we fit the curve from L = 64
to L = 96. The latter value is in agreement with that for
the ordinary Ising model.29 The origin of this strong system
size dependence might be tracked back to the additional
prefactor cñc+ncdñd+nd in Hamiltonian (22) as compared to

the ordinary Ising Hamiltonian (18). This prefactor might
give rise to slightly modified dynamics for small system
sizes. Typically, the largest system size in our Monte Carlo
simulations is L = 64 for small values of x and L = 48 for
large values of x. Assuming that the gaps for all points in
Fig. 10 have strong system size dependence, we may conclude
that each point in Fig. 10 might have a (small) systematic
error.
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