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Close-packed, classical dimer models on three-dimensional, bipartite lattices harbor a Coulomb phase with
power-law correlations at infinite temperature. Here, we discuss the nature of the thermal phase transition out
of this Coulomb phase for a variety of dimer models which energetically favor crystalline dimer states with
columnar ordering. For a family of these models, we find a direct thermal transition from the Coulomb phase
to the dimer crystal. While some systems exhibit �strong� first-order transitions in correspondence with the
Landau-Ginzburg-Wilson paradigm, we also find clear numerical evidence for continuous transitions. A second
family of models undergoes two consecutive thermal transitions with an intermediate paramagnetic phase
separating the Coulomb phase from the dimer crystal. We can describe all of these phase transitions in one
unifying framework of candidate field theories with two complex Ginzburg-Landau fields coupled to a U�1�
gauge field. We derive the symmetry-mandated Ginzburg-Landau actions in these field variables for the various
dimer models and discuss implications for their respective phase transitions.
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I. INTRODUCTION

Constraints are a pervasive feature of strongly correlated
systems. For instance, in Mott insulators, a large atomic Cou-
lomb repulsion effectively constrains the charge of each ion
to be fixed, while still allowing spin and orbital fluctuations.
This situation, in which the dominant terms in the Hamil-
tonian impose constraints, but local fluctuations remain
strong, provides a challenge to physical understanding. In
frustrated magnets, it is common to observe a “cooperative
paramagnetic” regime, in which the dominant exchange in-
teractions impose strong constraints on the spin configura-
tions, but the spins still manage to remain strongly fluctuat-
ing. The “spin ice” materials, in which rare-earth Ising
moments locally satisfy Pauling’s ice rules, provide a promi-
nent and beautiful set of examples, which have stimulated a
rich interplay between theory and experiment. Constraints on
the spin phase space have been implicated in the physics of
diverse other magnetic materials, such as the spinel
chromites1 and the A-site diamond antiferromagnetic
spinels.2

Generally, residual interactions, subdominant to those re-
sponsible for the constraints, lead to a quenching of the re-
maining fluctuations. To quantify this, we may associate the
dominant interactions with a temperature, T0, below which
the constraints are well satisfied and the system is highly

correlated. We will assume that fluctuations among the con-
strained states are removed at another temperature Tc�T0,
which is determined by subdominant effects. Often, this
quenching of the constrained fluctuations is associated with a
symmetry breaking, such as magnetic ordering or lattice de-
formation. This phase transition occurs in a very different
environment from conventional order-disorder transitions, in
which the high-temperature phase is a weakly correlated
paramagnet. Here, the strong constraints imply strong corre-
lations in the cooperative paramagnet. It has recently been
appreciated that such correlations can drastically affect phase
transition�s�.3–6 Transitions can be induced where none
would otherwise be present, and furthermore, symmetry-
mandated transitions may be modified from their usual
Landau-Ginzburg-Wilson �LGW� universality classes.

In this paper, we explore these phenomena in a large set
of classical dimer models on the cubic lattice. Such dimer
models are defined by a constrained phase space consisting
of close-packed dimer coverings, in which dimers occupy
�some� links of the lattice and the constraint is that each site
is overlapped by one and only one dimer. In these models,
the constraint is exactly satisfied, corresponding to the limit
T0→�. We expect that more realistic models are well ap-
proximated by this situation provided Tc�T0. For models
with a gap �of order of O�kBT0�� to states violating the con-
straint �as in spin ice�, the approximation is in fact exponen-
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tially good, since violations of the constraint occur with an
Arrhenius probability �exp�−T0 /Tc�.

In the cubic dimer models we study, a great deal is under-
stood about the nature of the constraint induced correlations,7

which have a power-law form. This can be cast �see Sec. IV�
into a sort of pseudodipolar form, leading to the name “Cou-
lomb phase” for the high-temperature T�Tc region. More-
over, the dipolar correlations can be identified with an emer-
gent Coulomb gauge field, similar to that appearing in true
electromagnetism. Coulomb phases arise in a variety of other
contexts;8,9 for instance, the ice rules constraint related to
spin ice also leads to a Coulomb phase.9–12 For these types of
systems, the gauge description has lead to some theoretical
progress in understanding the consequent unconventional
criticality. In such cases, the transitions are expected to in-
volve dual “monopole” fields, which couple to the emergent
gauge field and carry the associated gauge charge.3,5 The full
field theory therefore has a multicomponent Ginzburg-
Landau form. The monopoles are “fractional” degrees of
freedom in the sense that the symmetry-breaking order pa-
rameters �if any� are composites of these fields. We outline
the derivation of this result in Sec. IV.

Though this construction of non-LGW critical theories
has been discussed in some isolated instances previously, an
unequivocal verification of the theory has proved difficult. In
particular, the numerical experiments in Refs. 4 and 13,
while providing evidence for unconventional criticality, are
not in good quantitative agreement with the theoretical ex-
pectations. In particular, the numerical estimates4 of various
critical exponents, e.g., �=0.50�4�, �=0.56�7�, and
�=−0.02�5�, are indicative of an unexplained tricritical be-
havior.

In this paper, we perform a much more systematic inves-
tigation of a range of dimer models, in order to test the
theoretical picture on a grander scale, in which many quali-
tative comparisons are possible. We find that the gauge
theory does an excellent job on these qualitative tests, pro-
viding understanding of the numerical results for nearly all
cases.

A. Outline of models and results

Before going into a detailed discussion, we first provide a
brief overview of the models we will study and our main
results. We start by introducing a family of close-packed,
classical dimer models on the cubic lattice. The elementary
degrees of freedom in these models are hard-core dimers
occupying the bonds of the cubic lattice with the constraint
that every site in the lattice is part of exactly one such dimer.
We further introduce a �potential� energy scale favoring
dimer coverings with parallel dimers on neighboring bonds.
At low temperature, these models exhibit long-range colum-
nar order of the dimers. In general, there are six distinct
columnar ordering patterns that can maximize the number of
parallel dimers on neighboring bonds as illustrated in Fig. 1.

The main distinction between the various models we will
consider then comes from a selection of a subset of these
energetically favored ordering patterns. The Hamiltonian of a
parent model that favors all six possible ordering patterns

and which we therefore call the “6-GS” model is given by

H6-GS = − �
�

�n= + n// + n�� . �1�

Here n=, n//, and n� count the number of parallel dimers on
neighboring bonds along the x ,y ,z lattice directions and the
sum runs over all square plaquettes of the cubic lattice.

Our first family of dimer models selects particular subsets
of four, two, and one columnar dimer coverings as ground
states. The “4-GS” model favors the four columnar states in
x and y directions, e.g., states 3–6 in Fig. 1, and is described
by the Hamiltonian

H4-GS = − �
�

�n= + n//� . �2�

The “2-GS” model favors columnar orderings only along one
lattice direction, say the z direction, e.g., states 1–2 in Fig. 1,
with Hamiltonian

H2-GS = − �
�

n� . �3�

While these two models have somewhat different ground-
state properties, they will turn out to exhibit rather similar
physics. More specifically, they share the same set of sym-
metries, which we will discuss in detail in Sec. IV A 2. The
last member of this first family of models is the “1-GS”
model which singles out one of the six columnar orderings as
sole ground state. We choose one of the columnar orderings
in the z direction and define n�

e/o to be the number of

x
y

z

5 6

3 4

1 2

FIG. 1. �Color online� The six dimer coverings with columnar
dimer ordering that maximize the number of parallel dimers on
neighboring bonds of the cubic lattice. Our family of classical
dimer models energetically favors these ordering patterns with the
6-GS model favoring all six states, the 4-GS model favoring states
3–6, the 2-GS model favoring states 1–2, and the 1-GS model fa-
voring a single state only. Further variations are discussed in the
text.
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plaquettes with parallel dimers on neighboring even or odd
bonds, respectively. Then the Hamiltonian of the 1-GS model
can be written as

H1-GS = − �
�

n�
e. �4�

A common feature of all four models introduced above is
that they all undergo a direct thermal transition between the
Coulomb gas phase at high temperature and a conventional
long-range ordered state at low temperature as we will dis-
cuss in Sec. II. Our parent Hamiltonian, the 6-GS model, has
first been studied in Ref. 4, where based on an extensive
numerical analysis, the authors argue that this model under-
goes a continuous thermal transition with the system sponta-
neously selecting one of the six columnar ordering patterns
at the transition out of the Coulomb phase. Our present nu-
merical analysis for the other three models indicates that the
2-GS and 4-GS models exhibit �strongly� first-order transi-
tions, while we find strong evidence that the transition of the
1-GS model is again continuous.

In Sec. III, we provide further numerical evidence for the
continuous nature of the 1-GS model by embedding this tran-
sition into a line of continuous transitions for systems of
identical symmetry. The latter is achieved by studying a con-
tinuous interpolation of the 1-GS and 2-GS models in Sec.
III A. A similar approach interpolating the 4-GS to 6-GS
models is given in Sec. III B.

To understand the different phase transitions found nu-
merically, we develop candidate field theories in Sec. IV. To
this end, we first rewrite the dimer models in terms of a
compact U�1� gauge theory. A subsequent duality transfor-
mation then allows to make the monopole excitations in this
gauge theory explicit and describe the phase transitions as
Higgs confinement transitions driven by the condensation of
monopoles. Finally, the candidate field theories are derived
in terms of two complex fields �a CP1 field� coupled to a
U�1� gauge field. The symmetry-mandated Landau-Ginzburg
actions for the various dimer models are given in Sec. IV B
and implications for the phase transitions are discussed. In
particular, this analysis suggests that the 1-GS model under-
goes a continuous transition in the three-dimensional �3D�
inverted XY universality class, while the 2-GS model should
undergo a first-order transition. While analytically inferring
the nature of the transition for the 4-GS and 6-GS models is
somewhat more delicate as discussed in Sec. IV B, we find
an overall good agreement with the numerical results.

In Sec. V, we discuss a second family of dimer models
with the common characteristic that there are two subsequent
thermal transitions between the Coulomb phase and the
dimer crystal. As a representative model, we discuss the so-
called “xy” model in some detail, which favors one columnar
ordering pattern along the x and y lattice directions, respec-
tively. We find that the system first undergoes a continuous
Higgs transition out of the Coulomb phase, which again is in
the 3D inverted XY universality class and subsequently a
first-order “spin-flop” transition to the dimer crystal. We give
some concluding remarks in Sec. VI on the general interest
of these classical dimer models in the search of non-LGW
phase transitions.

II. MONTE CARLO SIMULATIONS

A. Overview

We first summarize some characteristic numerical results
for the thermal transitions obtained from extensive Monte
Carlo simulations. The classical nature of our models not
only commands to use an efficient stochastic algorithm to
traverse the space of dimer coverings, but also allows for
nonlocal update schemes such as the worm algorithm.14,15

The latter performs an update by flipping a whole sequence
of dimers when moving from one dimer covering to another
one, which drastically reduces the problem of critical slow-
ing down close to phase transitions. In more technical terms,
we used so-called heat-bath transition rates to perform the
local worm updates �at all temperatures�, which are de-
scribed in detail in Refs. 14 and 15.34 For all parameter
choices, we typically ran 105 thermalization sweeps and then
collected Monte Carlo estimates from multiple parallel runs
typically recording some 106 measurements. We used this
algorithm on samples with N=L3 sites up to 2563—sizes
which sometimes turn out to be necessary to ascertain the
nature of a phase transition.

The update scheme of the worm algorithm further allows
sampling the behavior of two test monomers embedded in
the dimer coverings. In particular, the update is performed by
initially breaking up an arbitrary dimer into a pair of mono-
mers and then moving one monomer across the lattice by
flipping dimers along a string or “worm” until it can be re-
combined with the other monomer into a newly formed
dimer. This construction can be used to reveal the confining
properties of the low-temperature phases in our dimer mod-
els. To this end, we define the monomer “confinement
length” 	2�T� as the �squared� average distance between the
two test monomers, which we rescale by the expectation
value �L2+2� /4 for deconfined monomers moving freely on
the lattice for a finite cube of even linear extent L �and pe-
riodic boundary conditions�.

We also measure thermodynamical quantities such
as the internal energy E�T�, the specific heat
Cv�T�= ��E2�− �E�2� /T2, as well as the stiffness 
. The
stiffness encodes fluctuations of dimer fluxes:

=��=x,y,z���

2� /3L, where the flux �� is the algebraic num-
ber of dimers crossing a plane perpendicular to the unit vec-
tor e��. Algebraic here means that, given a lattice direction,
we count +1 for a dimer going from one sublattice to the
other and −1 for the reverse situation. Fluxes �� are con-
served quantities �plane by plane� which vanish on average
for symmetry reasons.

In Fig. 2 we plot the specific heat per site Cv�T� /N, the
energy per site E�T� /N, and the monomer confinement
length 	2�T� for the four models introduced in the previous
section.

For all four models, we find clear thermodynamic signa-
tures for a direct transition between the high-temperature
Coulomb phase �with deconfined monomers� to the dimer
crystal at low temperatures �with confined monomers�. The
sharp, kinklike features in the energy E�T� and monomer
confinement length 	2�T� are indicative of a first-order tran-
sition for the 2-GS and 4-GS models. The first-order nature
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of these transitions is fully revealed in bimodal energy his-
tograms in the vicinity of the transition temperature, which
we will discuss in detail in Sec. III. The 1-GS and 6-GS
models exhibit smooth features in the energy E�T� and
monomer confinement length 	2�T� and a �divergent� peak in

the specific heat Cv�T� which are indicative of a continuous
phase transition. While we will not discuss the 6-GS model
in detail here and refer to previous work in Ref. 4, we un-
ambiguously demonstrate in the following that the 1-GS
model undergoes a continuous transition in the 3D XY uni-
versality class. We will now turn to the individual dimer
models and discuss our numerical results in more detail in
the following.

B. 1-GS model

We will first concentrate on the 1-GS model which ener-
getically favors a single columnar dimer ordering pattern
shown in Fig. 1. Our numerical simulations for systems with
up to 2563 lattice sites clearly suggest that this model under-
goes a continuous thermal transition between the Coulomb
phase and the dimer crystal.

The specific heat plotted in Fig. 3 exhibits a peak around
the transition temperature of Tc	2.276�0.001 that diverges
very slowly with L. Below this peak, there is a shoulder that
does not show any variation with system size �see inset of
Fig. 3� and thus cannot be associated with any long distance
or critical behavior. The latter is reminiscent of the 6-GS
model4 which below the transition temperature exhibits an
even more pronounced shoulder �for a comparison, see also
Fig. 2�.

A distinct feature of the Coulomb phase is that �test�
monomers are deconfined. As a consequence, we expect the
monomers to confine at the phase transition out of the Cou-
lomb phase. This confinement transition can be tracked using
the monomer confinement length 	2�T� introduced above.
Plotting data for various systems sizes, as shown in Fig. 4,
reveals a distinct crossing point at the transition temperature.
This absence of finite-size effects at the transition tempera-
ture indicates a universal value of the confinement length

	̃�Tc� at this transition, which we estimate to be
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FIG. 2. �Color online� Overview of numerical results for the
dimer models with one �1-GS�, two �2-GS�, four �4-GS�, and six
�6-GS� columnar ground states: �a� the specific heat per site
Cv�T� /N, �b� the energy per site E�T� /N, and �c� the monomer
confinement length 	2�T� defined in the text. All four models un-
dergo a direct transition with clear thermodynamic signatures be-
tween the high-temperature Coulomb phase �with deconfined
monomers� to the dimer crystal at low temperature �with confined
monomers�. The sharp, kinklike features in the energy E�T� and
monomer confinement length 	2�T� are indicative of a first-order
transition for the 2-GS and 4-GS models. The 1-GS and 6-GS mod-
els undergo continuous transitions with smooth features. Data are
shown for system size L=48 for the 1-GS and 6-GS models and
L=32 for the 2-GS and 4-GS models.
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FIG. 3. �Color online� Specific heat per site Cv�T� /N for the
1-GS model as function of temperature T and different system sizes
L. Inset shows a specific-heat scan over a wide temperature range
for a sample L=48 system size. Below the peak around Tc

	2.276�0.001, there is a shoulder which shows no variation with
system size.
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	̃�Tc�	0.923�0.001. This crossing point strongly indicates
a continuous transition.

Another indication of a continuous transition is that the
distribution of dimer fluxes � also becomes universal at the
transition temperature. Indeed curves of the stiffness 
 �mul-
tiplied by system size L� cross for different L at the transition
out of the Coulomb phase, as shown in Fig. 5. The position
of this crossing point coincides exactly with the transition
temperature Tc=2.276�0.001 estimated from the specific
heat.

Having established the continuous nature of the transition,
we now turn to its universality class. Since this phase tran-
sition occurs without any spontaneous symmetry breaking,
we cannot rely on conventional techniques using an order
parameter to measure critical exponents. However, we can
still consider thermodynamics, such as the behavior of the
specific heat in the vicinity of the transition. As shown in

Fig. 3, Cv�Tc� /N grows very slowly with system size at criti-
cality, which would suggest a critical exponent ��0, but
very small. It is also quite possible that Cv�Tc� /N actually
converges to a finite value, but for system sizes that are
currently out of reach of our numerical simulations. This
would indicate a negative value for �
0, also likely very
small. This latter scenario is not unlikely considering the 3D
XY model, which is known to have a small negative critical
exponent �=−0.0151,16 but for which numerical
simulations17 do not see a convergence of the specific heat.

Thermodynamics being of little help to determine the uni-
versality class, another possibility is to consider crossings
and data collapse of adequate quantities, including the stiff-
ness and the confinement length. Standard finite-size scaling
arguments indicate that close to the transition point, the stiff-
ness should scale as 
= 1

L 
̃�L1/�t�, where 
̃ is a universal
function, t= �T−Tc� /Tc the deviation from the critical tem-
perature, and � the correlation length exponent. Performing
this analysis, we find a nice data collapse for the correlation
length exponent �=0.6717 of the 3D XY universality class16

as shown in the top panel of Fig. 6. The same scaling form

	= 	̃�L1/�t� is also expected for the confinement length 	2. As
shown in the lower panel of Fig. 6, we again find a data
collapse for the same exponent �=0.6717. Finally, we note

that the system-size independent value 	̃�Tc�
	0.923�0.001 is another characteristic of the universality
class of the transition and in this case also points to the 3D
XY universality class.18
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FIG. 6. �Color online� Data collapse for the stiffness 
 multi-
plied by L �top panel� and confinement length 	2 �lower panel� of
the 1-GS model as a function of L1/�t, where t= �T−Tc� /Tc, with
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C. 2-GS and 4-GS models

We contrast our finding of a continuous transition in the
1-GS model to numerical results for the 2-GS and 4-GS
models which both undergo first-order transitions between
the Coulomb phase and the dimer crystal phase. In Figs. 7
and 8, the confinement length of monomers is plotted. Simi-
lar to the 1-GS model, the transition out of the Coulomb
phase is accompanied with a confinement of the monomers.
At these first-order transitions, however, there is no distinct
crossing point �see insets of Figs. 7 and 8�.

III. CONTINUOUS INTERPOLATION BETWEEN DIMER
MODELS

One way to firmly establish the continuous nature of the
phase transition in the 1-GS and 6-GS dimer models is to

demonstrate that these transitions can be embedded into lines
of continuous transitions. We will first concentrate on the
1-GS model and show that such a line of continuous transi-
tions ending in a proposed, multicritical point can indeed be
found. We will then discuss a similar idea for the 6-GS
model, which however does not reveal such a line of con-
tinuous transitions.

A. Interpolating the 1-GS and 2-GS models

We have already observed that the 1-GS model which
favors a single columnar ordering pattern in one lattice di-
rection undergoes a continuous transition, while the 2-GS
model which favors the two possible columnar ordering pat-
terns in a given lattice direction undergoes a strong first-
order transition. We can now ask how the nature of the phase
transition changes as we continuously interpolate between
these two models. To this end, we continuously vary the
weights for the columnar ordering patterns on the odd/even
bonds in a given lattice direction. Formally, we introduce a
coupling parameter � with 0���1 on every other bond

H1−2-GS = − �
�

��n�
o + n�

e� . �5�

For �=0, we recover the 1-GS model, while �=1 corre-
sponds to the 2-GS model.

Our numerical simulations for various interpolation pa-
rameters � are summarized in Figs. 9 and 10, which show the
energy per site E�T� /N and histograms of the energy per site
in the vicinity of the transition temperature, respectively.
Starting from the 2-GS model ��=1� the sharp, kink-like
feature in the energy accompanying the first-order transition
quickly vanishes for interpolation parameters �
1 as the
two possible columnar dimer orderings acquire different
weights. The energy histograms in the vicinity of the transi-
tion temperatures turn from a bimodal distribution in the
parameter regime 1���0.97 into a single peak distribution
for �
0.97 and system size L=48 �see Fig. 10�. The first-
order transition of the 2-GS model turns continuous for some
intermediate �, which for larger system sizes might be closer
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to �c	0.95. On the other hand, this demonstrates that the
continuous transition of the 1-GS model is indeed part of a
line of continuous transitions which extends over the range
0����c and likely ends in a multicritical point at �c. Note
that while ��1 introduces a staggering with respect to the
two columnar ordering patterns, the system exhibits identical
symmetries for all 0��
1, which will lead to a uniform
theoretical description of the interpolated models for all
0��
1. However, since the strong first-order transition of
the 2-GS is expected to be stable toward a small perturbation
��=1−�, it is not surprising to see that the interpolated
models exhibit �weak� first-order transitions in the regime
0.97���1, but quickly turn to uniform behavior for
smaller �.

B. Interpolating the 4-GS and 6-GS models

We now turn to the 6-GS model, for which we can study
a similar interpolation to the 4-GS model, which in contrast
to the 6-GS model undergoes a first-order transition. Again,
we introduce an interpolation parameter � which now as-
signs different weights to the two columnar ordering patterns
that establish the difference between the 4-GS and 6-GS
models. Formally, we investigate the Hamiltonian

H4−6-GS = − �
�

�n= + n// + �n�� , �6�

with 0���1. For �=0, this is the 4-GS model, while
�=1 now corresponds to the 6-GS model.

Our numerical results for various interpolation parameters
� are summarized in Figs. 11–13, respectively. A sharp, kink-
like feature around the transition temperature in the energy
E�T� persists for almost all interpolation parameters
0��
1 �see Fig. 11�. Energy histograms in Fig. 12 for the
respective transition temperatures show bimodal distribu-
tions for the same parameter range. Pushing the limit of our
calculations, we can establish a two-peak structure up to
�=0.98 for system size L=96 �see the lower panel in Fig.
12�. Systematically tracing the distance between the two

peaks in these bimodal energy distributions as shown in Fig.
13, the emerging trend clearly suggests that the line of first-
order transitions persists all the way up to �
1. The transi-
tion weakens along this line to finally turn continuous for the
6-GS model, where we found no sign of a bimodal distribu-
tion for �=1, in agreement with the conclusions of
Ref. 4.
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IV. CANDIDATE FIELD THEORIES

To understand the different nature of the phase transitions
discussed in Sec. II, we will now develop a family of candi-
date field theories describing these transitions. To do this, we
take advantage of a pair of mappings: from the dimer model
to compact lattice quantum electrodynamics �QED�, and
thence to a dual monopole formulation. The continuum limit
of the latter leads directly to the desired field theories.

The desired mappings have been discussed in some detail
in Refs. 3 and 19 and in fact can be performed not only for
the classical dimer model discussed here but also its quantum
generalization. For clarity, we will present in this section a
brief, self-contained summary of the mapping in the classical
case for the cubic lattice, applicable to the models of the
present paper. Performing a detailed symmetry analysis, we
then derive the symmetry allowed Ginzburg-Landau actions
for the various models and discuss implications for their re-
spective phase transitions.

A. Mappings

To proceed, we define a bond variable which counts the
number of dimers on a given bond

n̂ab = 
1, if the bond �a,b� is occupied by a dimer

0 otherwise.
�

�7�

The close-packed dimer constraint which requires that every
site in the cubic lattice be part of exactly one dimer can then
be expressed as

N̂a � �
b

n̂ab = 1, �8�

where the sum is over sites b which are nearest neighbors of
a. A monomer excitation in the dimer model which breaks
the close-packing constraint, e.g., an unpaired site a on the

cubic lattice, is then indicated by N̂a=0.

1. Compact QED

We may directly pass to QED variables as follows. We
introduce an electric field variable Eab, which is a directed
variable, according to

Eab = �an̂ab, �9�

where Eab is integer valued �in particular Eab=0, �1� and
we have introduced a “background charge” �a with a fixed
distribution of alternating charges on the two sublattices

�a = 
+ 1, a � A sublattice

− 1, a � B sublattice.
� �10�

In the QED formulation, the local constraint �8� maps
directly to a lattice version of the Gauss law,

div E� = �a, �11�

which also explains the notion of the background charge and
where we have used the lattice divergence div E� =�bEab.

Expressed in the QED variables, the Hamiltonian be-
comes

HQED =
U

2 �
�a,b�


Eab −
�a

2
�2

− �
�

��curl E� ,2 + �curl E� ,−2� + const,

�12�

where the first term is a constant in the physical space in
which n̂ab=0,1. We include it, however, in order that we
may allow the electric variable Eab to fluctuate over all inte-
gers; by taking the large U limit, the physical dimer states,
which minimize this term, are selected. It is expected that the
universal properties of HQED are identical for infinite and
finite U.

Note that the Hamiltonian �12� is rather similar to the
standard formulation of compact QED. The main difference
is the absence of any magnetic field terms B2, which reflects
the classical nature of the dimer model under consideration,
a shifting of the E2 term by an alternating “background field”
�a /2, and the energetic preference for curl E� = �2. Despite
these differences, Hamiltonian �12� does share all the same
internal symmetries as the more conventional QED form. It
is therefore expected to share the same properties in regimes
where universality is mandated.

2. Duality, monopole formulation, and symmetry transformation

In contrast to a conventional, noncompact QED formula-
tion, a compact QED such as the one introduced in Sec.
IV A 1 does not prohibit magnetic monopoles. These mono-
poles are “conjugate” to the gauge charges in the QED de-
scription, which in terms of the original dimer models corre-
spond to monomer excitations. The defining characteristic of
the Coulomb phase is that the gauge charges are deconfined,
while the magnetic monopoles are well-defined, gapped qua-
siparticles. In the dimer crystal phase, on the other hand, the
electric charges are confined and the electric field is static.
This implies that the conjugate magnetic field is strongly
fluctuating and the magnetic monopoles are no longer good
excitations. We can thus describe the phase transition out of
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bimodal energy histograms shown in Fig. 12. Lines are guides to
the eyes. Data for system sizes L=48 and L=96 are shown.
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the Coulomb phase as the �Bose� condensation of magnetic
monopoles accompanied by a simultaneous confinement
transition of the electric charges.

Our goal now is to establish an analytic description of this
phase transition in terms of the magnetic monopoles. To this
end, we will first introduce a duality transformation to make
the monopole excitations explicit in the Coulomb phase. It is
well known that the electric and magnetic fields in Max-
well’s equations are dual in the absence of charges and cur-
rents. However, while there are no currents in our system,
there is a nonvanishing charge distribution, as given by the
nonvanishing electric field divergence in Eq. �11�. We there-
fore introduce a “background electric field” e��0�, which com-
pensates for these background charges by satisfying

div e� = �a �13�

and making E� −e� divergence free. Note that while E� is a
fluctuating variable, the background field e� is static. It is
convenient to choose e� to be integer valued for what follows.
Then a simple choice to satisfy Eq. �13� is to place
ea,a+x̂= �1+�a� /2 on the link emanating in the x direction
from site a.

This allows us to write down a duality transformation of
the form

E� ab = − curl �� + e�ab, �14�

where we have introduced a dual electric vector potential �� .
In a quantum theory, �� would generate the conjugate mag-
netic field. Due to the integer constraint on E� ab, we must also
take �� to be integer valued �this reflects our integer choice of
e�ab�.

In terms of these dual variables, the QED Hamiltonian
�12� becomes

Hdual-QED =
U

2 �
�


curl �� − e� +
�a

2
�2

− �
�ab�

F��2�� ,

�15�

where the squares “�” now denote the plaquettes of the dual
cubic lattice �see Fig. 14� and the last term F��2�� represents

the transcription of the last term in Eq. �12� in terms of �� .
We will not need its explicit form here. It is only important
to note that it contains second-order �lattice� derivatives of
the vector potential �� . Upon coarse graining, such terms are
irrelevant in the continuum limit. What is important is that,
in the process of integrating out short scale fluctuations, they
will generate relevant terms of all possible types dictated by
symmetry. In this way, the physics of the dimer interactions,
which is reflected in the F function, enters the low-energy
continuum field theory description.

We now proceed to develop the continuum limit, follow-
ing a sequence of standard manipulations.20 In doing so, we
will neglect the F term, on the grounds discussed above,
keeping in mind that in the final continuum theory, we must
restore all possible symmetry-allowed interactions that may
be generated from it. We first soften the integer constraint on
the vector potential �� , replacing the constraint by a term
which favors integer values. This approximation does not
change the nature of the monopole-condensing phase transi-
tion. We rewrite the Hamiltonian �15� as

H =
U

2 �
�

�curl �� − e��2 − w�
r,r�

cos�2��r,r�� , �16�

where large w recovers the integer � constraint. With this
rewriting, we may regard � as a real-valued variable. In the
first term, we have also dropped the �a /2 term found inside
the parenthesis of the first term in Eq. �15�. This is possible
because this term, regarded as a vector field, is purely longi-
tudinal �i.e., curl free� and, hence, actually decoupled from
the curl �� factor. We will soon extract a further longitudinal
piece from e.

To proceed, we first introduce explicit monopole
phase variables by making the gauge transformation
�rr�→�rr�− ��r−�r�� /2�. One obtains

H =
U

2 �
�

�curl �� − e��2 − w�
r,r�

cos��r − �r� − 2��r,r�� .

�17�

Next, we break the background field e into transverse and
longitudinal parts,

e� = e�L + e�T, �18�

such that div e�T=0 and curl e�L=0. Note that, because of the
curl in Eq. �17�, only e�T couples to �� . Taking the divergence
of Eq. �18�, we see that div e�L=div e� =�a. A choice for e�L
satisfying this condition and which is curl free is simply

�eL�a,a+� = �a/6. �19�

From this, we of course can find eT by solving Eq. �18�,

�eT�a,a+� =
1

2
�1 + �a���,x − �a/6. �20�

Inserting Eq. �18� into Eq. �17� and dropping the decoupled
and constant eL part, we find
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FIG. 14. �Color online� Cubic lattice and its dual. The dual
cubic lattice sites sit at the centers of each cube of the cubic lattice.

COULOMB GAS TRANSITIONS IN THREE-DIMENSIONAL… PHYSICAL REVIEW B 80, 045112 �2009�

045112-9



H =
U

2 �
�

�curl �� − e�T�2 − w�
r,r�

cos��r − �r� − 2��r,r�� .

�21�

At this point, we have obtained a lattice Ginzburg-Landau
theory, in which e�T appears as the �average� dual flux �expe-
rienced by the monopoles� through the dual plaquette pierced
by this vector, expressed in units of the flux quantum. As
usual, only the fractional part of the flux has physical signifi-
cance. From Eq. �20�, we readily see that this fractional part
is uniformly 1/6 of a full flux quantum piercing the dual
plaquettes emanating from one sublattice of the direct lattice
and ending in the other. This can be seen as an array of
alternating dual monopole fluxes, representing the original
alternating �a background charges in the QED theory.

Precisely, this problem, of monopoles moving in this
background flux pattern on the cubic lattice, was studied by
Motrunich and Senthil in Ref. 19. We can adapt their results
directly. We define a soft-spin monopole field �r�ei�r and
neglect at first the fluctuations in the gauge field, replacing
�rr� by a static gauge configuration �̄rr� representing the
background flux. The soft-spin Hamiltonian is

Hmonopoles = − w �
�r,r��

��r�
† �re

−2�i�̄r,r� + H.c.� . �22�

Next we take the continuum limit, following Sec. VIB of
Ref. 19. The hopping Hamiltonian in Eq. �22� has two
minima, which we will call �1�r� and �2�r� here. A solution
of the tight-binding Hamiltonian then becomes a linear com-
bination

��r� = �1�1�r� + �2�2�r� , �23�

where we treat �1 and �2 as slowly varying fields.
We can now ask how these solutions transform under the

symmetry operations of the original cubic lattice. For the
specific gauge choice of Ref. 19, these were reported to be

�
Tx: �1 → �1

�, �2 → − �2
�

Ty : �1 → �1
�, �2 → �2

�

Tz: �1 → �2
�, �2 → �1

�

R�/2,Rxy : �1 → e−i�/4�1
�, �2 → ei�/4�2

�

R�/2,Rxz: �1 →
1
�2

��1
� + �2

�� , �2 →
1
�2

��1
� − �2

�� ,
�
�24�

where the two 90° rotations R�/2,Rxy and R�/2,Rxz along the z
and y lattice directions are around the sites on which the
monopoles reside, e.g., the center of the cubes of the original
cubic lattice or the sites of the dual lattice �see Fig. 14�.

We have now established the symmetry transformation
properties for the slowly varying fields in the solution of the
gauge mean-field Hamiltonian �22�. As we will describe in
the next section, this allows us to make an explicit connec-
tion of these solutions to the individual members in our fam-
ily of dimer models. In particular, we directly show how the

symmetries of the microscopic dimer interaction, implicitly
contained in the appropriate F term in Eq. �15�, re-enter the
continuum field theory.

B. Effective Ginzburg-Landau actions and phase transitions

We will now turn to the individual members in our family
of dimer models and derive an effective description in terms
of a Ginzburg-Landau action that respects the symmetries of
the various models. This action is typically given in terms of
the two slowly varying complex fields �1 and �2 coupled to
the dual U�1� gauge field ��. We then analyze the derived
actions and discuss the nature of the phase transitions in
these field theories.

Let us first establish some notations and introduce a three-
component vector N� , which will serve as an order parameter
indicating which dimer ordering is chosen as the ground state

N� ��1,�2� � ��
†�� ����, �25�

where �� are the three Pauli matrices. The six columnar
ground states of our dimer models depicted in Fig. 1 then
correspond to N� pointing along positive or negative x ,y ,z
directions, respectively. Finally, let �� = ��1 ,�2� be a two-
component vector combining the two complex fields �1 and
�2.

We can now write the effective Ginzburg-Landau action
as

Seff = �� d3r����− i�� ��� �2 + U�N� � + L��� �� , �26�

where the first � . . . �2 term is a minimal coupling of the two
complex fields to the dual U�1� gauge field and L��� � is the
usual Maxwell’s term for the gauge field. The potential U�N� �
is determined by the underlying symmetries of the various
dimer models, which are summarized in Table I. This poten-
tial therefore varies for the individual models as discussed in
more detail below.

Note that the action �26� does not contain any time de-
rivatives. The reason is that in the presence of such time-
derivative terms and periodic boundary conditions in imagi-
nary time, all modes with nonzero Matsubara frequencies are
more massive than the zero-frequency mode of interest here
and can be integrated out.

TABLE I. Symmetries of the various dimer models.

Dimer model Symmetries

6-GS Tx , Ty , Tz , R�/2,Rxy , R�/2,Rxz

4-GS Tx , Ty , Tz , R�/2,Rxy

2-GS Tx , Ty , Tz , R�/2,Rxy

1-GS Tx , Ty , R�/2,Rxy

xy Tz , R�/2,Rxy

xxy Tx , Tz

xyz R�/2,Rxy , R�/2,Rxz

xyzz Tz , R�/2,Rxy

xxyyz Tx , Ty , R�/2,Rxy
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1. 1-GS model

The ground state of the 1-GS dimer model is a single
columnar ordering pattern, which we choose to be oriented
along the z direction. The effective Ginzburg-Landau action
for this model is thus required to be invariant under the trans-
formations Tx, Ty, and R�/2,Rxy only. In particular, the poten-
tial U�N� � in the action �26� has the general form

U�N� � = u2�N� � + v2Nz = �u2 + v2���1�2 + �u2 − v2���2�2,

�27�

where we have only included terms up to quadratic order in
the complex fields and introduced two coupling constants u2

and v2. Note that the potential U�N� � introduces two inequiva-
lent mass terms for the two complex fields. As we reduce
temperature, it will be the complex field with smaller mass
that will condense, thereby leading to a condensation of the
monopoles �while the other field still has vanishing expecta-
tion value�. The corresponding phase transition can thus be
described by a field theory with just one complex field
coupled to a U�1� gauge field which is known to be a con-
tinuous transition in the inverted 3D XY universality class.21

At this Higgs transition, the system spontaneously breaks the
U�1� gauge symmetry, which leads to the characteristic con-
finement of charge excitations, e.g., the monomers in the
language of the dimer model. We further note that at this
transition, the system does not break any lattice symmetries.

To summarize our results for the 1-GS model, both our
numerical simulations and field theory analysis come to the
consistent and unambiguous conclusion that the transition
between the Coulomb phase and a long-range ordered dimer
crystal in this model is a continuous transition in the �in-
verted� 3D XY universality class. We again emphasize that
such a continuous transition cannot be explained by the stan-
dard LGW paradigm.

2. 2-GS and 4-GS models

We now turn to the 2-GS and 4-GS models which we
have seen to exhibit direct first-order thermal transitions. Al-
though the two models have complementary ground-state
manifolds, they are invariant under the exact same lattice
transformations. As given in Table I, these are the three lat-
tice translations Tx, Ty, and Tz as well as rotation around the
z axis, R�/2,Rxy. The symmetry-allowed potential terms up to
quartic order in the Ginzburg-Landau action �26� are thus
given by

U�N� � = u2�N� � + u4�N� �2 + v4Nz
2. �28�

For the 4-GS model v4�0, so the Nz
2 term modulates ��

by the constraint ��1�= ��2� and prefers the order parameter N�
to point in the xy plane. Noteworthily, this is still a continu-
ously connected manifold with an internal U�1� symmetry
for the order parameter. Note that the system does not need
to break any lattice symmetries to satisfy this constraint �in
contrast to the 6-GS model which we will discuss in the next
section�. At the transition, when the complex fields �� con-
dense, the order parameter N� becomes nonzero and points
along one of the four lattice directions in the xy plane. Note

that at this Higgs transition, the system not only spontane-
ously breaks the U�1� gauge symmetry, but simultaneously
also the U�1� order parameter symmetry as well as the four-
fold lattice symmetry.

The action �28� exactly corresponds to the one studied for
an easy-plane quantum antiferromagnet in the context of de-
confined quantum criticality.22,23 While analytical investiga-
tions of this action have suggested a continuous phase
transition,23 extensive numerical results have pointed to a
weak first-order transition,24,25 which is also what we find in
our present numerical analysis.

For the 2-GS model, the order parameter N� wants to point
along the z direction, e.g., Nz becomes maximal, which im-
plies �contrary to the 4-GS model� that v4
0. This leaves
the system with a disconnected manifold �of two points� for
fixed magnitude �N� � either preferring ��1�=0 or ��2�=0 and
resulting in a Z2 symmetry for the order parameter.

In contrast to the 1-GS model, this theory cannot be re-
duced to a field theory with just one complex field without
breaking the lattice symmetry Tz. One possibility now is to
have two subsequent transitions where we first break the lat-
tice symmetry at a higher temperature and subsequently ob-
serve a Higgs transition at a lower temperature �with an ex-
otic intermediate phase of coexisting Coulomb and dimer
crystal correlations�. In terms of the complex fields �� , the
system would spontaneously select one of the two possibili-
ties ��1��0, ��2�=0 or ��1�=0, ��2��0 at the first transition.
At the second transition, the nonvanishing � field would re-
quire a fixed phase in a Higgs transition.

Another possibility is to have one direct transition. How-
ever, it is hard to imagine a field theory giving rise to a
continuous transition where the spontaneous breaking of the
discrete Z2 order parameter symmetry occurs simultaneously
with the Higgs transition breaking the U�1� gauge theory.
Thus, we conclude that a direct transition is likely first order.
The strongest support for this analytical scenario, of course,
comes from our numerical simulations which unambiguously
find a direct, first-order transition.

3. 6-GS model

Finally, we turn to the 6-GS model which respects all the
cubic lattice symmetries. In writing down a symmetry-
allowed potential for the action �26�, we consider the sim-
plest invariants of the form

U�N� � = V��N� �� + v8I8�N� � , �29�

where I8�N� �=Nx
2Ny

2+Ny
2Nz

2+Nx
2Nz

2 is an eighth order term in
the complex fields �� and we adopted a notation similar to the
one of Ref. 19. Again we can expand the potential term
V��N� ��=u2�N� �+u4�N� �2+¯. Omitting the eighth order term in
Eq. �29� gives an SU�2� invariant action, which has attracted
some interest due to recent proposals of SU�2� invariant de-
confined quantum critical points, as suggested in the J−Q
quantum model.25–27

Following the line of arguments in Ref. 19, the confining
Higgs transition �which we observe� occurs for u2
0 and
�N� � simultaneously acquires a finite magnitude, e.g., the U�1�
gauge symmetry and the lattice symmetry are broken at the
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same transition. As argued in Ref. 19, one of the six colum-
nar ground states is selected by the eighth order term
v8I8�N� �, with v8�0. Since the Higgs transition of the action
�26� is suggested to be continuous without this eighth-order
term and this term is likely irrelevant �due to its high order�,
we conclude that the action �29� allows for a continuous
transition. This seems to be in agreement with the numerical
evidence of Ref. 4 and our present numerical analysis inter-
polating between the 4-GS and 6-GS models.

The SU�2� invariant action �29� without the eighth-order
term has recently been discussed in terms of direct numerical
simulations.28,29 However, it has remained subtle to resolve
the nature of the transition associated with this action and to
differentiate a continuous transition28 from a weakly first-
order process.29 How the nature of this transition potentially
changes as one includes the eighth order term in the action
�29� is an open question. However, direct numerical simula-
tion of an action similar to Eq. �29� reported a continuous
transition with exponents close but apparently different from
those of the 3D XY model.30

4. Interpolated models

Finally, we briefly turn to the models interpolating be-
tween models exhibiting continuous and first-order transi-
tions as discussed in Sec. III. Interpolating between the 1-GS
and 2-GS models, the system exhibits for all interpolation
parameters 0��
1 the same lattice symmetries and is
therefore described by the same Ginzburg-Landau action
with potential �27� as the 1-GS model. This symmetry analy-
sis suggests that for all �
1, the two complex fields �1, �2
acquire different masses and we can describe the action in
terms of a single complex field coupled to a U�1� gauge
field. On the other hand, we expect the strong first-order
transition of the 2-GS model ��=1� to be stable toward small
perturbations and therefore to extend over a finite region
�
1. As a consequence, there should be a multicritical point
�c where the line of continuous transitions for ���c meets
the first-order line for ���c.

Interpolating between the 4-GS and 6-GS models, the sys-
tem exhibits for all interpolation parameters 0��
1 the
same lattice symmetries, while the symmetries change for
the end point �=1 which corresponds to the 6-GS model �see
also Table I�. Again, this symmetry analysis suggests that all
interpolated models with 0��
1 are described by the same
Ginzburg-Landau action with potential �28�. This seems to
be in agreement with our numerical results suggesting that
all models with 0��
1 exhibit first-order transitions.

V. INTERMEDIATE PARAMAGNET

Finally, we turn to a second family of dimer models that
also energetically favor specific subsets of the six columnar
ordering patterns illustrated in Fig. 1. The distinct feature of
this second family of dimer models is that they harbor two
consecutive thermal phase transitions. The high-temperature
phase transition out of the Coulomb phase is again driven by
the condensation of monopoles with confining monomer ex-
citations. However, this phase transition is into a paramag-
netic phase without dimer crystalline order which only forms

at the low-temperature transition. Thus, we are left with an
unusual sequence of phases in these models with the para-
magnet residing at intermediate temperature scales.

A. Second family of dimer models

Our second family of dimer models explores other com-
binations of the six columnar ordering patterns in Fig. 1 as
ground states. The common characteristic in selecting the
admissible ground states is that for at least one lattice direc-
tion, we choose only one of the two possible columnar or-
derings and there is more than one ground state. If we name
the models by the lattice directions for which ground states
are chosen, these are the xy, xyz, xxy, xyzz, and xxyyz mod-
els. In this nomenclature, the models in our first family of
models would be named z, zz, xxyy, and xxyyzz for the 1-GS,
2-GS, 4-GS, and 6-GS model, respectively.

We will not discuss all possible models in this section, but
concentrate on the xy model with Hamiltonian

Hxy = − �
�

�n=
e + n//

e� , �30�

where we have chosen the columnar dimer orderings on the
even bonds in the x and y lattice directions as ground states.

We summarize our numerical results for this model in Fig.
15. The two consecutive thermal transitions both carry dis-
tinct thermodynamic signatures with a double-peak structure
emerging in the specific heat. At the high-temperature tran-
sition out of the Coulomb phase, the monomer confinement
length drops again indicating that this transition is due to
monopole condensation. A finite-size scaling analysis reveals
a distinct crossing point �see Fig. 16� indicating a continuous
transition into the intermediate-temperature paramagnet.

We argue that this transition is again described by the
inverted 3D XY universality class. We first notice that the
temperature of the Coulomb transition in the xy model �Tc

�2.247� turns out to be close to the one found for the 1-GS
model �where Tc�2.276�. Another indicator that the Cou-
lomb transitions in these two models are closely related and
probably of the same universality class is that the universal
value of the confinement length at the crossing point is

	̃�Tc�	0.920�0.001, which is rather close to the one found

for the 1-GS model �	̃�Tc�	0.923�0.001�. As a final argu-
ment, we find an excellent data collapse of the confining
length measured in the vicinity of this transition for different
system sizes when rescaling the data with the correlation
length exponent �=0.6717 of the 3D XY universality class
�see Fig. 17�.

At the low-temperature transition, the system spontane-
ously selects one of the two possible columnar ordering
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patterns and we observe a sudden increase of the number of
plaquettes with parallel dimers, e.g., n=

e or n//
e, respectively

�see Fig. 18�. The sharp jump of this order parameter indi-
cates a first-order phase transition, which is confirmed by the
bimodal structure of energy histograms close to this transi-
tion point �see Fig. 19�.

B. Theoretical Analysis

We can discuss the nature of the phase transitions for this
second type of dimer models by again analyzing the
symmetry-allowed effective Ginzburg-Landau actions in full
analogy to the discussion in Sec. IV B for the first family of
dimer models. With the lattice symmetries for the individual
members of this second family of dimer models given in
Table I, we find the following potentials for the Ginzburg-
Landau action in Eq. �26�:

U�N� � =�
u2�N� � + v2�Nx + Ny� , xy model

u2�N� � + v2Ny , xxy model

u2�N� � + v2�Nx + Ny + Nz� , xyz model

u2�N� � + v2�Nx + Ny� , xyzz model

u2�N� � + v2Nz, xxyyz model.
�

�31�

For all models, we can diagonalize the quadratic part in
these potentials by performing an SU�2� rotation in the
��1 ,�2� space such that the potentials �31� take an identical
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FIG. 15. �Color online� Overview of the xy model that favors
one columnar ordering pattern along the x and y lattice directions:
�a� specific heat per site Cv�T� /N, �b� energy per site E�T� /N, and
�c� confinement length 	�T�2. This model undergoes an unusual se-
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ment transition, while the dimer crystal forms only at the low-
temperature phase transition.
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form as given in Eq. �27� for the 1-GS model. As a conse-
quence, we expect the high-temperature transition out of the
Coulomb phase in all these models to be described by the
same Higgs mechanism we identified for the 1-GS model
resulting in a continuous transition in the inverted 3D XY
universality class. Our numerics give supporting evidence
for a continuous transition in this universality class as dis-
cussed above.

The main distinction between the models in our second
family of models and those in the first set of models is that
here we can break an additional lattice symmetry which ap-
parently gives rise to the second transition into the dimer
crystal phase at lower temperatures. We argue that this sec-
ond low-temperature phase transition is generically a first-

order transition analog to a spin-flop transition. To see this
analogy, consider the xy model with the potential U�N� �
=u2�N� �+v2�Nx+Ny� in the Ginzburg-Landau action. Below
the confinement transition, the order parameter N� has a non-
zero expectation value �since the monopoles are condensed�,
but points half-way between the x and y directions, thereby
minimizing the second term in the potential. This is also
evident in our numerical simulations as shown in Fig. 18. At
very low temperature, however, we know that the system
must �because there will be no dimer fluctuations� spontane-
ously order along one of the two lattice directions, thus
breaking the symmetry between x and y directions. There-
fore, the spin N� must reorient away from the �110� axis to the
�100� or �010� axis. To describe this, we require additional
higher-order terms in the potential U�N� � of the form NxNy,
Nx

2Ny
2, etc. At low temperature, since the magnitude of the

spin becomes large ��N�=1 as there are no fluctuations�, such
terms are no longer negligible. On lowering the temperature
and increasing these higher order terms, we expect the mini-
mum directions of this energy function to abruptly switch to
their low-temperature values. This is indeed the most com-
monly occurring situation in spin systems, in which such a
first-order reorientation is known as a “spin-flop” transition.
This expectation, arrived at above from “analytical” field
theory considerations, is indeed verified in the numerics �see
Fig. 19�.

VI. DISCUSSION

Recent years have seen an extensive search for continuous
phase transitions beyond the LGW paradigm, which were
originally suggested to occur in certain quantum models.22,23

In this paper, we have demonstrated that this exotic physics
can manifest itself also in various classical models. This, of
course, is not much of a surprise since the universality of
continuous phase transitions mandates that they occur in a
large variety of models, including classical ones. Neverthe-
less, it is amusing to note that such unconventional phase
transitions and the sophisticated ordering mechanisms asso-
ciated with them can actually be found in simple variations
of one of the golden models of statistical mechanics, namely,
the dimer model. The key ingredient giving rise to this exotic
physics is a constraint which enforces close-packed cover-
ings of hard-core dimers. In a way, this readily builds into
the classical model a certain level of frustration which is
often invoked to be a key ingredient for quantum models to
exhibit non-LGW criticality.

Besides the important step to directly establish the occur-
rence of non-LGW transitions in these dimer models, we
view several advantages arising from their classical nature.
�i� Classical models are notoriously simpler to analyze, both
theoretically and numerically, than quantum models. They
are accessible to Monte Carlo approaches, thus allowing to
study critical phenomena through the direct simulation of
large systems. For the specific dimer models at hand, the
existence of a highly efficient Monte Carlo worm algorithm
is also very attractive. �ii� These models ease the identifica-
tion of the necessary ingredients that are needed to cause
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temperature transition between the Coulomb gas and the paramag-
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non-LGW physics in a lattice model �such as lattice and/or
continuous symmetries�. This further opens the possibility of
“reverse engineering” or “rolling back the path integral” to
obtain two-dimensional quantum models that exhibit the
same non-LGW criticality as their three-dimensional classi-
cal counterparts. Such a classical-to-quantum mapping was
recently used in Ref. 31. �iii� The stability of certain critical
behavior can be easily explored in variations of these classi-
cal models, e.g., through the inclusion of perturbations or by
extrapolating terms �as performed in the current study�. For
instance, a yet-to-be-explored possibility is to include terms
that frustrate the columnar ordering. A similar situation in a
quantum model would generically come with a sign problem

in quantum Monte Carlo simulations, putting serious limita-
tions to any numerical study. �iv� Finally, the sheer simplicity
of these models might indicate that non-LGW transitions are
not that exotic after all.
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