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Recently, the twist angle between adjacent sheets of stacked van der Waals ma-

terials emerged as a new knob to engineer correlated states of matter in two-

dimensional heterostructures in a controlled manner, giving rise to emergent

phenomena such as superconductivity or correlated insulating states. Here,

we use an ab initio based approach to characterize the electronic properties of

twisted bilayer MoS2. We report that, in marked contrast to twisted bilayer

graphene, slightly hole-doped MoS2 realizes a strongly asymmetric px-py Hub-
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bard model on the honeycomb lattice, with two almost entirely dispersionless

bands emerging due to destructive interference. We study the collective be-

havior of twisted bilayer MoS2 in the presence of interactions, and charac-

terize an array of different magnetic and orbitally-ordered correlated phases,

which may be susceptible to quantum fluctuations giving rise to exotic, purely

quantum, states of matter.

Introduction

Two-dimensional van der Waals materials constitute a versatile platform to realize quantum

states by design, as they can be synthesized in many different stacking conditions (1), offer a

wide variety of chemical compositions and are easily manipulated by back gates, strain and

the like. Stacking two sheets of van der Waals materials atop each other at a relative twist has

recently emerged as a vibrant research direction to enhance the role of electronic interactions,

with first reports on twisted bilayer graphene (2–6) and other van der Waals materials stacked

atop each other at a twist (7–17) displaying features of correlated physics that afford an un-

precedented level of control. In particular, bi-, tri- and quadruple-layer graphene as well as

twisted few-layer transition metal dichalcogenides (TMDs) are currently under intense experi-

mental scrutiny (13,18–26). By forming a Moiré supercell at small twist angles, a large unit cell

in real space emerges for twisted systems, which due to quantum interference effects leads to a

quasi-two-dimensional system with strongly quenched kinetic energy scales. This reduction in

kinetic energy scale, signaled by the emergence of flat electron bands, in turn enhances the role

of electronic interactions in these systems.

Whereas the flatting of band dispersions in two-dimensional Moiré superlattices results

mainly from the localization of charge density distributions by the Moiré potential, a well-

known alternate pathway to flat bands can occur in certain lattices such as the Lieb and the
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Kagome lattices, where geometric considerations permit the formation of perfectly-localized

electronic states on plaquettes and hexagons, respectively, that are eigenstates of the kinetic

Hamiltonian due to destructive interference between lattice hopping matrix elements (27). Such

flat band systems can give rise to many interesting phenomena, such as the formation of nontriv-

ial topology when time reversal symmetry is broken, or other exotic quantum phases of matter

due to their susceptibility to quantum fluctuations and electronic correlations (28).

Here, we demonstrate that both flat-band mechanisms can be engineered to coexist in twisted

bilayers of MoS2 (tbMoS2); a TMD of direct experimental relevance that has been extensively

studied from synthesis to applications (29, 30). We confirm that families of flat bands emerge

when two sheets of MoS2 are stacked at a twist (12,31) due to Moiré potentials. Our large-scale

ab initio based simulations show that while the first set of engineered flat bands closest to the

edge of the band gap with twist angles close to Θ ≈ 0◦ can be used to effectively engineer

a non-degenerate electronic flat band in analogy to a single layer of graphene at meV energy

scales, more intriguingly, the next set of flat bands instead realizes a strongly asymmetric flat

band px-py honeycomb lattice (32, 33). Both of these families of bands should be accessible

experimentally via gating. The strongly asymmetric nature of this px-py honeycomb lattice is

in marked contrast to the much discussed case of twisted bilayer graphene, where an approxi-

mately symmetric version of such a Hamiltonian is now believed to describe the low-energy flat

band structures found at small twist angle (34–38). The strongly asymmetric px-py honeycomb

model realized here features two almost entirely dispersionless flat bands that touch the top and

the bottom of graphene-like Dirac bands at the Gamma point, respectively. These flat bands

originate from destructive interference, in analogy to flat bands in the Lieb and the Kagome

lattices (27), and will be referred to as ultra-flat bands in the following discussion, to distin-

guish them from other bands with quenched kinetic energy scales. In addition, these ultra-flat

bands are topologically non-trivial once time-reversal symmetry is broken via spin-orbital cou-
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pling (39). Previously, the px-py model was studied in the context of cold gases where exotic

correlated phases were predicted (32, 40, 41), as well as in semiconductor microcavities (42)

and certain 2D organometallic frameworks (43, 44). Our findings elevate tbMoS2 to a novel

platform where effects of ultra-flat bands can be studied systematically in a strongly-correlated

solid-state setting. Notably, in the strong-coupling regime, the px-py model amended by Hub-

bard and Hund’s interactions gives rise to a spin-orbital honeycomb model which – depending

on the specific parameters and symmetries of the model – hosts magnetic, orbital as well as

valence-bond orderings, or even more exotic quantum spin-orbital liquid phases (45–47).

With this, our work adds an unprecedented type of lattice model – the highly asymmetric

px-py Hubbard model – to the growing list of systems that can effectively be engineered using

the twist angle between multiple layers. This is particularly intriguing as we maintain the full

advantages that come with two-dimensional van der Waals materials, such as relative simplicity

of the chemical composition and controllability of the material properties; e.g. of the filling (by

a back gate), electric tunability (by displacement fields) or the band width of the model (by the

twist angle).

Results

ab initio characterization of twisted MoS2

We first characterize the low-energy electronic properties of twisted bilayer MoS2 using density

functional theory (DFT) calculations (see Methods). DFT in particular has established itself as

a reliable tool to provide theoretical guidance and to predict the band structure of many twisted

bi- and multilayer materials (8, 13, 15). However, such a first principles characterization be-

comes numerically very demanding as the twist angle Θ approaches small values and the unit

cell becomes very large entailing many atoms (of the order of a few thousands and more). Nev-

ertheless, it is that limit in which strong band-narrowing effects and as a consequence prominent
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Figure 1: Atomic and electronic structures of twisted bilayer MoS2. (a) Atomic structure of
tbMoS2 at Θ = 3.15◦. Local atomic arrangements of the three different regions in the Moiré
unit cell are indicated in the right panels (b) Evolution of low-energy band structures at the top
of the valence bands of tbMoS2 with decreasing small twist angles. The first set and the second
set of valence bands are highlighted with blue and red lines, respectively. (c) Evolution of the
band width of the first set and the second set of valence bands with decreasing twist angles.
Inset: twist angle dependence of the ratio of the hopping amplitudes tπ and tσ in the px-py

honeycomb lattice.
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Figure 2: px-py honeycomb model for twisted bilayer MoS2. (a) Illustration of the model:
in a honeycomb lattice composed of sublattices A and B, there are two orthogonal orbitals (px

and py) at each of the two sublattice sites. The solid and the dashed lines denote the py and the
px orbitals, respectively, and the red and the blue color denotes the positive and the negative
side of the orbital, respectively. (b) Fitting the dispersion of the px-py model to the second set
of valence bands of tbMoS2 calculated with DFT for tbMoS2 at 2.65◦. The left panel shows
the corresponding density of states displaying the signature four-peak structure. (c) Charge
density, real and imaginary parts of the wavefunction calculated with DFT for the states in the
two quasi-flat bands 1 and 4 shown in (b). The solutions of the corresponding states from the
px-py model are indicated with the blue and red ovals and agree with the DFT results.
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effects of correlations are expected. The results of such a characterization are summarized in

Fig. 1. Panel (a) shows the relaxed atomic structure of two sheets of MoS2 in real space, twisted

with respect to each other. A Moiré interference pattern forms at small twist angle yielding a

large unit cell, within which we identify different local patterns of stacking of the two sheets of

MoS2, indicated via areas framed by cyan, magenta or purple dashed lines. The local stacking

arrangements of the respective areas are given in the right sub-panels of panel (a). In panel (b)

we show the ab initio band structure of the twisted material after relaxation, where we find two

families of bands which will become increasingly flat and start to detach from all other bands,

as the twist angle is lowered. We mark these bands by blue and red color in panel (b), which

shows results for decreasing angles from Θ = 3.16◦ to 2.28◦. The bandwidth of these two

energetically-separated groups of bands is summarized in panel (c) of Fig. 1. We find that the

bandwidth of these two bands shrinks drastically as the angle is decreased, yielding band widths

of the order of 10 meV as the angle approaches Θ ≈ 2◦. Note that these flat bands near the top

of the valence bands originate from the states around the Γ point in the Brillouin zone of the

primitive unit cell of untwisted MoS2, with both S pz and Mo dz2 characters. This is different

from the case of twisted WSe2, in which the top valence flat bands originate from the states

around the K point in the Brillouin zone of the primitive unit cell (13). Since in other TMDs,

such as MoSe2 and WS2, the top of the valence band in the untwisted bilayer is also located at

the Γ point in the Brillouin zone (48, 49), the physics we discussed here transfers also to those

materials being twisted.

The upper bands in Fig. 1 (marked in blue) show a Dirac cone at the K point and behave very

similar to the bands found for monolayer graphene (with the exception of a reduced band width).

They are spin degenerate in nature, but feature no additional degeneracy except at certain high

symmetry points. Instead, the next set of bands (marked in red) is essential to our work. They

too feature a Dirac cone at the K point, but also feature two additional ultra-flat bands at the
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top and bottom in addition to a band structure similar to graphene. The ratio between the

width of the ultra-flat and the flat bands decreases as the angle is decreased, but saturates in our

calculations as a twist-angle of Θ ≈ 2.28◦ is approached. We attribute this saturation to lattice

relaxation effects; note however that the overall band width keeps decreasing.

Remarkably, this second family of flat bands is well-described by an effective px-py tight-

binding model on a honeycomb lattice, depicted schematically in Fig. 2 (a), and conveniently

described by the following Hamiltonian:

H0 =
∑
〈i,j〉,s

(tσc
†
i,s · n‖ijn‖ij · cj,s − tπc†i,s · n⊥ijn⊥ij · cj,s) +

∑
〈〈i,j〉〉,s

(tNσ c
†
i,s · n‖ijn‖ij · cj,s − tNπ c†i,s · n⊥ijn⊥ij · cj,s),

(1)

where ci,s = (ci,x,s, ci,y,s)
T with ci,x(y),s annihilating an electron with px(y)-orbital at site i and

with spin s =↑, ↓. 〈i, j〉 (〈〈i, j〉〉) denotes (next) nearest neighbors. For each sum in Eq. (1),

the first term describes the σ hopping (head to tail) between the p-orbitals and the second term

denotes the π hopping (shoulder to shoulder). Furthermore, n‖ij = (ri − rj)/|ri − rj|, with

ri being the position of site i and n⊥ij = Un
‖
ij with U being the two-dimensional 90 degree

rotation matrix U =

(
0 −1
1 0

)
. Finally, tσ and tπ ( tNσ and tNπ ) are the nearest neighbor (next

nearest neighbor) hopping amplitudes for the σ-bonding term and π-bonding term, respectively.

Fig. 2(b) and (c) depict the corresponding dispersions, density of states, and wave functions in

comparison to model predictions, illustrating that the four Moiré bands at low energies are well-

captured by Eq. (1) upon the choice of hopping parameters tπ = 0.25tσ, tNσ = 0.07tσ and tNπ =

−0.04tσ. The density of states exhibits a characteristic four van Hove singularities structure,

with two originating from the Dirac bands and two stemming from the additional two ultra-flat

bands. The small ratio between the nearest neighbor hopping amplitudes tπ/tσ determines the

residual small dispersion in the ultra-flat bands we report. This ratio is controllable by the twist

angle, which is summarized in the inset of Fig. 1 (c). All these parameters are related to the
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interlayer Moiré potential and thus expected to be also affected and controllable by the uniaxial

pressure perpendicular to the layers as demonstrated for twisted bilayer graphene (4).

The flat band wavefunctions consist of atomic wavefunctions from the pz orbital on S atoms

and the dz2 orbital on Mo atoms. Modulated by the Moiré potential, the weighting of the atomic

wavefunctions and their modulus square (i.e., charge density) vary at different atomic sites

across the whole supercell, showing distinct patterns for different flat band states at the K point

in the supercell Brillouin zone as shown in Panel (c) of Fig. 2. These patterns of the charge

density as well as the real and the imaginary part of the total wavefunctions obtained from

DFT show features consistent with those of the px-py Hamiltonian of Eq. (1). Interestingly, the

charge density distribution of the top ultra-flat band state displays a Kagome lattice structure.

We have thus unambiguously established twisted MoS2 to be a candidate system to realize a

px-py model on the honeycomb lattice with strongly asymmetric hoppings tσ and tπ, giving rise

to a new set of ultra-flat bands.

Correlations and magnetic properties

We now study the role of electronic interactions. As the highly-anisotropic px-py orbital struc-

ture constitutes the essential novelty of twisted bilayer MoS2, we focus on quarter filling where

orbital fluctuations can be expected to be crucial. This filling fraction is straightforwardly ac-

cessible in experiment via back gating, and we defer a discussion of the half-filled case to the

Supplementary Material. To proceed, we assume purely local electronic interactions, which can

be generically parameterized in terms of the Hubbard-Kanamori Hamiltonian:

HU = U
∑
i,α

niα↑niα↓ + (U − 2J)
∑
i

nixniy + J
∑
i,s,s′

c†ixsc
†
iys′cixs′ciys + J

∑
i,α 6=β

c†iα↑c
†
iα↓ciβ↓ciβ↑

(2)

for two orbitals with rotational symmetry. Furthermore, our DFT calculations suggest tπ ≈

0.25tσ and only weak next-nearest neighbor hopping at small twist angles; we therefore neglect
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(a) (b)

(c)
A(ω)

Figure 3: Charge gap and correlations for twisted bilayer MoS2 at vanishing tempera-
ture. (a) depicts the 16-orbital cluster geometry employed for exact diagonalization of the
Hubbard-Kanamori Hamiltonian. (b) depicts the charge gap as a function of Hubbard U and
Hund’s exchange J interactions, calculated for the 16-orbital cluster and extracted from (c) the
local density of states, which is readily accessible via scanning tunnelling microscopy. A well-
defined charge gap develops beyond U/tσ ∼ 4 at small J that scales linearly with the Hubbard
interaction U . Vertical gray dotted lines indicate phase transitions to charge-ordered states at
large J/U , coinciding with a closing of the charge gap.
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Figure 4: Magnetic phase diagram for twisted bilayer MoS2. (a) Classical ground state
energy per orbital in units of ∆ = t2σ/U , assuming ferro- (blue) or antiferromagnetic (red) order
for the spin degrees of freedom. We take the ab initio parameters, tπ = 0.25tσ and use an
iterative energy minimization. The lower panel determines the phase boundaries for the orbital
degrees of freedom given the energetically more favorable spin order shown in the top panel.
At J/U = 0.1 we find the spin order to change from AFM to FM, with AFO nematic order for
the orbital degrees of freedom remaining stable in agreement with (47). (b) Configurations of
orbital vectors found at the end of iterative minimization. Note that we display the projection
of τ to the plane in R3 (indicated by the axis shown in the bottom left), such that nematic states
with finite contributions only in xz direction ((1) & (2)) can be distinguished from magnetic
states (3) which point perpendicular, i.e along the y-axis.

11



next-nearest-neighbor hopping in the analysis below.

Fig. 3 (c) depicts the local density of states as a function of Hubbard U and Hund’s exchange

J interactions, calculated via an exact diagonalization study of Eqs. (1) and (2) for a cluster

depicted schematically in (a). Clear evidence of a charge gap beyond U/tσ ∼ 4 at small J

signifies the onset of a correlated insulator which could be directly observed via transport and

scanning tunnelling microscopy. The behavior of the gap is depicted in Fig. 3(b) as a function

of U, J and signifies that charge fluctuations are strongly suppressed for large U .

In this regime, a natural follow-up questions concerns possible orderings of the orbital and

magnetic degrees of freedom. The corresponding strong-coupling Kugel-Khomskii Hamilto-

nian (50–52) for the px-py model at quarter filling is given in Ref. (45–47) and reads:

H =
∑
〈ij〉

1

U − 3J
ξ1ij
[
tσtπQ̄ij − (t2σ + t2π)(P xy

ij + P yx
ij )
]

− 1

U + J
ξ0ij
[
tσtπQij + 2t2σP

xx
ij + 2t2πP

yy
ij

]
+

1

U − J ξ
0
ij

[
tσtπ(Qij − Q̄ij)− 2t2σP

xx
ij − 2t2πP

yy
ij − (t2σ + t2π)(P xy

ij + P yx
ij )
]
. (3)

Here, ξ1ij = 3/4 + SiSj denotes the projector onto triplet states, whereas ξ0ij = 1/4 − SiSj

selects the singlet spin states instead. Note that the orbital operators, for example Qij , are bond

dependent, giving rise to a strong spatial anisotropy of the resulting spin-orbit model. Details

about their definitions can be found in the Methods section.

To study its ground state phase diagram using the ab initio parameters found in the previous

section, we employ a mean-field analysis of competing orbital orderings with ferromagnetic

and antiferromagnetic spin order. To this end, we note that on the bipartite honeycomb lattice

the SU(2) invariant spin sector would, on its own, order either ferro- or antiferromagnetically,

depending on the sign of the exchange couplings. As an Ansatz we therefore assume that one

of the respective states is stabilized and decouple the spin from the orbital degrees of freedom

by replacing SiSj with its expectation value 〈SiSj〉 = ±1/4 such that ξ1ij = 1, ξ0ij = 0 for
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ferromagnetic spin order and ξ1ij = ξ0ij = 1/2 for Neél order.

After such a mean-field decoupling corresponding to the ground state in the spin sector,

we analyze the ground states of the resulting Hamiltonian for the orbital degrees of freedom,

which we approximate as classical vectors. We use an iterative energy minimization combined

with simulated annealing techniques (see Methods) to converge the mean field equations and

find the phase diagram summarized in Fig. 4. Panel (a) shows the energy of ferromagnetic

and antiferromagnetic spin configurations from which the magnetic phase diagram can be read

off. This is given in the upper part of the plot and we find antiferromagnetic ordering with

an intermittent ferromagnetic phase at intermediate ratios of 0.1 < J/U < 1/3. In the lower

part of the plot we show the corresponding subsidiary orbital order. From our simulations we

identify three different configurations of orbital vectors τ , which can be classified according

to their projection on a single definite plane in space, shown in the lower left of the plots: (1)

ferro-orbital (FO) nematic order, where the vectors on all lattice sites align in parallel to the xz-

plane. Quantum mechanically, finite values of 〈τx/zi 〉 indicate an imbalance of the occupation of

px and py orbitals, breaking rotation symmetry and thereby motivating the notion of a nematic

state. (2) AFO nematic order; each vector is aligned anti-parallel with its nearest neighbors

corresponding to 〈τx/zi 〉 6= 0 on each sublattice, but without finite projections τ yi on individual

sites. (3) FO magnetic order; all vectors order along the y-axis, such that 〈τ yi 〉 6= 0, which, in the

quantum mechanical system, would indicate time-reversal symmetry breaking. The inclusion

of quantum fluctuations can change this picture and more exotic ground states may emerge.

For example, for our ab initio band structure parameters, a noncollinear spin dimer phase is

predicted in a certain range of interaction couplings and even a quantum spin-orbital liquid is

found in its proximity (47).

13



Discussion

We have established that twisted bilayer MoS2 is a promising platform to realize the orbital

anisotropic px-py Hubbard model by employing large scale ab initio calculations. We find that

families of flat bands emerge where the first family of flat bands shows s-orbital character and

the second family is an intriguing realization of a strongly asymmetric px-py Hubbard model

both on a honeycomb lattice, adding a lattice with non-trivial almost perfectly-flat bands due

to destructive interference to the growing list of systems that can be engineered in twisted het-

erostructures. At even smaller angle the sequence in the family of flat bands found with respect

to their orbital character continues and a preliminary study shows that the next family would

exhibit d-orbital character on the honeycomb lattice. Such a lattice would effectively realize a

multi-orbital generalization of a Kagome lattice – a prototypical model for quantum spin liq-

uids. However, at such small angles strong relaxation is likely to become dominant, prohibiting

access to this regime and potentially spoiling its experimental realization. Currently the ab ini-

tio characterization of such small angles is numerically too exhaustive and this work sparks a

direct need for novel computational methods to tackle this question.

Furthermore, our combined exact diagonalization and strong-coupling expansion approaches

classify the magnetic and orbital phase diagrams, however, inclusion of quantum fluctuations

stipulates an intriguing avenue of future theoretical research. In addition, by proximity or varia-

tions in the chemical composition of the twisted bilayer, it might be possible to induce spin-orbit

coupling splitting of the ultra-flat bands at the top and bottom of the asymmetric px-py disper-

sion. Such a band gap opening would induce interesting topological properties (53) in a highly

tunable materials setting.
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Methods

Details on ab initio calculations

We calculate the electronic properties of twisted bilayer MoS2 with ab initio methods based

on density functional theory (DFT) as implemented in the Vienna ab initio Simulation Package

(VASP) (54). We employ plane wave basis sets with an energy cutoff of 550 eV and pseudopo-

tentials as constructed with the projector augmented wave (PAW) method (55). The exchange-

correlation functionals are treated at the generalized gradient approximations (GGA) level (56).

The supercell lattice constants are chosen such that they correspond to 3.161 Å for the 1x1 prim-

itive cell of MoS2. Vacuum spacing larger than 15 Å is introduced to avoid artificial interaction

between the periodic images along the z direction. Because of the large supercells, a 1x1x1

k-grid is employed for the ground state and the relaxation calculations. For all the calculations,

all the atoms are relaxed until the force on each atom is less than 0.01 eV/Å. Van der Waals

corrections are considered with the method of Tkatchenko and Scheffler (57).

Details on exact diagonalization

Exact diagonalization calculations were performed for the electronic tight-binding model in

Eq. (1) with Hubbard Kanamori interactions defined in Eq. (2). All calculations were performed

for the total momentum Ktot = 0 and total spin Sz = 0 sector, for a two-orbital eight-site cluster

with periodic boundary conditions. Rotationally-symmetric Kanamori interactions are adopted,

with U ′ = U − 2J . As the magnitudes of the Hubbard U and Hund’s exchange J interactions

cannot be reliably predicted for a Moié super cell from first principles, all presented results are

shown as a function of U , J . Calculations of the single-particle Green’s functions and local

density of states are performed using the Lanczos method and continued-fraction representa-

tion, and a spectral broadening (imaginary part of the self energy) of η = 0.1 is imposed.
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Details on strong-coupling Hamiltonian

Here we give the definitions of the operators used in (3) and discussed in (46). The operators

Qij and Q̄ij describe processes where orbital occupations of sites i and j are reversed, that is

they are defined as

Qij =
(
τ+i τ

+
j + τ−i τ

−
j

)
/2

Q̄ij =
(
τ+i τ

−
j + τ−i τ

+
j

)
/2 , (4)

with

τ±i = n⊥ijτ i ± iτ yi , (5)

where τ i = (τ zi , τ
x
i , τ

y
i )T . The orbital projection operators can then be expressed as

P xx
ij = (1 + n

‖
ijτ i)(1 + n

‖
ijτ j)/4

P yy
ij = (1− n

‖
ijτ i)(1− n

‖
ijτ j)/4

P xy
ij = (1 + n

‖
ijτ i)(1− n

‖
ijτ j)/4

P yx
ij = (1− n

‖
ijτ i)(1 + n

‖
ijτ j)/4 . (6)

where e.g. P xx
ij selects states where the superposition (pxex + pyey)n

‖
ij is occupied on nearest-

neighbor sites i and j connected by the bond n
‖
ij .

Details on minimization procedure for classical Hamiltonian

Metropolis Monte Carlo simulations are a prime tool for the investigation of classical spin

models, since they allow for off-diagonal, spatially anisotropic spin couplings to be included,

even when one-spin terms, such as magnetic fields, are involved. Here we employ a special

variant of the algorithm to the mean-field version of (3), keeping in mind that the ‘spins’ used
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Figure 5: Magnetic phase diagram of the strong-coupling Hamiltonian (3) in the isotropic
limit tσ = tπ. Our results from iterative minimization are in agreement with (46), stabilizing
FO nematic order (1) for J/U < 0 (see main text) and FO magnetic order (3) (see main text) for
J/U > 1/3. In the intermediate range of parameters 0 < J/U < 1/3 the ferromagnetic spin
sector is selected, such that, due to vanishing ξ0ij , rotation invariance is restored for the orbital
vectors, giving rise to AFM order (2) but without any preferred axis in euclidean space.
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in the simulation are approximations to orbital operators τ .

First, a lattice site i is randomly chosen, and its respective gradient field hi = ∇iH is computed

for the current spin configuration {τ i}. Second, a random orientation τ ′i for the vector at site i

is proposed and the weight

g = min
(
e−β(τ

′
i−τ i)hi , 1

)
, (7)

is computed for an effective inverse temperature β. Performing several Metropolis updates with

increasing values of β we are able to efficiently lower the energy of a random initial configu-

ration, minimizing the odds to converge to a local minimum by only allowing optimal updates

(i.e. τ i = −hi) right from the start. After Na sweeps over the full lattice, the so-obtained

configuration is ameliorated by No optimization sweeps, where the randomly selected spin is

rotated anti-parallel to the local gradient field such that the energy is deterministically lowered

in every step and we converge as close to the global energy minimum as possible. Hence, this

algorithm is reminiscent of Monte Carlo simulations with simulated annealing, but at zero tem-

perature where thermal fluctuations are frozen out.

To benchmark our implementation we have carried out the minimization procedure in the

isotropic limit tσ = tπ for Na = No = 105, where the optimization sweeps are terminated

when the energy change after one sweep, ε, becomes small (usually ε ≤ 10−10). Mapping out

the phase diagram for both the FM, 〈SiSj〉 = 1/4, as well as the AFM, 〈SiSj〉 = −1/4, spin

sector on a lattice with N = 1250 spins subject to periodic boundary conditions we find the re-

sult in Fig. 5, which is consistent with the one presented in (46). For J < 0 the AFM spin sector

has lower energy, with the orbitals forming a ferro-orbital (FO) nematic state where 〈τx/zi 〉 6= 0

and 〈τ yi 〉 = 0. For J > 0 one finds the FM spin sector (for which the orbital degrees of freedom

restore their rotation invariance) to dominate as long as J < 1/3, where the AFM sector takes

over again and establishes a FO magnetic state, i.e. 〈τx/zi 〉 = 0 and 〈τ yi 〉 6= 0.
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