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Impurity effects in highly frustrated diamond-lattice antiferromagnets
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We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit
large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels.
We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide
a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model”
analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present
criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results
may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
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I. INTRODUCTION

A common feature of highly frustrated magnets is the
existence of a large (classical) ground-state degeneracy in
model Hamiltonians.1 Although this degeneracy is accidental,
in the sense that the multitude of ground states are generally
not symmetry related, it nevertheless yields striking physical
consequences. For instance, over a broad temperature range the
system resides in a “cooperative paramagnetic” or “classical
spin liquid” regime, where the spins avoid long-range order
but fluctuate predominantly within the ground-state manifold.
The ultimate fate of such highly frustrated spins at the
lowest temperatures poses an interesting and experimentally
important problem. Typically, at very low temperatures en-
tropic or quantum fluctuations alone are sufficient to lift the
degeneracy and produce an ordering transition via “order by
disorder.”2,3 However, additional weak effects which would
otherwise be negligible in unfrustrated systems—such as small
further-neighbor exchange,4,5 spin-lattice coupling,4,6 and
dipolar interactions7—can also provide a degeneracy-lifting
mechanism, which indeed often dominates over fluctuation
effects.

In this paper we discuss degeneracy breaking by quenched
random impurities, a problem pioneered by Villain in Refs. 2
and 8, and also considered by Henley.3,9 Generally, even a
nonmagnetic defect (i.e., one which does not break spin-
rotational symmetry), such as a random bond, an interstitial
spin, or a vacancy, will locally distinguish the various
degenerate states of the pristine system. This brings up a

number of issues. First, can impurities consequently lead to
ordering, i.e., “order by quenched disorder,” or, by virtue of
their randomness, do they lead instead to a glassy disordered
state? Do these impurities influence the spins in their vicinity
independently from one another or are their effects rendered
highly coordinated by the correlated nature of fluctuations in
the cooperative paramagnetic regime?

The answers to these questions probably depend in detail
on the nature of the magnetic system under consideration,
particularly the degree of frustration. Generally, with increas-
ing frustration comes increasing ground-state degeneracy. One
often useful characterization scheme for frustration involves
counting the distinct magnetic ordering wave vectors that are
possible within the classical ground-state manifold. In mildly
frustrated magnets, such as the nearest-neighbor triangular
antiferromagnet, this wave vector is unique. In the nearest-
neighbor fcc antiferromagnet, the ordering wave vectors form
continuous one-dimensional lines.10 The much more frustrated
nearest-neighbor kagome and pyrochlore antiferromagnets, by
contrast, have ordering wave vectors that fill all of reciprocal
space.11,12

In the latter kagome and pyrochlore cases, the degeneracy
is local—i.e., the ground-state entropy is extensive, and states
within the ground-state manifold are related by modifications
of only a small number of spins. An impurity can then fix
the spin configuration in its neighborhood, while constraining
the spins outside of its vicinity very little.13 Since each
random impurity fixes a spin configuration in its neighborhood,
roughly independently of the others, one may expect as a result
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a globally random ground state, i.e., a spin glass. In fact, the
T > 0 dynamics of such defective pyrochlore and kagome
systems is rather subtle, and the actual spin glass freezing
temperature can sometimes be highly suppressed as a result.13

Nevertheless, spin glass behavior is very commonly observed
in highly frustrated magnets,14 even when the disorder is
nominally very weak.

For the other classes of frustrated systems noted above, in
which the ground-state ordering wave vectors occupy a smaller
subset of reciprocal space, the degeneracy is subextensive.
An infinite number of spins must then be varied in order
to transform one ground state to another. Thus, different
impurities cannot independently determine their local envi-
ronments. In this paper, we develop a formalism for dealing
with their effects, focusing, for concreteness, on the most
degenerate case (of which we are aware) of a subextensive
degeneracy: frustrated diamond-lattice antiferromagnets. In a
J1-J2 model on the diamond lattice, the ordering wave vectors
(for antiferromagnetic J2 > |J1|/8) form a 2D surface within
the 3D momentum space.5 This example is of particular recent
interest due to its relevance to the A-site magnetic spinel
materials, with chemical formula AB2X4, in which magnetic
A sites form a diamond sublattice with nonmagnetic B and X
atoms15–17 (see Fig. 1). Because it represents an extreme case
of subextensive degeneracy, we expect that the conclusions
obtained for this case apply fairly generally to other less
degenerate frustrated magnets.

Our conclusion is that, for this class of systems, despite the
large ground-state degeneracy, long-range magnetic order is
stabilized—and indeed a specific ground state is selected—
at sufficiently low impurity concentrations. Each impurity
induces a small, finite region around it in which the spins are
deformed from an ideal spiral pattern, like holes in “swiss
cheese” (Emmentaler). The swiss cheese model allows a
calculation of the global ground-state wave vector, based on
certain properties of an individual defect. We calculate this
wave vector for the A-site spinel case, with a specific impurity
model. We show how the same theoretical framework deter-
mines other physical properties such as the ordered moment
observed in neutron scattering and the transition temperature.

FIG. 1. (Color online) Cubic cell of an AB2X4 spinel. The
sublattice of A sites (large blue spheres) is a diamond lattice, while the
sublattice of B sites (smaller yellow spheres) is a pyrochlore lattice.

The swiss cheese model also signals its own demise in one of
two ways. First, if the holes in the cheese strongly overlap, the
assumption of their independence fails. Second, even when
the holes do not overlap, if the underlying “stiffness” of the
bulk spiral is too small, then the impurities may induce strong
fluctuations. In either case, the long-range order is expected
to give way to a disordered spin glass ground state. These
two possibilities provide criteria, whereby the stability of the
ordered spiral state can be quantitatively estimated. In the case
of the A-site spinels, we suggest that this method consistently
explains the contrasting glassy and ordered ground states found
in CoAl2O4

16,18 and MnSc2S4,15,17,19 respectively.
The remainder of the paper is organized as follows. We

consider a single impurity in Sec. II. Using a nonlinear sigma
model, it is shown quite generally that, on long length scales,
a single defect can generate only small deformations away
from a uniform spiral ground state of the clean system.
We then demonstrate via Monte Carlo simulations that the
classical degeneracy is indeed lifted by the impurity, which
favors specific wave vectors along the spiral surface, thereby
providing a mechanism of “order by quenched disorder.” A
single impurity is further characterized by a length scale
ξ (the size of the hole) outside of which the spins are
well described by a uniform spiral. In Sec. III, we extend
this analysis to the case of multiple impurities. There, we
discuss the interplay between impurity and entropic effects
and make quantitative, verifiable predictions for how Tc varies
with impurity concentration. We conclude in Sec. IV with a
discussion of our results in the context of experiments and
impurity effects in other models.

II. SINGLE IMPURITY

In this section, we discuss the physics of a single impurity.
First, we will consider the possibility that the impurity induces
a slow variation of the spins extending over infinite distances.
By analyzing the energy as a function of order parameter
variations, we show that this is not the case. Instead, the
deformation of the spins by each impurity is local and decays
to a uniform spiral as the distance from the defect increases. We
then show that the impurity physics can be characterized by an
impurity energy function, Ea(q), which gives the difference
between the ground-state energies of the system with and
without a single impurity of type a, under the constraint that far
from the impurity the spins adopt a spiral configuration with
wave vector q. Employing extensive Monte Carlo simulations
we calculate this function numerically for a specific impurity
model. In order to check the validity of the swiss cheese
model, we characterize the local region of deformation around
an impurity: we compute locally the q vector from Monte
Carlo realizations of spin configurations. We find that in our
simulations, variations of q are extremely local, and most
changes happen within one unit cell.

A. General considerations

Consider an arbitrary local defect, for which the Hamilto-
nian of the system can be modified only in a finite vicinity of
the impurity (involving only a finite number of spins). Also,
for simplicity, we will assume the defect is “nonmagnetic,”
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meaning it preserves the spin-rotational invariance of the
Hamiltonian.

The energy of the system in the presence of the impurity
then consists of a contribution in the region where the defect
has modified the Hamiltonian and a contribution from the
remainder of the system. For any spin configuration, the former
is finite and the latter contains a leading term proportional
to V and subdominant corrections. By choosing the spin
configuration equal to that of one of the ground states in
the absence of the defect, we can make the energy density
E/V = ε0 in the large V → ∞ limit equal to that of the pure
system, and therefore the ground states in the presence of the
impurity must also achieve this same energy density ε0. This
implies that spins far from the impurity must locally resemble
one of the ground states of the pure system.

1. Spiral order parameter

To make our discussion more concrete, we now specialize to
the case of the frustrated diamond lattice antiferromagnet with
first and second nearest-neighbor interactions. The ground
states of this system were determined in Ref. 5. For J2/|J1| >

1/8, which is the parameter regime we focus on hereafter, they
consist of coplanar spirals whose propagation wave vector q
lies anywhere on a continuous “spiral surface” in reciprocal
space. The configuration of the spiral is described by

�S(r) = Re[ �d eiq·r+iγ (q;r)], (1)

where the phase γ (q; r) = γ (q), − γ (r),π − γ (r) when r is
on the I diamond sublattice, on the II diamond sublattice and
J1 is ferromagnetic, and on the II diamond sublattice and J1 is
antiferromagnetic, respectively. [The parametrization is such
that the diamond sublattice I contains the site at (0,0,0) and
the sublattice II that at 1

8 (1,1,1)]. The explicit form of γ (q) is
derived in Ref. 5:

γ (q) = − Arg

[
cos

qx

4
cos

qy

4
cos

qz

4
+ i sin

qx

4
sin

qy

4
sin

qz

4

]
,

(2)

where Arg(x) is argument of x. The vector �d specifies the
plane of the spiral in spin space and its phase. It takes the form

�d = ê1 + iê2, (3)

where ê1,ê2 are orthogonal unit vectors and | �d| is fixed at√
2. The spiral surface itself (i.e., the locus of allowed q)

deforms smoothly with J2/|J1| (except at the isolated value of
J2/|J1| = 1/4 where it changes topology).

To specify a ground state, one must therefore specify both
�d and the wave vector q, constrained to the spiral surface. One
can then regard ( �d,q) as the order parameter. Far from the
impurity, the spin configuration must locally take the ground
state form of Eq. (1), but we must consider the possibility
that these parameters may vary slowly (relative to the largest
microscale of the spiral, the wavelength 2π/|q|) in space.
We will now argue that such variations are insignificant: Far
from the impurity, the spiral wave vector and the �d vector
are uniform in the ground state (and, indeed, all finite energy
states).

To do so, we consider the energy of a slowly varying order
parameter that is macroscopically nonuniform and show that

it is divergent. Encoding the slow variations naı̈vely requires
five continuous real functions: three angles to specify �d and
two more to specify the position of q on the surface. However,
the actual number of degrees of freedom is smaller due to
an additional gauge symmetry: To see this we note that a
change in the wave vector, q → q + δq, can be compensated
by the shift �d → �de−iδq·r−iδγ with no change to the spins
[here δγ = γ (q + δq) − γ (q)]. Therefore there is a “gauge”
redundancy in these variables. We can “fix” the gauge in a
variety of ways. A simple choice is to allow only for spatial
variations in d and not in q, i.e., we write:

�S(r) = Re[ �d(r) eiq0·r+iγ (q;r)], (4)

where �d(r) is assumed to be slowly varying in space, and q0

is a constant “reference” wave vector. We emphasize that this
still allows the physical wave vector to differ from q0. For
instance, if �d(r) = �d0e

iδq·r with constant �d0, the physical wave
vector is q = q0 + δq. In general, we can define the physical
wave vector as

qμ = q
μ

0 + 1
2 Im[ �d∗ · ∂μ

�d]. (5)

Note that for Eq. (4) to correspond locally to a proper minimum
energy spiral ground state, the first argument q of γ must be
the physical wave vector given by Eq. (5), not q0.

2. Energy of weakly deformed spirals

It is sufficient to consider just small spatial variations of �d ,
since we will find that these are already prohibitively costly at
long distances. Let

�d(r) = �d0 + δ �d(r). (6)

To preserve the unit vector constraint of the spins �S2 = 1
in Eq. (4), a small δ �d(r) must be of the form

δ �d(r) = iφ(r) �d0 + ψ(r)ê3, (7)

where φ and ψ are arbitrary small real and complex fields,
respectively, and

ê3 = ê1 × ê2 = − 1
2 Im[ �d × �d∗] (8)

φ describes the rotation of the vector �d within the spiral
plane (spanned by ê1,ê2) and includes simple variations in
the physical wave vector, while ψ describes variations outside
the spiral plane. To this linearized order, we have simply
q = q0 + ∇φ.

Now consider the energy density as a function of φ,ψ

and their gradients. First, the energy must be unchanged for
constant values of these functions, since these correspond to
global O(3) spin rotations. The first nontrivial terms in a Taylor
expansion can arise at quadratic order in these fields, and from
the above reasoning, must include only spatial gradients so that
they vanish for constant configurations. Finally, this quadratic
form must be positive semidefinite, because the undeformed
configuration obtains the minimal energy.

An additional constraint is given by frustration: the energy
must also be unchanged for deformations corresponding to
changes of the wave vector within the spiral surface. Such
a deformation is of the form φ(r) = δq · r, where δq is an
arbitrary (small) vector in the plane tangent to the spiral
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surface at q0. This constraint is highly restrictive. Consider the
structure of allowed quadratic terms in φ with two gradients:

Eφ = 1
2cμν∂μφ∂νφ, (9)

where a sum over μ,ν is implied and cμν is an arbitrary real
symmetric matrix. This energy density should vanish for a
deformation corresponding to a constant spiral with a wave
vector shifted slightly within the spiral surface, which implies

cμνδq
μδqν = 0, (10)

for δq in the tangent plane. Equation (10) reduces cμν to
a single undetermined coefficient c, such that cμν = cn̂μn̂ν ,
where n̂ is the unit normal vector to the spiral surface.
The energy cost to deform φ in the directions parallel
to the spiral surface is thus higher order in derivatives. Along
the same lines one may deduce the most general allowed
energy density quadratic in the φ,ψ fields with the minimal
number of gradients to ensure stability:

E = c

2
(∇⊥φ)2 + c′∇⊥φ∇2

‖φ + c′′

2
(∇2

‖φ)2

+ d∇⊥ψ∗∇⊥ψ + d ′∇‖ψ∗ · ∇‖ψ, (11)

where ∇⊥ ≡ n̂ · ∇, ∇‖ = ∇ − n̂∇⊥, and c,c′,c′′,d,d ′ are
undetermined coefficients. For the energy to be bounded by the
ground-state value, one needs c,c′′,d,d ′ > 0, and (c′)2 � cc′′.
To simplify Eq. (11), we have actually assumed at least a
threefold rotational symmetry about the axis of the ordering
wave vector q0. In the most general case, the terms involving
∇‖ should be replaced by less isotropic forms, e.g., ∇2

‖ →
gμν∂μ∂ν , with μ,ν spanning the tangent directions. However,
such changes do not alter the results of the analysis at the
scaling level we consider in this paper.

Now we estimate the energy cost of a deformation. Consider
first ψ , whose energy is determined by the last two terms in
Eq. (11). The scaling is fully isotropic (k⊥ ∼ k‖) as usual for
an ordinary Goldstone mode (phonon or magnon) in three
dimensions. This leads to the conventional estimate of the
energy cost for a “twist” in the order parameter: if ψ varies
by some finite amount δψ over a region of size L, the energy
density is increased by an amount of order |δψ |2/L2, which
integrates to a total energy of order |δψ |2 × L over the volume
of size L3. Since this grows unboundedly with L, such order
one distortions of ψ cost infinite energy in the thermodynamic
limit, and cannot be compensated by any local energy gain.

The energy for twists of φ (which includes wave vector
variations) is less conventional. Here the scaling is anisotropic:
if φ is distorted by an amount δφ over a distance L‖ in a
direction parallel to the spiral surface, it will typically relax
over a larger distance of order L⊥ ∼ L2

‖ in the direction
perpendicular to the surface. This is seen simply by comparing
the powers of derivatives in the first three terms of Eq. (11).
The energy density for such a deformation is then (δφ)2/L4

‖,
which should be integrated over the volume L⊥L2

‖ ∼ L4
‖ to

obtain a total energy which does not scale with length. Thus
deformations of the phase might occur with O(1) disorder
contributions, but there could be subtleties involving thermal
fluctuations and anharmonic elasticity.20

In fact, the preference for uniform wave vectors at large
distances is stronger than the above estimate might lead one to

believe. The reason is that since δq = q − q0 = ∇φ, a wave-
vector shift δq (in the spiral surface) over a region of size L‖
leads to a large [not O(1)] deformation of φ: δφ ∼ L‖ × (δq).
Following the prior arguments, one sees that a variation of the
wave vector of δq over a region of size L‖ costs an energy
∼(δq)2L2

‖. Thus while more subtle effects could allow for
large-scale variations of φ [see Eq. (34) and the corresponding
discussion], large-scale twists of q are certainly energetically
forbidden in the ground state.

B. Characterization of single-impurity effects

The preceding discussion implies quite generally that
a single impurity can induce order-one deviations from a
uniform spiral only locally. Nevertheless, such corrections are
important to quantify as they break the large spiral degeneracy
present in the pure system (at zero temperature), leading to rich
physics. In the following we explain this degeneracy breaking
and characterize the resulting ground states.

1. Single-impurity quantities

To characterize a single impurity, we examine its effect
on the spiral ground states of the pure system. The simplest
and most important quantity is the minimum energy of the
system in the presence of the impurity E(q), relative to the
minimum energy without the impurity, given that infinitely far
from the impurity the spins are in a spiral configuration with
wave vector q. Formally, for an impurity a, Ea(q) is

Ea(q) = energy(q; with impurity)

− energy(q; without impurity). (12)

We only need to consider wave vectors q on the spiral surface,
in which case the locality arguments above imply that E(q) is
finite in the infinite volume limit. This energy quantifies the
splitting of the degenerate spiral states by such impurities.

One may also examine the spatial range of the impurity-
induced deformation. To this end we can locally calculate, at
each site ri , a local spiral wave vector qi from the surrounding
spin configuration and then consider the deviation cos (δq) =
qi · q/(|qi ||q|) from the wave vector q taken at infinity. The
local measurement of the spiral wave vector qi is performed by
considering a set of neighboring spins on the same sublattice
and fitting to

�Si × �Sj = sin(q · rji)
i

2
�d × �d∗ = sin(q · rij )ê3, (13)

where rji = rj − ri and ê3 defines the spin axis perpendicular
to the spiral plane as given in Eq. (8).

With the calculated qi we can then define the wave-vector
deformation length ξq as the radius outside which the angle
between qi and q at infinity is less than some angle θ0.
We remark in passing that the finiteness of these lengths
does not mean that the deformation around an impurity
decays exponentially away from it. Rather it means only that
the deformation decays toward a uniform spiral, reaching a
“good” approximation of it within length ξq . However, the
long-distance approach to the uniform spiral is expected to be
in the form of a power law rather than exponential, since there
is no gap in the spectrum of normal modes of the spiral state.
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Despite this nonexponential decay, and although the actual
form of the decay is unimportant, the lengths are significant
because the larger they are, the less local the impurity effects
become and the more sensitive the system is to disorder.
Specifically, we can no longer regard the impurities as dilute
when their concentration is larger than ξ−3

q . From the above
general scaling arguments, we would expect ξq to be typically
of the order of a few lattice spacings, though it might grow
larger near special points in the phase diagram. To check for
this possibility, we consider explicitly the size of the impurity
deformation region in a specific impurity model below and
find that it remains small throughout the parameter range of
interest.

2. Specific impurity model

In the following we investigate in detail one particular
type of impurity relevant for the spinels, which brings out
the general features of the problem. Specifically, we consider
the effect of a magnetic ion on a B site of the spinel
structure AB2X4. Each B-site atom has six nearest-neighbor
A sites, and the distance in this case is smaller than the A-A
nearest-neighbor distance. Thus, the dominant effect of this
impurity is to generate an exchange coupling Jimp between
the magnetic B site and its six nearest-neighbor A sites (see
Fig. 2), which is expected to be much stronger than the A-A
exchange, i.e., Jimp  J1,J2. We therefore model a single B
site impurity by adding to the Hamiltonian the term

δH = Jimp

∑
〈a,i〉

Sa · Si , (14)

where the sum is over the six A-site nearest neighbors i to
the B-site impurity labeled by a. Since we expect Jimp 
J1,J2, the natural, simplest approximation is to take Jimp →
∞, in which case the impurity spin Sa can be eliminated and
Eq. (14) reduces to a boundary condition that the six spins in
the vicinity of the impurity are aligned (but free to rotate all
together).

It is noteworthy that the B site does not have the full point
group symmetry of the lattice. Instead there are four distinct

FIG. 2. (Color online) Impurity model. A nonmagnetic impurity
resides on a B site indicated by the black sphere. The six nearest-
neighbor A sites form a distorted hexagon around the impurity (larger
and darker blue spheres).

B sites, which transform into one another under the full set of
cubic operations (see Fig. 2). Therefore we must distinguish
the four impurity positions within the unit cell, which we label
a = 1,2,3,4 in the energy function Ea(q), as these will favor
different ordered states.

3. Numerical results

We have simulated the B-site impurity model numerically
by employing extensive classical Monte Carlo simulations.
Our numerical simulations were based on the classical MONTE

CARLO code of the ALPS libraries.22 We set up our simulations
such that the impurity is embedded into systems of N = 8 ×
L3 spins with system sizes ranging up to N = 8 × 93 = 5832
spins. In order to define the spiral state at large distances from
the impurity site we employ fixed boundary conditions by
embedding the simulation cube of length L into a cube of extent
L + 1, where the spins in the boundary layer are aligned to
form a uniform spiral of a given wave vector q. In the vicinity of
the impurity we consider the Jimp → ∞ limit and force the six
nearest-neighbor spins of the impurity to be aligned and point
in the same direction at all times in the simulations. We explore
the zero temperature physics of this impurity model by setting
the simulation temperature much lower than all energy scales
in the problem, thereby mimicking a steepest descent energy
minimization. We checked the convergence of this procedure
by simulating systems with different initial spin configurations
and obtained indistinguishable results when starting from ran-
dom spin configurations or unperturbed spiral states, pointing
to the existence of a unique (and well accessible) energy
minimum.

Since the four distinct impurity sites within the diamond
lattice unit cell are related by simple rotations, we have
calculated the energy Ea(q) only for the impurity at one of
these four sites. For a given value of interactions J2/|J1| we
have run simulations for a set of 1000 distinct spiral wave
vectors q on the “spiral surface” appropriate for the value of
couplings. A summary of our numerical results for a medium
sized system of N = 512 = 8 × 43 spins is plotted in the top
row of Fig. 3. The impurity energies E1(q) are found to vary
on the spiral surfaces and clearly reflect the reduced symmetry
of the single B-site impurity problem. For instance, in the
coupling range 1/8 � J2/|J1| � 1/4, where the spiral surface
is a distorted sphere, the minimum energy wave vectors for
E1(q) are q1 points which are along the 11̄1 direction, while
the energy for wave vectors in the 1̄11 direction (and others in
the 〈111〉 octet) is not an energy minimum.

For J2/|J1| > 1/4, the spiral surface develops holes cen-
tered around the 111 directions and we find that E1(q) develops
two sets of three energy minima located symmetrically on
the spiral surface around the 111 and 1̄1̄1̄ directions for all
couplings J2/|J1| > 1/4 as indicated in the top row of Fig. 3.
We use the notation 111∗ to denote the location of these
points.

Our numerical simulations also allow us to probe the spiral
deformations in the vicinity of the impurity. In particular, we
measure the local spiral wave vector qi as described in detail
in Sec. II B 1 using Eq. (13). Since we are mostly interested in
estimating the deviation of this local wave vector qi from the
wave vector q for a given spin spiral configuration fixed at the
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(a)   single impurity

(b)   impurity average

J2/J1
1/8 0.30.25 0.850.4

100∗100 100∗ 100∗

11̄1 11̄1∗ 11̄1∗ 11̄1∗ 11̄1∗

11̄1∗

E1(q)

E(q)

FIG. 3. (Color online) “Spiral surfaces” comprising the degenerate spiral ground-state vectors for varying coupling strengths J2/J1. The
surfaces are grayscale coded according to the energies E1(q) and E(q), respectively. Dark and gray indicate high and low values, respectively.
The larger dark orange spheres denote the absolute minima. The edges of the first Brillouin zone are shown for orientation. The top row shows
results for a single impurity E1(q), while the bottom row shows results averaged over the four possible impurity sites E(q). Starred directions,
e.g., 100∗, denote sets of points on the spiral surface located “around” the corresponding (unstarred) direction, e.g.,100.

boundary, we calculate the deviation δq of the local spiral state
defined as the angle between the spiral wave vectors qi and q,
e.g., cos (δq) = qi · q/(|q||qi |). Our results for the so-defined
spiral deformation for various couplings and boundary spiral
states are summarized in Fig. 4.

We find that the local rearrangement of spins in the vicinity
of the impurity gives rise to a significant deviation of the
(angle of the) local spiral wave vector of O(1), while spins
being separated from the impurity by about one unit cell
spacing rearrange themselves in a spiral state that differs
only marginally from the one fixed at the boundary. This

short-range behavior of the spiral deviations is found to be
quite insensitive to the size of the system and the distance
from the fixed boundary configuration; for a more detailed
discussion of finite-size effects see Appendix C.

We further analyze how the pattern of local wave-vector
deviations changes as we vary the couplings in the range 1/8 <

J2/|J1| < 1/4. This is shown in the two panels of Fig. 4 for
fixed boundary spirals pointing in the 11̄1 and 100 directions,
respectively. We see that the region of significant deformation
of the spiral is in all cases restricted to the very close vicinity
of the impurity and varies only slightly with varying J2/J1.
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FIG. 4. Deviation of the local spiral wave vector qi from the one of the spiral state at the boundary q. The left panel is for boundary
spiral states with q pointing along the 11̄1 direction in the coupling range J2/|J1| < 1/4. The right panel is for boundary spiral states with q
pointing along the 100 direction in the coupling range J2/|J1| < 1/4. The impurity is embedded into a system of N = 2744 = 8 × 73 spins.
The symbols correspond to two different sets of neighboring spins, P (circles) and Q (boxes), used to calculate the local spiral wave vectors;
details are given in the text. Both plots are dominated by very short distance decay; the amplitude of the distortion at distances d � 2 is not
meaningful here.
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Note that, at the special point J2/|J1| = 1/4, the nearest-
neighbor spins to the impurity are naturally aligned in the spiral
with q in the 111 direction that corresponds to the impurity
type so the energy cost due to the impurity is then minimal
and the preferred wave vector is 111. For other J2/|J1| points,
there is no such straightforward argument, but, considering
the locality of the deformation Fig. 4, we can generally say
that the preferred spiral is the one with the “most aligned”
nearest-neighbor spins to the impurity.

III. DILUTE IMPURITIES

A. Ground state with many impurities

1. Swiss cheese model

We turn now to the case of many impurities. We have
seen that a single impurity already breaks the ground-state
degeneracy of the pure system, as well as the cubic symmetry
of the crystal, thus favoring a unique state. However, the (four)
different impurity positions within the unit cell break the cubic
symmetry of the crystal in a different way and hence each
favors a different ordered state. For example, an impurity at
one B site will favors a spiral with wave vector along the 111
direction, while another favors a wave vector along the 111
direction. In the physical system, equal densities of each type
of impurity should be simultaneously considered.

Given that the four impurity types favor incompatible
orders, what is the nature of the ground state that emerges
here? We will address this question in the dilute limit, by
which we mean that the impurity density nimp is assumed to
be much smaller than ξ−3. One naive candidate ground state
in this limit consists of domains such that around each defect
the spins are close to a spiral with wave vector favored by that
impurity type. However, this possibility can be dismissed since
such a configuration would necessitate large-scale deviations
in wave vector between domains, which we have seen in Sec. II
cost a prohibitively large energy. A more plausible outcome is
that the ground state consists of a uniform spiral deformed
locally around the defects, whose wave vector reflects a
compromise between the different impurity types. Putting it
more colloquially, the system looks like a “swiss cheese”
(Emmentaler) with the bulk consisting of an ordered spiral
and a set of holes in which the spins are strongly deformed
about each impurity. In this case, since the energy is the sum
of the energy shifts due to an equal number of each type of
impurities, the ground-state wave vector for the many-impurity
case minimizes

E(q) = 1

4

4∑
a=1

Ea(q). (15)

Equation (15) constitutes a large simplification, justified by
the impurity diluteness—the many-impurity ground state is
determined from an average over single-impurity quantities.
In this sense, the impurities in this limit act independently.

The above discussion asserts that the ground state away
from the impurities is essentially undeformed on scales
comparable to the impurity separation and somewhat larger.
This is indeed a consequence of the assumption of dilute
impurities and the locality arguments of Sec. II A 2. However,
this does not rule out the possibility that small deformations of

the spiral on the scale of the impurity separation could add up
on much longer distances to a larger deviation from long-range
spiral order. We consider this carefully below. We find that
the wave vector of the spiral indeed remains macroscopically
uniform for dilute impurities, even on the longest scales,
with small fluctuations. This is sufficient to guarantee the
correctness of the energy estimate in Eq. (15) and hence
correctly predict the wave vector favored by dilute impurities.
The phase of the spiral, however, fluctuates considerably more,
and our arguments suggest that there may be considerable
reduction of the long-range ordered moment of the spiral by
this mechanism.

To see this, we will construct a “coarse-grained” energy
function for the system containing many impurities and con-
sider the stability against perturbations to a macroscopically
uniform spiral. We use the parametrization of an arbitrary
slowly varying deviation from a spiral state with wave vector
q0 from Sec. II A, in terms of the fields φ and ψ . The energy
cost in the clean system for such a deviation is described by
Eq. (11). We must add to this the impurity energy density,

Eimp(q(r),r) =
∑

a

Ea(q(r))na(r), (16)

where the impurity density is

na(r) =
∑
Ra

δ(r − Ra), (17)

and Ra are the impurity positions. The impurity density is a
random function. For long-wavelength properties, the central
limit theorem implies that it is well characterized by its first
few moments. Taking the impurities to be uniformly and
independently distributed over the system volume with a total
average density x (or x/4 per impurity type), we find the mean
and two-point correlation

na(r) = x/4, (18)

na(r)nb(r′) − na(r) nb(r′) = x

4
δ(r − r′)δab, (19)

in the infinite volume limit. From this, we can evaluate the
mean and second cumulant of the impurity energy density.
The mean is

Eimp(q,r) = xE(q). (20)

This is precisely the energy in Eq. (15) and is, as expected,
linearly proportional to the impurity concentration x.

As a consequence, the impurity-averaged energy is min-
imized by the spiral wave vectors that minimize E(q).
To ascertain the stability of these minima in the impurity
distribution we now turn to analyze fluctuations about the
minima of E(q), parametrized as q = q0 + ∇φ (this is the
same slowly varying φ field from Sec. II A 2). Consider
fluctuations in the impurity energy

δEimp(q(r),r) = Eimp(q(r),r) − Eimp(q(r),r) (21)

and expand to linear order in φ:

δEimp(q(r),r) ≈ [Eimp(q0,r) − E(q0)] − fimp(r) · ∇φ.

(22)
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The first term in the brackets is φ independent and can be
neglected. The second term represents a “random force” given
by

fimp(r) = −
∑

a

na(r)∇qEa(q0). (23)

Since E(q) has a minimum at q0, it has vanishing first-order
derivatives at this point. This also implies that fimp(r) ∼
∇qE(q0) = 0. The second cumulant of the force is, however,
nonzero:

f
μ
imp(r)f ν

imp(r′) = x�μν(q0)δ(r − r′), (24)

with

�μν(q0) = 1

4

∑
a

∂Ea(q0)

∂qμ

∂Ea(q0)

∂qν

. (25)

�μν is generally nonzero and positive unless q0 is a saddle
point for all impurity types. This is not the case for our
problem, but even if it were, it would only further strengthen
the tendency of the system to order.

We are now in a position to consider the full energy function.
Since ψ does not couple to the impurities, we can neglect it.
The energy density involving φ then combines the first terms
in Eq. (11), the mean impurity contribution near a minimum
of E(q) to quadratic order in φ

Eimp(q(r),r) ≈ xE(q0) + x

2

∂2E(q0)

∂qμ∂qν

∂μφ∂νφ, (26)

and the random force from Eq. (22). Up to an unimportant
additive constant, we find

E = c

2
(∇⊥φ)2 + c′∇⊥φ∇2

‖φ + c′′

2
(∇2

‖φ)2

+ x

2

∂2E(q0)

∂qμ∂qν

∂μφ∂νφ − fimp(r) · ∇φ. (27)

To proceed, we note that for dilute impurities (small x), the
fourth term in Eq. (27) is much smaller than the first two except
when considering the energy cost for gradients ∇‖φ parallel to
the spiral surface and therefore keep only these components.
For simplicity, we will approximate these components as
isotropic and replace

∂2E(q0)

∂qμ∂qν

∂μφ∂νφ → cimp(∇‖φ)2. (28)

It is now straightforward to minimize the energy in Eq. (27) in
Fourier space:

φ(k) = −ik · f̃imp(k)

ck2
⊥ + c′k⊥k2

‖ + c′′k4
‖ + xcimpk

2
‖
. (29)

Finally, we can evaluate the local variance of the wave vector
δq = ∇φ:

δq(r)2 =
∫

k
k2φ(k)φ(−k)

= x�μν

∫
k

k2kμkν

(ck2
⊥ + c′′k4

‖ + xcimpk
2
‖)2 − (c′)2k2

⊥k4
‖
.

(30)

To estimate the integral for small x, we note the denominator
of the integrand vanishes more rapidly with k‖ than with k⊥,
and hence the largest terms will be those in which the momenta
in the numerator are taken in the k‖ directions. Hence, up to
angular factors that do not affect the scaling with x, we estimate

|δq(r)|2 ∼ x|�|
∫

d2k‖dk⊥

× k4
‖

(ck2
⊥ + c′′k4

‖ + xcimpk
2
‖)2 − (c′)2k2

⊥k4
‖
. (31)

The integral over k⊥ can be performed directly to obtain

|δq(r)|2 ∼ x|�| 1√
c

∫ 

0
dk‖

× k2
‖

(c̃′′
k2
‖ + xcimp)1/2(c′′

k2
‖ + xcimp)

, (32)

where c̃′′ = c′′ − (c′)2/(4c), and we have introduced the radial
momentum coordinate k‖ and introduced a high momentum
(short distance) cutoff . The integral is readily seen to be
logarithmically divergent for small x, hence

|δq(r)|2 ∼ |�|x√
c

ln(1/x). (33)

In the limit x → 0 the fluctuations of the wave vector vanish,
and therefore fluctuations never diverge. The wave vector is
indeed expected to remain uniform over the entire system, with
only small fluctuations for small x.

A more subtle question concerns the deformation of the
phase φ rather than the wave vector, because two well-
separated regions of the sample can become arbitrarily out of
phase as small deformations of the spiral accumulate between
them. A similar analysis to above gives

|φ(r)|2 =
∫

k
φ(k)φ(−k) ∼ x|�| 1√

c

∫ 

0
dk‖

× 1

(c̃′′
k2
‖ + xcimp)1/2(c′′

k2
‖ + xcimp)

. (34)

The integral in this case is much more singular. For small x it
is dominated by small k‖ and independent of . By rescaling,
one finds it is proportional to 1/x, canceling the x dependence
of the prefactor:

|φ(r)|2 � |�|
cimp

√
cc′′ . (35)

Because Eq. (35) is independent of x, there is no particular
reduction of the spatial variations of the spiral phase for
dilute impurities. This is symptomatic of the “softness” of
the degenerate spiral manifold.

Inspecting both Eqs. (35) and (33), we see that, although
fluctuations do not become large for small x, they do become
large for small c. Since c vanishes on approaching the Lifshitz
point J2/J1 = 1/8, we expect that the spiral ordering should
become unstable to impurity deformations in the neighborhood
of this part of the phase diagram. We return to this point in
Sec. IV.
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2. Numerical results

We have argued above that dilute impurities basically act
independently of each other and that they favor a unique
ground-state wave vector that minimizes the energy E(q). As
a consequence, it is straightforward to estimate the impurity
average E(q) from our numerical calculations of Ea(q) for
a single impurity in Sec. II B 3. Our results for the impurity
averaged energies E(q) are summarized in the bottom row
of Fig. 3. Note that while Ea(q) does not have the full point
group symmetry of the lattice, cubic symmetry is restored
when calculating the average E(q).

In particular, our numerical results allow us to determine the
direction of the long-distance spiral wave vector favored by an
ensemble of dilute impurities. For couplings 1/8 < J2/|J1| <

1/4, multiple defects favor a long-distance spiral wave vector
residing on the spiral surface along one of the 100 directions.
For couplings J2/|J1| > 1/4, where the spiral surface develops
“holes” centered around the 111 directions, we find that also
the long-distance spiral wave vector favored by an ensemble
of dilute impurities first jumps to the 11̄1∗ direction for
1/4 < J2/|J1| � 0.30 and then continuously moves to the
100∗ directions for J2/|J1| � 0.30, as illustrated in Fig. 3.

B. Interplay between impurity and entropic effects

We have argued that at zero temperature, dilute impurities
lift the spiral degeneracy inherent in the pure system, generat-
ing “order by quenched disorder.” As discussed above and in
Ref. 5, entropy provides another degeneracy lifting mechanism
at finite temperature via “thermal order by disorder.” The inter-
play between these mechanisms leads to interesting physics as
we will now discuss. In particular, over a wide range of J2/J1,
disorder and thermal fluctuations favor decidedly different
ordered states; e.g., for J2/J1 = 0.2, thermal fluctuations favor
the 111 directions while impurities prefer the 100 directions.
In such cases, since entropic corrections giving rise to thermal
order by disorder vanish as T → 0, the system is expected to
exhibit multistage ordering, from an impurity-driven phase at
the lowest T to an entropically stabilized phase at moderate
T to a disordered paramagnet at still higher T . As an aside,
we note that other interactions beyond those considered in our
model and/or quantum fluctuations can compete with impurity
effects at low T but may similarly lead to multiple phase
transitions. If the energetic corrections coming from impurity
or other effects are too large, however, then the entropically
stabilized phase will be removed, leaving a single ordered
state.

Another interesting effect arising from the interplay be-
tween entropy and disorder, which can be probed experimen-
tally, pertains to the shift in transition temperature Tc at which
the system first orders. Roughly, should entropy and disorder
favor the same state, then Tc is expected to be enhanced relative
to the pure system; otherwise a reduction is anticipated. To
estimate this shift, we note that the transition is first order and
that at Tc the free energies for the paramagnet and the ordered
phase must equal,

fsp(Tc) + xδFsp(Tc) = fPM(Tc) + xδFPM(Tc). (36)

Here, x is the impurity concentration, fsp and fPM are the free
energies for a clean system in the spiral phase and paramagnet,
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FIG. 5. (Color online) Plot of [E(q)]S − E(q0) versus frustration
J2/J1. The shift of Tc for the order-by-disorder phase per impurity is
proportional to this quantity [see Eq. (37)].

respectively, and xδFsp and xδFPM are the corresponding
changes in free energy due to the impurities. For a well-defined
thermal order-by-disorder phase, an approximate derivation
(see Appendix D) yields the following result:

Tc − T ∗
c = T ∗

c x
[E(q)]S − E(q0)

l∗
, (37)

where T ∗
c is the (upper) ordering temperature for the clean

system, l∗ is the latent heat density to go from the ordered
phase to the paramagnetic one in the clean crystal, S is the
degeneracy (spiral) surface, and q0 is the momentum favored
by thermal order-by-disorder in the clean system. We defined
the surface average

[E(q)]S =
∫

q∈S
dqE(q)∫

q∈S
dq

. (38)

The quantities determining the Tc shift in Eq. (37) can be
extracted from numerics. We find that the latent heat l∗ is
roughly independent of J2/J1. However, there is significant
dependence of the numerator in Eq. (37) on this ratio. This
is plotted in Fig. 5. The Tc tracks this quantity, and is thus
sensitive to the degree of frustration.

IV. DISCUSSION

In this manuscript we have explored the effect of dilute
impurities on the J1-J2 model on the diamond lattice. General
considerations led us to hypothesize that impurities may
provide a mechanism for ground-state degeneracy breaking.
We established that, under rather general conditions, even
highly frustrated magnets are induced to order by low
concentrations of impurities. Moreover, the mechanism and
energetics of this ordering was explained in terms of a simple
“swiss cheese” picture. To expose the mechanism in more
detail, we considered a very specific impurity model, namely
B-site magnetic ions being added to the system, and confirmed
the general structure of the impurity-induced ordering by
numerical and analytical means in this situation.

Let us briefly discuss this picture in relation to CoAl2O4

and MnSc2S4, the two A-site magnetic spinels exhibiting the
largest frustration parameters without the complications of
orbital degeneracy. Disorder in the form of inversion—A- and
B-site atoms interchanging with one another—is prevalent in
many spinels, including these, at the level of at least a few
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percentage points. One intriguing feature of the measurements
on these materials is the observation of glassy freezing in
CoAl2O4, but not in MnSc2S4, despite comparable levels of
inversion in the two materials. This suggests that CoAl2O4

is more sensitive to defects than MnSc2S4, and our results
corroborate this hypothesis. Theoretically, we argued that,
generically, the effect of sufficiently dilute impurities is to
induce order not a spin glass. For the ordered state to be
stable, we argued that (i) the impurity “halos” should not
overlap and (ii) the fluctuations in the wave vector induced by
the randomness of the impurity positions should be small. In
Sec. III A 1, we saw that the second criteria is highly sensitive
to the magnitude of the stiffness c, the fluctuations becoming
large as c decreases. In the diamond-lattice antiferromagnets,
the stiffness c actually vanishes on approaching the Lifshitz
point J2/J1 = 1/8. Prior investigations concluded that, in
fact, CoAl2O4 has exchange parameters close to this point,
while in MnSc2S4, J2/J1 ≈ 0.85,5 where c is not small. Thus
we suggest that the freezing behavior in CoAl2O4 may be
understood as arising from proximity to the Lifshitz point. It
may be interesting to directly study disorder physics in this
region by field theoretic methods in the future. In MnSc2S4,
Krimmel et al.17 find that the ordering wave vector is q =
(3/4,3/4,0), while the disorder favored wave vector is q ∝
100∗. This implies that the degeneracy breaking mechanism
is not disorder, and we believe that the selection is due to
third-neighbor interactions as suggested in Ref. 21. Such poor
sensitivity to disorder is consistent with the large momentum
q and stiffness c in MnSc2S4, as we explain above.

We would like to emphasize the generality of this argument.
The only assumption is that the impurity positions are not
strongly correlated, but otherwise this conclusion is indepen-
dent of the type of defects. Indeed, we do not maintain any
direct relevance of the specific impurity modeled studied in
the numerical portions of this paper to the A-site spinels.
For CoAl2O4, the existence of magnetic ions on the B sites
is probably suspect, as inverted Co+3 on the B sites would
be expected to have a nonmagnetic ground state. However,
the expected spin “vacancies” induced by Al atoms on the A
sites would lead to the same general conclusions. What would
require a more appropriate microscopic model would be an
estimate of the size of the region of deformed spins around an
impurity.

Very recent experiments have greatly clarified the situation
in CoAl2O4. Through a careful study of elastic and inelastic
neutron scattering in a high-quality single crystal, MacDougall
et al.18 have argued that the freezing transition in CoAl2O4

signals an “arrested” first-order transition in which the sample
breaks up into antiferromagnetic domains. These domains are
evidenced by a substantial Lorentzian-squared component to
the elastic scattering. Moreover, below the freezing temper-
ature spin-wave excitations were observed, a fit of which
determined J2/J1 ≈ 0.1. This parameter ratio takes CoAl2O4

close to the Lifshitz point but 0.1 < 1/8, so the commensurate
Néel state would be expected at low temperature. The first-
order nature of the transition is consistent with theoretical
expectations based on the order-by-disorder mechanism.5

Given these exchange parameters, the detailed analysis of
this paper does not directly apply, since we have assumed
J2/J1 > 1/8 and focused on spiral ground states. However,

arguments very similar to those we applied here to show a
strong sensitivity to impurities close to the Lifshitz point on
the spiral side also imply a similar sensitivity close to the
Lifshitz point on the Néel side. Thus the findings are quite
consistent with the general reasoning espoused here.

We conclude by describing an interesting feature of our
numerical simulations, which might be of interest in future
theoretical and experimental studies. We found that while
the ground states of the pure system are coplanar, the spin
configuration around the impurity might acquire a sizable out-
of-plane spin component, i.e., a spin component orthogonal to
the plane in which the spin spiral state lies at long distances
away from the impurity. This is in particular true for any
spiral with wave vector q such that the energy Ea(q) (for
an impurity of type a) of the spiral is much larger than the
overall minimum. It is possible that, collectively, impurities
might therefore induce non-co-planar spin ordering. Such
non-co-planar order is relatively rare and interesting insofar
as it can induce nontrivial Berry phases, related to anomalous
Hall effects in conducting systems.
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APPENDIX A: DEFINITION OF LOCAL WAVE VECTOR

Here we describe in detail how the local spiral wave vector
is defined on the lattice, as used in Sec. II B 3 and Figs. 4
and 6. Depending on the unperturbed spiral wave vector q
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FIG. 6. Finite size effects. Deviation of the local spiral wave
vector qi from the one of the spiral state at the boundary q for
systems of varying size N = 8 × L3. For the chosen couplings
J2/|J1| = 0.2 the spiral wave vector q points along the 11̄1 direction
with length |q| = 0.71π . The symbols correspond to two different
sets of neighboring spins, P (circles) and Q (boxes), used to calculate
the local spiral wave vectors; details are given in the text.
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taken at infinity we consider distinct sets of three neighboring
sites out of the 12 second-neighbor sites which are nearest
neighbors on the identical (fcc) sublattice. In particular, for q
pointing in the 111 direction we consider two sets of vec-
tors {rij }, namely P = {(1/2, − 1/2,0); (1/2,0,1/2); (0, −
1/2,1/2)} and Q = {(−1/2, − 1/2,0); (1/2,0, − 1/2); (0, −
1/2, − 1/2)}. For q pointing in the 100 direction we
consider two alternative sets of vectors {rij }, namely
P ′ = {(1/2,1/2,0); (1/2, − 1/2,0); (1/2,0,1/2)} and Q′ =
{(1/2,1/2,0); (1/2,0,1/2); (1/2,0, − 1/2)}. We place the local
wave vector qi at position ri − 1

4

∑3
j=1 rij , which is always

located inside the (convex) manifold spanned by the four spins.

APPENDIX B: SYMMETRIES

In this appendix, we give explicit expressions for the sym-
metry transformations and their effects, within our conventions
for the spinel lattice. The space group is generated by the
following operations:

(i) A threefold rotation about the (1,1,1) axis:

T1 : (x,y,z) −→ (z,x,y). (B1)

(ii) A twofold rotation about the (0,0,1) axis:

T2 : (x,y,z) −→ (−x, − y,z). (B2)

(iii) Reflection through a (1, − 1,0) plane:

T3 : (x,y,z) −→ (y,x,z). (B3)

(iv) Inversion:

T4 : (x,y,z) −→ (
1
4 − x, 1

4 − y, 1
4 − z

)
. (B4)

We define the following four impurity positions, ua (a =
1,2,3,4) modulo Bravais lattice transformations:

u1 = (3/8,5/8,3/8) u2 = (3/8,3/8,5/8),
(B5)

u3 = (5/8,3/8,3/8) u4 = (5/8,5/8,5/8).

These positions are mapped into one another by the four
space group generators. Corresponding to each of these
generators is an associated linear transformation in reciprocal
space. This transformation of wave vectors is identical to
the transformation of real space coordinates except that
translational components of the transformation are dropped.
That is, if the coordinates transform according to r → Or + a
[O is an O(3) matrix], then the corresponding momentum
transformation is just q → Oq.

As a consequence, any given impurity position may be
mapped to the other three by such an O(3) operation. One
finds that (up to Bravais lattice vectors), the impurity positions
transform according to

Taub = uc(b,a), (B6)

where c(a,b) can be represented as the matrix

c(a,b) =

⎛
⎜⎜⎜⎝

2 3 3 1

3 4 2 2

1 1 1 3

4 2 4 4

⎞
⎟⎟⎟⎠ , (B7)

where a and b specify the row and column of the matrix,
respectively. We see from this that, for instance, an impurity
on position 4 retains the symmetries generated by T1, T3, and
T4 but not T2.

Moreover, we observe that each impurity position can be
mapped to position 1 in the following way:

u1 = T1 ◦ T1 u2, (B8)

u1 = T1 u3, (B9)

u1 = T1 ◦ T1 ◦ T2 u4. (B10)

This allows one to calculate the energies Ea(q) with a = 2,3,4
from E1(q′) with an appropriate q′. Specifically

E2(qx,qy,qz) = E1(qy,qz,qx),

E3(qx,qy,qz) = E1(qz,qx,qy), (B11)

E4(qx,qy,qz) = E1(qy, − qz,qx).

Therefore, the average energy can be written as

E(qx,qy,qz) = 1
4 [E1(qx,qy,qz) + E1(qy,qz,qx)

+E1(qz,qx,qy) + E1(−qy,qz,− qx)]. (B12)

We note that, taking into account the subgroup of the full
space group which leaves position 1 invariant, the first impurity
energy obeys

E1(−qy, − qz,qx) = E1(qz,qy,qx) = E1(qy,qz, − qx)

= E1(−qz, − qy, − qx) = E1(qx, − qz, − qy)

= E1(qz, − qx, − qy) = E1(−qx,qz,qy)

= E1(−qz,qx,qy) = E1(qx,qy,qz) = E1(−qy, − qx,qz)

= E1(−qx, − qy, − qz) = E1(qy,qx, − qz). (B13)

The average energy, by construction, has the full cubic space
group symmetry, i.e.,

E(qx,qy,qz) = E(saqa,sbqb,scqc), (B14)

where sa,sb,sc = ±1 and (qa,qb,qc) is an arbitrary permutation
of qx,qy,qz. As a consequence, 1/48th of the solid angle in
q space is enough to recover the full function E(q). We,
therefore, carry out numerical simulations only for such a
section, which we choose, arbitrarily, to be the one defined by:

(qx > 0) ∧ (qy > 0) ∧ (qz > 0) ∧ (qx > qy) ∧ (qx < qz).

(B15)

All points defined by Eq. (B15) are inequivalent to one another
and, conversely, can be used to generate E(q) for an arbitrary
point using Eq. (B14).

APPENDIX C: LOCALITY OF SPIN DEFORMATION AND
FINITE-SIZE EFFECTS

Our numerical simulations of the B-site impurity model
indicate that the deformation of the spin spiral state in the
vicinity of the impurity is limited to a small numbers of spins
in the unit cell around the impurity. Our numerical calculations
are performed in an L × L × L simulation cube embedded in
a larger cube of extent L + 1, where the spins in the “boundary
cube” are fixed to a particular spin spiral state. One might thus
wonder whether the locality of the spin spiral deformation
originates from the impurity physics, as opposed to artifacts
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due to the fixed boundary conditions. To exclude the latter
we have calculated the spiral deviation for different system
sizes L and positioning of the impurity site, as summarized in
Fig. 6 where we fix the boundary spiral wave vector to the 11̄1
direction, which minimizes E1(q) for the chosen ratio of cou-
plings J2/|J1| = 0.2. We find that the deviation is insensitive to
varying the system size as shown in the various panels. Further,
we also do not find a striking change of our results when
embedding the impurity into a system of even extent L = 4
(second panel from top in Fig. 6), which places the impurity site
rather asymmetrically with respect to the fixed boundary spiral.

APPENDIX D: DERIVATION OF THE TRANSITION
TEMPERATURE SHIFT

In this Appendix we consider the transition between the
high-temperature paramagnetic phase and an ordered phase
where the spins order in a spiral configuration with a wave
vector selected by entropy. We explore how adding impurities
shifts the transition temperature, assuming that the impurities
themselves do not change the nature of the ordered state.
Quantities in the clean limit are denoted by a star.

For a first-order phase transition, at the transition tempera-
ture:

fsp(Tc) + xδFsp(Tc) = fPM(Tc) + xδFPM(Tc)
(D1)

fsp(T ∗
c ) = fPM(T ∗

c ),

where fsp,PM are the free energy densities of the spiral phase
and paramagnetic phase, respectively, and, similarly, δFsp,PM

refer to the free energy density corrections when impurities are
included. A small impurity concentration will only slightly
shift the transition temperature, and so we expand the free
energy density to first order in the temperature shift

f (Tc) ≈ f (T ∗
c ) + ∂f (T ∗

c )

∂T
(Tc − T ∗

c )

= f (T ∗
c ) + s(T ∗

c )(Tc − T ∗
c )

= f (T ∗
c ) + [f (T ∗

c ) − ε]

(
Tc

T ∗
c

− 1

)
, (D2)

where s(T ) is entropy and ε is the energy density. From this
we find

(εPM − εsp)

(
Tc

T ∗
c

− 1

)
= x[δFPM(Tc) − δFsp(Tc)]. (D3)

Now we turn to estimate the free energy densities δF , which
can be estimated from F = −T log Tr[e−βH ], when varying
the Hamiltonian by a small term xδH . This will yield a small
change in the free energy

δF = −T log

[
Tr[e−β(H+δH )]

Tr[e−βH ]

]
≈ −T log [1 − β〈δH 〉] ≈ +〈δH 〉, (D4)

where the angle brackets denote a thermal average. Each
impurity will contribute a term of the form of (14) to δH . Next
we estimate the energy thermal average in each phase. In the
ordered phase, the system remains mostly in the ground-state
configuration, and so we estimate δFsp ≈ E(q0), where E(q)
is the same as in Eq. (16), and q0 is the spiral wave vector. In
the paramagnetic phase, close to the transition temperature, the
system thermally fluctuates mostly among the different spiral
states (this has been shown explicitly for the clean system in
Ref. 5) and so we estimate δFPM ≈ ∫

q∈S
dqE(q)/(

∫
q∈S

dq),
where S is the spiral surface. We find therefore

(εPM − εsp)

(
Tc

T ∗
c

− 1

)

= x

[∫
q∈S

dqE(q)

(
∫

q∈S
dq)

− E(q0)

]
, (D5)

and, finally,

Tc − T ∗
c = T ∗

c x

l∗

[∫
q∈S

dqE(q)

(
∫

q∈S
dq)

− E(q0)

]
, (D6)

where l∗ = (εPM − εsp) is the latent heat density to go from the
order-by-disorder phase to the paramagnetic phase in a clean
system.
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