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Abstract. Entanglement measures such as the entanglement entropy have 
become an indispensable tool to identify the fundamental character of ground 
states of interacting quantum many-body systems. For systems of interacting 
spin or bosonic degrees of freedom much recent progress has been made not 
only in the analytical description of their respective entanglement entropies 
but also in their numerical classification. Systems of interacting fermionic 
degrees of freedom, however, have proved to be more difficult to control, in 
particular with regard to the numerical understanding of their entanglement 
properties. Here we report a generalization of the replica technique for the 
calculation of Rényi entropies to the framework of determinantal Quantum 
Monte Carlo simulations—the numerical method of choice for unbiased, large-
scale simulations of interacting fermionic systems. We demonstrate the strength 
of this approach over a recent alternative proposal based on a decomposition 
in free fermion Green’s functions by studying the entanglement entropy of one-
dimensional Hubbard systems both at zero and finite temperatures.

Keywords: Hubbard model (experiments), quantum Monte Carlo simulations, 
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Entanglement is one of the fundamental concepts of quantum mechanics that describes 
how quantum mechanical objects—e.g. photons, electrons, or spins—are interwoven 
into a collective state [1]. If such a state can no longer be described as a simple product 
state of single-particle wavefunctions, one says that the quantum mechanical objects 
are entangled. Beyond its conceptual relevance quantum mechanical entanglement has 
turned into a key resource in various fields of modern physics [2]. In quantum informa-
tion theory it is exploited in storing and manipulating information in so-called qubits 
[3–5]. In condensed matter physics entanglement has become increasingly appreciated 
as a measure to classify different states of quantum matter which cannot be distin-
guished by any local observable such as topologically ordered states [6–9]. The prob-
ably stunning realization that oftentimes ground states of quantum many-body systems 
are far from being highly entangled states has led to the development of a novel class of 
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(tensor network) algorithms to simulate quantum many-body systems in a variational 
low-entanglement approach [10–12].

While the notion of entanglement was originally associated with typically a 
handful of qubits its application to quantum many-body systems requires entangle-
ment measures that allow one to deal with an almost arbitrarily large number of 
interwoven quantum mechanical degrees of freedom. One such powerful measure 
is the so-called entanglement entropy [2], which can be calculated from a biparti-
tion of a quantum many-body system into two complementary parts A and B as 
illustrated in figure 1. Tracing out the degrees of freedom in one subsystem one 
can calculate a reduced density matrix for the other, e.g. ρA = TrB(|ψ〉〈ψ|). The 
information in the density matrix is then condensed into a single number, e.g. the 
von Neumann entropy [4]

ρ ρ=−S A( ) Tr[ log ].A A (1)

The von Neumann entropy is the most prominent member of a more general family of 
entanglement entropies, the so-called Rényi entropies [13] which are calculated from 
the density matrix as

ρ= −S A
n

( )
1

1
log (Tr( )),n A

n (2)

where the limit n → 1 recovers the above von Neumann entropy.
The strength of these entropic entanglement measures becomes apparent when 

considering the scaling of the entanglement entropy for varying sizes of the subsystem 
A. In contrast to conventional thermodynamic entropies the entanglement entropy 
is not extensive, but rather scales with the length of the boundary between the two 
partitions—the so-called boundary law [6] (which is often also referred to as area-law). 
Corrections to this prevalent boundary law have received widespread attention for 
their ability to classify different states of quantum matter [2]. For instance, it has been 
shown that the topological character of non-local order present in a quantum ground-
state wavefunction can be revealed by a universal O(1) correction [8, 9] to the bound-
ary law. Numerical simulations of quantum spin systems have subsequently shown that 
such an identification is indeed feasible and unambiguously revealed the long conjec-
tured topological order present in ground states of certain frustrated quantum magnets 
[14–16]. Systems of interacting fermionic degrees of freedom are the conceptually most 

Figure 1. The bipartition of a quantum many-body system into part A and its 
complement B.

A B



Rényi entropies of interacting fermions from determinantal quantum Monte Carlo simulations

4doi:10.1088/1742-5468/2014/08/P08015

J. S
tat. M

ech. (2014) P
08015

interesting class of interacting quantum many-body systems due to the even more 
complex variety of possible ground states and corresponding entropic signatures arising 
from the intricate nodal structure of fermionic wavefunctions. While a generalization of 
the numerical schemes to calculate entanglement entropies also for these many-fermion 
systems is highly desirable, progress so far has been limited to variational Monte Carlo 
techniques [17–20]. The first step to develop an approach based on determinantal 
Monte Carlo—an unbiased, auxiliary field technique that has become the method of 
choice for large-scale simulations of interacting fermion systems—has recently been 
reported by Grover [21], whose approach is based on a decomposition of the entangle-
ment entropy in terms of free-fermion Green’s functions.

The purpose of this manuscript is to describe an efficient numerical method to 
calculate the entanglement entropy for systems of interacting fermions in any spatial 
dimension. Our approach generalizes a replica scheme used to calculate Rényi entropies 
in world line quantum Monte Carlo approaches for interacting spin or bosonic systems 
to the framework of determinantal Monte Carlo simulations as detailed in the follow-
ing section.

We demonstrate the applicability of this approach by simulating one-dimensional 
Hubbard systems and discuss the strength of our technique in a detailed comparison with 
Grover’s recent alternative proposal to decompose the entanglement entropy in terms of 
free-fermion Green’s functions [21] in section 3. We close with an outlook in section 4.

2. Determinantal QMC and the replica trick

We consider a setup where the interactions between spinful fermionic degrees of free-
dom are captured by a lattice Hamiltonian such as the Hubbard model

†∑ ∑ ∑µ=− + + − +
σ

σ σ ↑ ↓ ↑ ↓H ( )t c c U n n n nh.c. ( ),
i j

i j
i

i i
i

i i
, ,

, , , , , , (3)

whose physics thrives from the competition of the on-site interaction U and the hopping 
t for fixed chemical potential µ. Our method is, however, not limited to the specifics of 
the Hubbard model but can in fact be applied to any fermionic Hamiltonian amenable 
to a quantum Monte Carlo simulation. The quantum mechanical state of such an inter-
acting many-fermion system can be described via its density matrix ρ. When consider-
ing the ground state of the system at zero temperature this density matrix is given by

∣ ∣
∣ρ ψ ψ
ψ ψ= , (4)

while at finite temperatures it takes the form

ρ β
β= −
−
H
H

exp ( )

Tr( exp ( ))
. (5)

In both cases, we have introduced an explicit normalization constant N  in the denomi-
nator, which not only ensures that the trace of the so-defined density matrix is 1, but 
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will play an important conceptual role in the following. To be even more explicit, we 
can rewrite both expressions as

ρ ρ= ′N
1

, (6)

which is the form we will be using in the following.

2.1. Rényi entropies and the replica trick

The first step in calculating the Rényi entropy is to determine the reduced density 
matrix ρA by tracing out the degrees of freedom in subsystem B

ρ ρ=Tr .A B

In our numerical calculations we will concentrate on the second Rényi entropy, i.e. the 
case of n = 2, which can be calculated from the reduced density matrix ρA as

ρ=−S A( ) log (Tr ( )).A A2
2 (7)

Note that ρA is squared before the remaining degrees of freedom of subsystem A are 
traced out. Using the notation of equation (6), we thus find the following general 
expression for the Rényi entropy

ρ=− ⎛
⎝
⎜⎜⎜⎜

′ ⎞
⎠
⎟⎟⎟⎟NS A( ) log

Tr ( )
,

A A
2

2

2 (8)

which is valid for both finite temperature and ground state considerations. In the fol-
lowing we will closely examine how this definition of the Rényi entropy (8) can be 
translated into an algorithm for its numerical computation. For concreteness we will 
initially focus on the finite-temperature scenario and expand our discussion to ground-
state calculations in a later step. Considering first the denominator in equation (8), we 
note that

ρ= =N Z(Tr ) ,2 2 2 (9)

i.e. the normalization N 2 is equal to the square of the usual partition sum considered 
in thermodynamics. The numerator of definition (8) is a bit more involved

⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩AB A B A B AB Z
A A B B
∑ρ ρ ρ′ = ′ ′ ′ ′ ′ ′ ≡
′ ′

A TTr ( ) [ , 2, ],A A
2

, , ,
 (10)

where we have defined the partition function Z A T[ , 2, ]. We are now left with the 
question of how to numerically calculate these two partition functions. To this end, 
we will first consider their calculation in the framework of world line quantum Monte 
Carlo techniques, as they are typically used for systems of interacting spin or bosonic 
degrees of freedom. We will then turn to the framework of determinantal quantum 
Monte Carlo (DQMC) techniques, typically used to simulate many-fermion systems.

Turning first to the case of world line QMC techniques, it is helpful to translate the 
two partition sums Z2 and Z A T[ , 2, ] into their respective world line representations 
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as illustrated in figure 2. On the left side, the world line representation of Z2 from 
the denominator in equation (8) is depicted with two sets of β-periodic world lines 
extending from 0 to β and from β to 2β, respectively. On the right hand site a world 
line representation is depicted for the partition function Z A T[ , 2, ] of the numerator 
of equation (8), where we consider two replicas of the system connected in imaginary 
time. Carefully implementing the imaginary time boundary conditions defined in equa-
tion (10) results in a β periodicity for part B and a 2β periodicity for part A—a scheme 
often referred to as the replica trick [22, 23]. To sample world line configurations 
according to these two partition sums, one simply needs to implement their respective 
imaginary time boundary conditions—a task, which is relatively straightforward for 
any existing world line Monte Carlo implementation [23, 24].

2.2. Determinantal QMC

Let us now turn to the framework of DQMC simulations and try to adapt the evaluation 
of the two partition functions Z2 and Z A T[ , 2, ] needed to calculate the Rényi entropy 
of equation (8) for a fermionic system. Describing the DQMC framework in a nut-
shell, one first decouples quartic terms in the Hamiltonian by a Hubbard–Stratonovich 
transformation introducing an auxiliary field, which then allows to integrate out the 
fermions analytically. A Monte Carlo scheme is then used to sample configurations of 
the auxiliary field. One of the key differences to world line techniques described above 
is that we do not sample world lines directly. In fact, by integrating out the fermionic 
degrees of freedom, we sample all possible world line configurations simultaneously for 
a given configuration of the auxiliary field.

This raises the question of how to properly implement the replica scheme in this 
framework. We will concentrate our discussion on the key conceptual steps in the fol-
lowing and refer the inclined reader interested in a more concise technical description to 
appendix A. Considering at first an arbitrary pair of a fermion state ψ and an auxiliary 
field state σ its statistical weight W(σ, ψ) is given by a Slater determinant

σ ψ σ ψ=W( , ) det ( , ). (11)

Figure 2. Ensemble switching in a world line picture. The left side shows the 
square of the regular partition sum Z2 where all world lines have to be β-periodic. 
The right side shows a configuration of allowed world lines in the Z A T[ , 2, ] 
partition sum, where 2β-periodicity is enforced in part A of the system but part B 
remains β-periodic.
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A crucial step is to realize that the grand-canonical trace over these Slater determi-
nants can be recast as a single determinant

σ ψ σ=Tr det ( , ) det ( ), (12)

which implies that one can integrate out the fermionic degrees of freedom and instead 
consider only configurations of the auxiliary field. However, it should be noted that this 
identity works only if the weights of the partition sum can be written in terms of single 
Slater determinants. When considering the replica scheme for the calculation of Rényi 
entropies, however, one typically encounters statistical weights in the expression for the 
partition function Z A T[ , 2, ] that are the product of two determinants

⟨ ⟩⟨ ⟩∑ ∑
∑ ∑

ρ ρ

σ σ

= ′| ′| ′ ′ ′ | ′|

= ′ ′ ′ ′
σ

σ

{ } ′ ′

{ } ′ ′

Z AB A B A B AB

AB A B A B AB
A A B B

A A B B

A T[ , 2, ]

det ( , ) det ( , ) ,

, , ,

, , ,

 (13)

where the two determinants are denoted as σ ′ ′ ′AB A Bdet ( , ) and σ ′A B ABdet ( , ). 
They again depend on the auxiliary field configuration σ and the arguments ′ ′A B A B, , ,  
indicate the imaginary time boundary conditions for a particular pair of auxiliary field 
and fermionic configurations. This structure seems to suggest that one can no longer 
integrate out the fermions by taking a grand-canonical trace as in equation (12)—the 
essential step at the heart of the DQMC framework, which if missing does not allow 
numerical simulations of the fermionic system at feasible numerical cost.

The key idea in our approach is to represent the replica scheme in a setting where 
the statistical weights can again be simplified to a form relying on a single Slater deter-
minant thus allowing to take a grand-canonical trace of the form (12). This is achieved 
by artificially enlarging the system by considering an additional copy B′ of subsystem 
B, which we will use to selectively evolve subsystem B in imaginary time. In particular 
we will show that an imaginary-time Hamiltonian of the form

τ Θ τ Θ β τ Θ τ β Θ β τ= − + − −′
∼H H H( ) ( ) ( ) ( ) (2 )AB AB (14)

will give direct access to the partition sum Z A T[ , 2, ]. A world line representation of 
this Hamiltonian is given in figure 3. To see this, suppose that we are given (14) as a 

Figure 3. The enlarged simulation cell used to port the replica trick to DQMC 
simulations.
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model Hamiltonian and our task is to determine its physics at an arbitrary tempera-
ture, suggestively written as 2β. We denote a given basis state by ⟩ ⟩ψ = ′A B B, , , 
which leads to a partition sum of

∑ β β= 〈 ′| − − | ′〉
{ ′}

′
∼Z A B B H H A B B

A B B
, , exp ( ) exp ( ) , , .AB AB

, ,

Although there are two propagation operators, the weight of the system would still 
be given as a single Slater determinant because only one expectation value has to be 
evaluated. We proceed to insert a resolution of unity in between the two exponential 
operators to obtain
∼ ⟨ ⟩⟨ ⟩∑ β β= ′| − | ′ ′| − | ′

{ ′ ′}
′Z A B B H C D D C D D H A B B

A B B C D D
, , exp ( ) , , , , exp ( ) , , .AB AB

, , , , ,

 (15)

Notice that in the right term, states of ′B  do not appear in the Hamiltonian. Thus, inde-
pendent of the specific form of A and B, we need to have ′= ′B D  for any non-vanishing 
term contributing to this partition function. Similarly, one obtains =B D from inspect-
ing the left term. Further, if subsystems B and ′B  do not appear in the Hamiltonian for 
a given imaginary time interval they not only do not evolve, but also remain completely 
decoupled from the rest of the system over this interval. As a result, they will also not 
affect the statistical weight

C B B H A B B
C B B H A B B
C B H A B

β
β

β

′ − ′
= ⊗ ′ − ⊗ ′
= −

, , exp ( ) , ,

( , ) exp( )( , )

, exp ( ) ,

AB

AB

AB

and thus can safely be ignored. Finally, renaming C to ′A  to match our earlier notation 
we obtain the following simplified expression

∑ β β= 〈 ′| − | ′ ′〉〈 ′ | − | 〉=
′ ′

′
∼Z AB H A B A B H AB Z

A A B B
AB AB A Texp ( ) exp ( ) [ , 2, ],

, , ,
 

(16)

which is precisely the expression for the sought-after partition function Z A T[ , 2, ]. We 
have thus shown that one can indeed recast the partition function Z A T[ , 2, ] in a way that 
relies only on single determinants thus allowing us to take the grand-canonical trace (12).

2.2.1. Ground-state formulation. When considering the ground-state DQMC algo-
rithm (see appendix A.2) only minor modifications to the above scheme have to be 
implemented. The normalization constant N  introduced in (6) is now given as

∑ψ ψ ψ ψ ψ ψ= 〈 | 〉= 〈 | 〉〈 | 〉= | 〉〈 |
| 〉

N A A
A

Tr ( ).

The ground-state wavefunction |ψ〉  is obtained by a projective scheme

ψ ψ| 〉= | 〉
Θ

Θ
→∞

− Hlim e ,T (17)

applied to a test wavefunction |ψT〉. If the test wavefunction has a non-zero overlap 
with the actual ground-state wavefunction, this projective scheme should eliminate 
all contributions from excited states and converge to the ground-state wavefunction. 
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Inserting this projection into the definition of the Rényi entropy in equation (8), we 
find an expression for the canonical trace ρ′Tr A

2 very similar to the finite temperature 
expression of the grand-canonical trace for 

∼Z in equation (16) discussed above

⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩

AB H H A B

A B H H AB
A A B B
∑ρ Θ ψ ψ Θ

Θ ψ ψ Θ

′ = ′| − | | − | ′ ′

× ′ | − | | − |
Θ→∞ ′ ′

Tr lim exp( ) exp( )

exp( ) exp( ) ,

A T T

T T

2

, , , 
(18)

where the only difference is the appearance of the density matrices |ψT〉〈ψT|, which 
however come in handy when taking the grand-canonical trace to make use of equa-
tion (12). Precisely because of the occurrence of these density matrices only states with 
an occupation number identical to the one of the test wavefunction will contribute.

2.2.2. Higher Rényi entropies. While we have concentrated our discussion on Rényi 
entropies of order 2, it should be noted that our algorithm can be extended in a 
straightforward way to also compute higher Rényi entropies. For the calculation of the 
n-th Rényi entropy via the replica trick, imaginary time has to be split into n segments 
which would contribute one determinant each in equation (13). It would thus be neces-
sary to introduce n replicas of the subsystem B and work in an overall system of size 
NA + n · NB. We have not implemented this more general case and therefore cannot 
comment on limiting system sizes or potential numerical instabilities arising in such an 
extended scheme.

2.2.3. Ensemble switching. The replica scheme outlined above allows us to directly 
sample partition functions of the form Z A T[ , 2, ].

For the calculation of the Rényi entropy, however, we are really interested in deter-
mining the ratio of the partition functions Z A T[ , 2, ] and Z2 as given in equation (8). 
This ratio can be directly accessed [25] without explicitly calculating the individual 
partition functions but by cleverly switching between the two ensembles.

Imagine a two state simulation, where the weight of two states is given by w1 
and w2. For any simulation fulfilling detailed balance the random walk would spend 
N1 = w1/(w1 + w2) steps in state 1 and N2 = w2/(w1 + w2) steps in state 2. Thus, the 
ratio of the weights w1/w2 corresponds precisely to the relative time spent in the two 
respective states. We can readily generalize [25] this statement to a situation where we 
sample a random walk switching back and forth between two ensembles whose parti-
tion functions equal the weights =Zw A T[ , 2, ]1  and =Zw2

2, respectively. Thus the 
ratio of relative time spent sampling each of the two ensembles can then be used to 
calculate the entanglement entropy

=− ⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟=−

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟

Z
ZS A

A T N

N
( ) log

[ , 2, ]
log .2 2

1

2
 (19)

In practical terms, we start our simulation in one of the two ensembles and after a fixed 
number of Monte Carlo steps, we calculate the weight of the current configuration in 
both ensembles and switch ensembles according to Metropolis rules, see figure 4.

When implementing this ensemble switching method, one benefits from an addi-
tional advantage of the determinantal QMC framework. The configuration space of 
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Z A T[ , 2, ] and Z2 is exactly equal, and the transition probabilities p1 → 2 and p2 → 1 are 
typically spread over the entire range (0, 1]. In appendix A.4 we show that the Monte 
Carlo estimate for the Rényi entropy is actually given as the ratio

= 〈 → 〉〈 → 〉
N

N

p

p
,1

2

2 1

1 2
 (20)

which can be obtained by two separate simulations. This allows for much quicker con-
vergence than we would obtain by explicitely switching between ensembles and count-
ing how much time we spent in each one of the two ensembles.

It should further be noted that our approach does not necessarily require the itera-
tive build up of the subsystem A from smaller blocks to achieve convergence [23], as it 
has been observed in the context of world line Monte Carlo approaches where the over-
lap between the ensembles might become rather small. We note that such an iterative 
build-up is also possible in the context of our DQMC approach if needed.

3. The Hubbard chain

To demonstrate the applicability and numerical efficiency of our replica switching 
method to calculate Rényi entropies within the DQMC framework we study the entan-
glement of a one-dimensional Hubbard chain, which at half-filling does not suffer from 
the infamous sign problem. We first concentrate on the zero-temperature properties of 
the entanglement entropy. We compare our numerical results to the quasi-exact ana-
lytical form derived from the conformal field theory description of the gapless theory 
governing the zero-temperature physics of the Hubbard chain in the presence of a 
finite on-site interaction U. We then turn to finite-temperature properties and show 
how the Rényi entropy crosses over from a low-temperature entanglement entropy to 
a high-temperature thermal entropy. Finally, we discuss the strength of our approach 
in comparison to a recent proposal to calculate Rényi entropies for interacting fermion 
systems from a decomposition in free fermion Green’s functions [21]. We demonstrate 

Figure 4. Schematic illustration of the ensemble switching method to calculate the 
Rényi entropy of equation (8). We start a random walk in one of the configuration 
spaces corresponding to the ensembles appearing in the numerator and the 
denominator of equation (8), denoted by C Z A T( [ , 2, ]) and C Z( )2 , respectively. 
Whenever we encounter a configuration that is admissible in both ensembles, 
we compare their relative weights and decide in which ensemble we continue to 
sample configurations based on a Metropolis scheme.
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that our approach is significantly more efficient in capturing the entanglement proper-
ties in the interaction dominated regime of the Hubbard model.

3.1. Zero-temperature physics

In the presence of a repulsive on-site interaction U > 0 the ground state of the half-
filled Hubbard chain is well known to be a Mott insulator exhibiting quasi-long range 
antiferromagnetic order. This means that at zero temperature charge fluctuations are 
frozen out entirely for any U > 0, while the localized spin degrees of freedom inter-
act via an effective Heisenberg exchange of order t2/U thereby building up quasi-long 
range antiferromagnetic order. The system thus remains gapless and can be described 
in terms of a conformal field theory with a central charge c = 1 corresponding to the 
number of gapless modes.

The entanglement entropy of such a gapless one-dimensional system is known [26–
28] to exhibit a logarithmic correction to the boundary law, which for a one-dimensional 
system simply states that the entanglement entropy is a constant for any bipartition. 
The logarithmic correction, however, does reflect the relative size of the two subsys-
tems in the bipartition and for all Rényi entropies follows the general form [28]

η
η
π

π= ⎛
⎝⎜⎜ +

⎞
⎠⎟⎟⎟
⎡
⎣
⎢⎢

⎛
⎝⎜⎜⎜
⎞
⎠⎟⎟⎟
⎤
⎦
⎥⎥+S l

c

n

L l

L
O( )

6
1

1
ln sin (1),n A

A
 (21)

where c is the central charge of the conformal field theory, L is the overall system 
length and lA ! L is the length of subsystem A. Open and periodic boundary condi-
tions correspond to η = 2 and η = 1, respectively, and further subleading corrections 
of order O(1) in the system size are neglected. Numerical results obtained with the 
zero-temperature DQMC algorithm (for details see the appendix) for an open chain 
of length L = 64 are shown in figure 5. We find that the DQMC data is generally in 
good agreement with quasi-exact results obtained using density matrix renormalization 
group (DMRG) simulations. We do observe, however, a slight trend of the DQMC 
data to underestimate (within the statistical error bars) the entanglement entropy for 
some of the intermediate block sizes—an effect which we find to be absent for smaller 
system sizes (not shown) and which previously has also been observed in conceptually 
similar simulations for spin systems [23] using the replica trick in combination with a 
stochastic series expansion (SSE)1.

We thus conclude this section with the observation that our replica switching 
DQMC method is indeed well equipped to efficiently determine the zero-temperature 
entanglement properties of the half-filled Hubbard chain.

3.2. Thermal crossover of the entanglement

When considering a quantum system at finite temperatures, both quantum and thermal 
fluctuations contribute to all entropies including the Rényi entropy of interest here. 

1 In the context of DQMC simulations, one additional potential origin for the systematic bias might be the 
discretization of imaginary time. In our simulations it was generally set to a value of ∆τ = 0.125, which for the 
studied onsite interaction of U = 2.0 is smaller than typically needed [31].
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Increasing the temperature the relative contributions of these two types of fluctuations 
of course change. As a result the Rényi entropy shows a crossover from a boundary law 
(with logarithmic corrections) at zero temperature to a more conventional extensive 
behavior (i.e. a volume law) at high temperature of the form

=S l l( ) log 4,A A

simply counting the number of possible states in the subsystem.

Figure 6. The thermal crossover of the entanglement entropy for a L = 32 site half-
filled Hubbard chain with U/t = 2. While at high temperatures the entanglement 
entropy exhibits a volume law S = L·log4 (indicated by the dashed line), it crosses 
over to a boundary law at low temperatures with a characteristic arc-like structure.

Figure 5. The entanglement entropy S2 of a periodic, half-filled Hubbard chain 
with L = 64 sites in the presence of a repulsive on-site interaction U/t = 2. Shown 
is the entanglement entropy versus the length of the subsystem lA. The numerical 
data obtained with the zero-temperature DQMC algorithm (Θ = 10) is in good 
agreement with DMRG reference data for the same system (open circles). The 
inset shows S2(L), i.e. the entanglement entropy for a subsystem equal to the whole 
chain. A value of 0 corresponds to a perfect purity =P 1 of the sampled ground 
state and thus signifies that the projection parameter Θ in the zero-temperature 
DQMC approach was chosen to be sufficiently large.
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This thermal crossover of the Rényi entropy from a zero-temperature entangle-
ment entropy to a thermal entropy at high temperatures can easily be observed 
in our numerical DQMC simulations. This is illustrated in figure 6 for a half-filled 
Hubbard chain of length L = 32 with intermediate on-site interaction U/t = 2 in 
a temperature range 0.025 ! T ! 5 (for t = 1). With increasing temperature the 
arc-like structure of the low-temperature entanglement entropy disappears and 
gives way to the simple linear form of an extensive thermal entropy. This thermal 
crossover is also reflected in figure 7 where we plot the Rényi entropy S2(L/2) of 
an equal-size bipartition of the chain for different system sizes versus temperature. 
In particular, we observe the expected data collapse at high temperatures when 
rescaling the calculated Rényi entropies by the respective system size, see the right 
panel of figure 7.

To quantitatively determine the crossover temperature T*, below which a finite-
sized system is effectively in its ground state, we turn to the so-called purity

= −P S Lexp ( ( )),2 (22)

which becomes 1 for a quantum mechanical ground state, since the entropy S2(L) 
needs to equal its complement S2(∅) and thus must vanish for any quantum mechani-
cal ground state—an observation which is ultimately also responsible for the arc-like 
structure of the entanglement entropy in equation (8). Indeed we find that the purity 
sharply rises towards 1 as the temperature is lowered in our simulations, see figure 8 
where we plot the purity as a function of temperature for different system sizes and a 
sequence of on-site interactions. On the one hand, we find that for a fixed value of the 
on-site interaction the crossover temperature decreases with system size in accordance 
with the fact that the finite-size gap of the system also decreases with increasing system 
size. On the other hand, we observe that for fixed system size the transition tempera-
ture T* decreases as the on-site interactions U are reduced reflecting the enhancement 
of charge fluctuations in this weakly coupled regime.

Figure 7. Thermal crossover of the Rényi entropy for a half-filled Hubbard chain 
with U/t = 1. Shown is S2(L/2, T) (left panel) and a rescaled S2(L/2, T)/L (right 
panel), which at high temperatures converges to log 2 for different system sizes.
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Finally, we note that we generally find somewhat smaller transition temperatures 
than recent stochastic series expansion (SSE) simulations [29] of the half-filled Hubbard 
chain, which can be tracked back to the fact that our DQMC simulations employ 
a grand-canonical ensemble, while the SSE simulation in [29] employed a canonical 
ensemble.

3.3. Comparison to free fermion decomposition method

We round off our discussion of our replica switching DQMC method by comparing it 
to a recent proposal [21] to calculate Rényi entropies from a decomposition in free fer-
mion Green’s functions. Such a decomposition might seem natural within the DQMC 
approach, since the Hubbard–Stratonovich transformation at its heart results in an 
effective description of free fermions moving in an external potential.

In the spirit of a fair comparison we have implemented the free fermion decompo-
sition method [21] using the same algorithmic optimizations as for our replica switch-
ing technique whenever possible. We then ran both codes on identical parameter sets 
logging the exact same CPU time for both codes. Results from this comparison are 

Figure 8. The purity P for a grand-canonical DMQC simulation of a half-filled 
Hubbard chain versus temperature for varying on-site interactions U/t and chains 
of varying length L.
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summarized in figure 9 where we show results of both approaches for the entangle-
ment entropy of a half-filled 10-site Hubbard chain at fixed temperature T = 0.025 
(β = 40) for different values of the on-site interaction U/t ∈ {1, 2, 4}. While the free 
fermion decomposition method reproduces the arc-like structure of the entanglement 
entropy for small on-site interaction U/t = 1, it shows deviations from this behavior 
already for moderate values of the on-site interaction U/t = 2. By contrast, our rep-
lica switching method nicely reproduces the exact diagonalization data up to strong 
on-site interaction U/t = 4. We thus conclude that our approach is significantly 
more efficient in capturing the entanglement properties in the interaction dominated 
regime of the Hubbard model.

Figure 9. Comparison of the replica switching (squares) and free fermion 
decomposition (circles) DQMC algorithms for the Rényi entropy of a half-filled 
Hubbard chain with varying on-site interactions U/t at temperature T = 0.025 
(β = 40). For comparison exact diagonalization data (for β = ∞) is indicated by 
the open circles. With both codes allocating the exact same amount of CPU time, 
a much faster convergence of the replica switching method is found.
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4. Conclusions

In summary, we have introduced a novel replica switching scheme to efficiently 
calculate Rényi entropies for interacting fermionic systems in determinantal quan-
tum Monte Carlo simulations. Our approach is capable of efficiently determining 
not only finite-temperature thermal entropies but also zero-temperature entangle-
ment entropies as demonstrated for the half-filled Hubbard chain over a range of 
interactions. In comparison to a recent proposal to calculate Rényi entropies from a 
decomposition in terms of free fermion Green’s functions [21], our approach yields 
much faster convergence and significantly higher numerical efficiency in the regime 
of strong correlations U/t > 1.

While we have concentrated our discussion on the second Rényi entropy Sn = 2, it 
should be noted that the replica technique described here can be expanded in a straight-
forward way to also access higher Rényi entropies. Calculating Rényi entropies with 
higher indices n > 2, however, requires one to simulate a system of size NA + n · NB 
at temperature nβ (where NA and NB correspond to the size of subsystems A and B, 
respectively). Thus, the computational cost to access these higher Rényi entropies in our 
approach sharply increases as the DQMC simulations generally scale as β N3 (where N is 
the total number of sites). This should be contrasted to the free-fermion decomposition 
method of Grover [21], where the n-th Rényi entropy can readily be accessed by simply 
simulating n replicas of the system at temperature β—a much more moderate increase 
in computational expense. Indeed recent numerical simulations [30] for the Kane–Mele 
model have demonstrated that with the free fermion decomposition method it is feasible 
to calculate a partial entanglement spectrum, i.e. the spectrum of (lowest) eigenvalues of 
the density matrix, from a sequence of Rényi entropies. It is likely that such a calcula-
tion of the entanglement spectrum is out of reach for our technique.

Although we have focused our discussion on one-dimensional fermion systems in 
this manuscript, two dimensional systems can be treated equally well. In particular, 
we point out that the numerical overhead of our method arising from the simulations 
of the two copies B and B′ (see figure 3) for the second Rényi entropy reduces with 
increasing spatial dimensionality: In one dimension an equal-size bipartition results 
in an overhead of L/2 additional sites simulated at temperature 2β. In two spatial 
dimensions, where we might consider a subsystem A of size L/2 × L/2 and its some-
what larger complement, we can choose to simulate the smaller subsystem (in this case 
A) twice. Such a simulation would thus only need an overhead of 1/4 of the sites in 
comparison to a conventional simulation and thus make it possible to calculate Rényi 
entropies for systems of nearly the same size as conventionally investigated in DQMC 
simulations.
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Appendix A. DQMC primer

We will give a short introduction to the basics of determinantal Quantum Monte Carlo 
that should suffice to understand the modifications to it presented in the main text. 
There are many more extensive, excellent reviews of the DQMC method available, 
such as [31, 32] among others, on which our exposition is based. We will start with the 
finite temperature algorithm and later mention what modifications are necessary to 
perform ground state simulations. For concreteness, we will stay within the context of 
the Hubbard model.

A.1. Finite-temperature algorithm

The first step in setting up the algorithm is to Trotter decompose imaginary time:

∏ ∆τ= −Z HTr exp ( )
i

 (A.1)

∑ ψ ∆τ ∆τ ψ= 〈 | − … − | 〉
ψ{| 〉}

H Hexp ( ) exp ( ) .
 (A.2)

The occupation number operator N , needed for the chemical potential, is from 
now on included in the potential operator V. The exponential is now separated and 
the appearing commutator ignored which in turn results in a systematic error of  
the order ∆τO( ):

OK V K V ∆τ≈ ⇒ ≈ +∆τ ∆τ ∆τ+ − + − −e e e e e e ( ).A B A B ( )

The kinetic part ∆τ− Ke  has only two operators and can be evaluated directly. The 
potential part ∆τ− Ve  on the other hand is made up of four operators and can therefore 
not be integrated out analytically. We thus apply the Hubbard–Stratonovich transfor-
mation to decouple the interaction. It is based on an identity for Gaussian integrals

∫π=
−∞

∞
− −se 2 d e ,A s sA1

2
1
2

2 2

 (A.3)

with A being the original operator, in our case the on-site interaction = ↑ ↓V Un ni i i, , . The 
price we have to pay is the introduction of the eponymous auxiliary field s that couples 
to the fermions. The decoupling itself is not unique: we can decouple with respect to the 
local charge or to the local magnetization. For the repulsive case, we usually couple to 
the local magnetization to avoid a complex transformation which is nevertheless pos-
sible and can be advantageous [33]. We do, however, break SU (2) symmetry which is 
only restored when performing enough updates.

It turns out that in the case of the Hubbard model, it is not necessary to work with 
a continuous auxiliary field, but that we can choose to work with discrete Ising spins 
s taking values {−1, 1} [34]. The decoupling has to be performed for each site and at 
each time slice. Doing so, we obtain

∑ ∑ ∏= =∆τ ∆τ λ
σ

σ λ ∆τ− −
=±

−
=± =↑ ↓

− + σ↑ ↓ ( )e
1

2
e e

1

2
eU n n Un
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s U n1
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The parameter λ can be determined by inserting all possible values for the auxiliary 
field s = ± 1 and the spins σ = {↑, ↓}. We find

▵λ= .1
2cosh e U T

Inserting this into (A.2) and switching to an explicit vector notation for the operators, 
we obtain the following form for the partition function:

† †∏ ∏= ⎛⎝⎜⎜
⎞
⎠⎟⎟⎟ σ

∆τ ∆τ{ }
= =↑ ↓

−σ σ σ σ σZ 1

2
Tr Tr e e ,

N L

s
l L

lc Kc c V c
1

,

( )

d

s

where K and V are the matrix representations of the K and V operator, respectively.
The partition function now consists of one trace over all auxiliary field configura-

tions and another one over the fermionic states which act on a product over all time 
slices and spins of the discretized and separated exponential.

We continue to rewrite the operators in matrix form K and σVs  where the index 
s reminds us that the potential part depends on the auxiliary field. A product 

† †∆τ ∆τ−σ σ σ σ σe e lc Kc c V c( )s  will be denoted by Bσ(l) and an ordered sequence of all L B-matrices 
with arbitrary starting point τ by

τ τ β τ= − … …σ σ σ σ σB B B B B( ) ( 1) (0) ( ) ( ). (A.4)

The time τ is a multiple of the discretization ∆τ. The weight of one configuration of 
fermions and auxiliary field is then given by

ψ τ ψ τ〈 | | 〉=σ σB B( ) det ( ( )). (A.5)

We could use this weight to set up the Monte Carlo simulation, sampling both fermion 
and auxiliary field configurations. But this would be very inefficient because the cal-
culation of determinants is numerically very expensive. Instead, we will integrate out 
the fermions analytically and sample only auxiliary field configurations.

One can prove that the grand-canonical trace over all fermionic states of the 
B-matrix is given by

= +B BTr det (1 ), (A.6)

allowing us to explicitly perform the trace over all fermionic states. One can hardly 
underestimate the importance of this identity for determinantal QMC simulations. By 

Figure A1. The computational cost of the algorithm due to the additional sites 
is lowered by exploiting the matrix structure induced by the imaginary time 
dependent Hamiltonian (14). The slice matrices comprise blocks of zeros which 
should explicitly be ignored in steps involving matrix multiplications.
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applying the identity (A.6), we are left only with the problem of sampling the auxiliary 
field where the weight of each configuration is given by one determinant. The connec-
tion to the field is made by the B matrices via the potential. Using these notations, we 
can rewrite the partition function as

∑∏= ⎛⎝⎜⎜
⎞
⎠⎟⎟⎟ +

σ
σ

{ }
Z B1

2
det (1 (0)).

N L

s

d

In principle, we are now able to set up our Monte Carlo simulations. We know the form 
of the weights and we can sample configurations of auxiliary fields using, for example, 
the Metropolis scheme mentioned before. For the calculation of Green’s functions and 
more practical aspects we refer the interested reader to the aforementioned references.

A.2. Ground-state algorithm

To access ground state properties, we start with a carefully chosen trial wavefunction 
|ψT〉 and project out the excited states by applying a large power of the Hamiltonian:

H ψ ψ| = |
Θ

Θ
→∞

−lim e .T ⟩ ⟩ (A.7)

The trial wavefunction must be non-orthogonal to the true ground state wavefunction 
|ψ〉 for the procedure to work. For the Hubbard model at half filling we chose a spin sin-
glet as a trial wavefunction |ψT〉. Setting up the simulation is very similar to the finite 
temperature algorithm. The projection parameter Θ plays the role of the temperature 
β. The exponential in (A.7) is then decomposed and the interaction term decoupled by 
a Hubbard–Stratonovich transformation. We will not go into further detail because the 
calculation of the Rényi entropies for ground state problems was shown to reduce to a 
modified finite temperature problem.

A.3. Numerical optimizations

In DQMC simulations we are limited by the N3β scaling and have to pay special atten-
tion to numerical instabilities. Simulating an artificially enlarged system may thus appear 
to be very inefficient. However, enlarging the system and implementing the Hamiltonian 
(14) goes along with a special matrix structure that we can make use of to lower the 
numerical cost. In the matrix representation, the hopping terms are of the following form:

∼ ∼=
⎛
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⎛
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⎜⎜⎜⎜⎜⎜ ′ ′

⎞

⎠
⎟⎟⎟⎟⎟⎟⎟

′
′

′1
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K K
K K K

K K

K K

0
0

0 0

,
0

0 0
0

,AB

AA AB

BA BB AB

AA AB

B A B B

 (30)

where K is the matrix representation of the hopping operator and the index signifies 
the part of the lattice it connects. One of the parts B and B′, respectively, remains 
unchanged and thus has a 1 on the diagonal and zeros for the off-diagonal terms. 
Interaction terms will be of the same form.

One can now readily convince oneself that multiplying two matrices in the same 
imaginary time interval (0, β) or (β, 2β) will not alter this structure because they are 
block-diagonal, see figure A1. Mixing matrices of different time intervals, on the other 
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hand, will typically result in dense matrices. This is inevitably the case when calculat-
ing the sequence of B matrices (A.4), except for τ ∈ {0, β}. Even when multiplying a 
dense matrix with one of the slice matrices, it is not necessary to perform a full matrix 
multiplication, because of the blocks of zeros present in the slice matrix.

A.4. The ensemble switching method

We will show that to estimate the ratio (8) it suffices to measure the expectation values 
of 〈p1 → 2〉 and 〈p2 → 1〉, which are the probabilities to switch ensembles from ensemble 1 
to 2 and from ensemble 2 to 1, respectively. Using a Metropolis scheme, the probability 
to switch ensembles for a given configuration c is given as

→ = ⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟p

W c

W c
min 1,

( )

( )
,1 2

2

1

where W1(c) and W2(c) are the weights in the respective ensembles. The configura-
tions c are configurations of the auxiliary field and both ensembles share the same 
configuration space C. Writing out the ratio of the expectation values for the switch-
ing operation gives
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Appendix B. Comparison to free fermion decomposition

In this appendix we provide further details on our analysis of the comparison between 
the replica switching and free fermion decomposition DQMC algorithms as presented 
in figure 9 of the main text.

Our C++  simulation codes of the two algorithms employ a common code base 
implementing the same optimizations for many underlying core features (such as lin-
ear algebra subroutines, sampling improvements or parallelization schemes) for both 
approaches and further build on the ALPS libraries [35].

We separately ran 16 independent simulations per data point in figure 9 of the main 
text each with a different random seed and later merged the results via a jackknife 
analysis using the ALPS tools. The spread of the raw results of all 16 runs before merg-
ing are shown in figure A2.

For an allocated computing time of 105 min (per data point and seed) the number 
of measurements in the free fermion case was around 3500 per data point and seed 
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(after initial thermalization). For the replica switching method, we obtained a consid-
erably smaller number of measurements for the switching probabilities in (20) in the 
same allocated computing time. For the largest cut, i.e. lA = 10, we recorded some 
1300 measurements, while for the smallest cut, i.e. lA = 1 we recorded only around 
100 measurements. The lower number of measurements for the ensemble switching 
method in a given time frame is due to two effects: First, for the replica switching 
method we have to perform one simulation for an ensemble of two separate systems 
and one simulation in the connected ensemble. Both of these simulations have to be 
thermalized in contrast to only one simulation in the free fermion case. Second, the 
simulation cell of the connected system in the replica switching method is enlarged. 
For the case of lA = 1 for example, we effectively simulate a system of size L = 19 
which in combination with the N3β scaling of the algorithm further reduces the num-
ber of possible sweeps in a given time.

Figure A2. Comparison of the spread of the raw data of DQMC runs for 16 
independent runs using the the replica switching (squares) and free fermion 
decomposition (circles) algorithms. Shown is the Rényi entropy of a half-
filled Hubbard chain with varying on-site interactions U/t at temperature  
T = 0.025 (β = 40).
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Comparing the results obtained with the two algorithms the spread of the raw data 
shows two overall trends. First, looking at the dependence of the spread of data points 
with subsystem size lA, the free fermion decomposition method shows a considerable 
increase of this spread with increasing subsystem size, while for the replica switching 
method there is no measurable dependence. Second, with increasing onsite interaction 
U the data spread clearly increases much more strongly for the free fermion decomposi-
tion method in comparison with the replica switching technique (which becomes most 
poignant for large subsystem sizes lA).
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